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A linear law for the speech sonority

A rough measure of sonority was introduced in Galves et
al. (2002) as a tool to discriminate between rhythmic
classes of languages.
An empirical analysis of a multi-lingual corpus puts in
evidence a linear relationship between the mean sonority
and the mean increment of the sonority across sentences
of the sample.
There is a simple way to explain this linearity. This is the
goal of this presentation.
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The rhythmic classes conjecture

It has been conjectured in the linguistic literature that
languages are divided in two or maybe three rhythmic classes
(Lloyd 1940, Pike 1945, Abercrombie 1967, ...).

Morse code or stress-timed languages: English, European
Portuguese, Dutch, Finish, Polish, ...
Machine-gun or Syllable-timed languages: Brazilian
Portuguese, Catalan, French, Italian, Spanish,...
Mora-timed languages: Japanese, Fidji, ...
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But for nearly half a century

There was no real definition of the rhythmic properties
characterizing a class.
And no empirical correlates of the rhythmic properties in
the speech signal was known.
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Correlates of linguistic rhythm in the speech signal

Ramus, Nespor and Mehler (1999) gave for the first time
evidence that simple statistics of the speech signal could
discriminate between different rhythmic classes.
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RNM’s approach

RNM analyzed the acoustic signal of 20 sentences
produced by 4 speakers of each of the following
languages: English, Polish, Dutch, Catalan, Spanish,
Italian, French and Japanese.
The chosen sentences were segmented into vocalic and
consonantal intervals.
For each language, the empirical standard deviation of the
durations of the consonantal intervals (∆C) and the
proportion of time spent in vocalic intervals (%V ) were
computed.
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Intuition behind the choice of these statistical
parameters

Languages conjectured to be syllable timed (like Italian)
spend a greater proportion of time in vocalic intervals than
languages conjectured to be stress-timed (like English or
Dutch). This justifies the choice of %V .
Languages conjectured to be stress-timed display a
greater variety and complexity of consonantal intervals
than languages conjectured to be syllable-timed. This
justifies the choice of δC.

It turns out that this was a good choice ...
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Problems with RNM’s approach

It is based on a hand label-ling of the speech signal.

This is a time-consuming task.
Moreover this hand label-ling is often based on decisions
which are difficult to reproduce in a homogeneous way

This makes it difficult to reproduce RNM’s approach on large
samples.
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A new approach to the problem

Newborn babies are able to discriminate rhythmic classes
with a signal filtered at 400Hz (Mehler et al. 1996).
At this level, it is hard to distinguish nasals from vowels and
glides from consonants.
This strongly suggests that the discrimination of rhythmic
classes by babies relies not on fine-grained distinctions
between vowels and consonants, but on a coarse-grained
perception of sonority in opposition to obstruency.
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Sonority as a basis for rhythmic class discrimination

Galves, Garcia, Duarte and Galves (2002) suggests that it
is possible to discriminate rhythmic classes of language,
using a rough measure of the speech sonority.
This measure is defined directly from the spectrogram of
the signal, with no need of previous hand label-ling of the
data
Applied to the same linguistics samples considered in
RNM, it produces the three conjectured clusters.

Pierre Collet, Didier Demolin, Antonio Galves and Jesús García A linear law for the speech sonority



Sonority as a basis for rhythmic class discrimination

Galves, Garcia, Duarte and Galves (2002) suggests that it
is possible to discriminate rhythmic classes of language,
using a rough measure of the speech sonority.
This measure is defined directly from the spectrogram of
the signal, with no need of previous hand label-ling of the
data
Applied to the same linguistics samples considered in
RNM, it produces the three conjectured clusters.

Pierre Collet, Didier Demolin, Antonio Galves and Jesús García A linear law for the speech sonority



Sonority as a basis for rhythmic class discrimination

Galves, Garcia, Duarte and Galves (2002) suggests that it
is possible to discriminate rhythmic classes of language,
using a rough measure of the speech sonority.
This measure is defined directly from the spectrogram of
the signal, with no need of previous hand label-ling of the
data
Applied to the same linguistics samples considered in
RNM, it produces the three conjectured clusters.

Pierre Collet, Didier Demolin, Antonio Galves and Jesús García A linear law for the speech sonority



Defining the speech sonority

We define a function which maps local windows of the
acoustic signal on the interval [0, 1].
This function is close to 1 for spans displaying regular
patterns, characteristic of sonorant portions of the signal.
In contrast, regions in which the acoustic signal present a
chaotic behavior, for instance regions corresponding to
stop consonants, will correspond to intervals in which St
will assume values close to 0, with important variations
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Denote by ct(f ) the power spectral density at time t and
frequency f .
Time is discretized in steps of 2 milliseconds. The values
of the spectrogram are estimated using a 25 milliseconds
Gaussian window.
We only consider frequencies from 80 Hz to 800 Hz, by
steps of 20 Hz.

The normalized power spectral density is defined by

pt(f ) =
ct(f )∑
f ′ ct(f ′)

.

This defines a sequence of probability measures
{pt : t = 1, . . . , }.
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Definition of the sonority

St = e
−η

3P
i=1

h(pt | pt−i )
,

where h is the relative entropy and η is a free parameter taking
positive real values.
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Reproducing RNM using the sonority

Define
S̄ = 1

T
∑T

t=1 s(t) . (This will play the role of %V.)

δS = 1
T

∑T
t=1 |s(t)− s(t − 1)| . (This will play the role of

∆C.)
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A sound statistical basis to the clustering

The pictures produced with both approaches suggest that
the existence of three classes.
Is this a real statistical fact ?
The projected Kolmogorov-Smirnov test presented in
Cuesta-Albertos, Fraiman and Ransford (2004) makes it
possible to compare the laws of the stochastic processes
producing the time evolutions of the sonority for the
different sentences and languages.
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The projected Kolmogorov-Smirnov test

First choose a direction W = (W (t))t∈[0,T ] at random. and
then project the sonority trajectories in this direction.
Then calculate the Kolmogorov-Smirnov statistic
DW (Sl ,Sl ′) for the two projected samples
Reject the null hypothesis that the two samples belong to
the same population if DW (Sl ,Sl ′) is large enough.
Otherwise accept it.
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Stable projected Kolmogorov-Smirnov test

Instead of taking only one random direction we will take many of
them. For each pair of languages l 6= l ′ we proceed as follows.

Choose 100 independent direction Wi : i = 1, ..., 100 .
Test if the samples corresponding to l and l ′ belong to the
same population using the projected KS test using
direction Wi .
Build up the auxiliary random variable Zi(l , l ′) which takes
the value 1 if the projected test in direction Wi rejects the
null hypothesis, and takes the value 0 otherwise.
Reject the null hypothesis if the average statistic

Z̄ (l , l ′) =
1
N

N∑
i=1

Zi(l , l ′) ≥ cα .
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Results using the sonority

language pol ital fren span dut eng cat
jap 0.04 0.43 0.09 0.08 0.77 0.74 0.01
pol 0.03 0.0 0.0 0.60 0.21 0.03
ital 0.03 0.02 0.14 0.0 0.05
fren 0.0 0.50 0.19 0.06
span 0.41 0.08 0.03
dut 0.0 0.74
eng 0.58

c?
0.05(l) 0.13 0.13 0.12 0.11 0.14 0.12 0.12

c?
0.1(l) 0.05 0.05 0.06 0.05 0.05 0.04 0.05
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Results with groups of languages

We performed a new test by grouping the sonority sample
paths in three groups.

In the first group we put together the 60 sonority sample
paths of the conjectured syllable-timed languages, French,
Italian and Spanish.
The second group contains the 40 paths of the conjectured
stress-timed languages, Dutch and English.
Finally the 20 sonority paths of Japanese, which is
conjectured to be a mora-timed language, remain in a third
group.
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Results with groups of languages

category mora–timed stress–timed c?
0.05(i)

syllable–timed 0.32 0.70 0.24
stress–timed 0.82 0.09

c?
0.05(j) 0.06 0.04

Table: Values of Z̄ (i , j) and bootstrap critical values for the three
groups, with N = 100, B = 1000 and η = 0.05

The test found significant all the differences between groups.
This reinforces the linguistic conjecture of existence of three
different rhythmic classes.

These results are presented in a paper by Cuesta, Fraiman,
Galves, Garcia and Svarc to appear in the Journal of Applied
Statistics (2006).
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2863 sentences from 15 different languages

Plot S̄ vs. δS
for 2863 sentences from 15 languages
from a corpus belonging to the Laboratoire de Sciences
Cognitives et Psycholinguistique (EHESS/CNRS).
Recall that

S̄ =
1
T

T∑
t=1

s(t)

and

δS =
1
T

T∑
t=1

|s(t)− s(t − 1)| .
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A linear law for the speech sonority

Figure: Mean sonority (horizontal axis) and mean increment of the
sonority in absolute value (vertical axis) for 2863 sentences from 15
different languages
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A model for the speech sonority

A cross-linguistic exploratory analysis of the data shows
that the sonority is quite regular in high level regions and
displays strong variations below a certain level.
This suggests modeling the sonority time evolutions for
different languages by a family of tied quantized chains.
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Tied quantized chains

The chains are tied together by the assumption that the
distribution of the sonority, conditioned on the fact that it
belongs to a given region, is universal, i.e. language
independent.
In particular the partition in regions of sonority is assumed
to be language independent.
In this model the specific features characterizing each
language are expressed by the symbolic chain indicating in
which region of sonority the process is at each time step.
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A model for the speech sonority

Components of the model: two families of stochastic
chains {(

Sl
t
)

t∈Z : l ∈ L
}

and
{(

X l
t
)

t∈Z : l ∈ L
}
.

L is the set of all languages
The chains

(
Sl

t
)

t∈Z take values in the interval [0, 1].

The chains
(
X l

t
)

t∈Z take values in the binary alphabet
A = {0, 1}.

We will assume that these chains are stationary and ergodic.
These chains are tied together by the following assumption.
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Assumption

There exist probability distributions
πi on [0, 1]
π(i,j) on [0, 1]2

indexed by symbols i and j in the alphabet A = {0, 1}
which are language independent
such that for any l ∈ L

P
{

Sl
t ∈ B|X l

t = j
}

= πj(B) , (1)

and

P
{

Sl
t ∈ B, Sl

t+1 ∈ C|X l
t = i , X l

t+1 = j
}

= πi,j(B × C) , (2)

where B and C are Borel subsets of [0, 1].
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Theorem

For this model we have

E
(
|Sl

t − Sl
t+1|

)
= a + bE

(
Sl

t

)
+ εl ,

where the constants a and b are language independent.
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Notation

pl(i) = P
{

X l
t = i

}
pl(i , j) = P

{
X l

t = i , X l
t+1 = j

}
θ(i) = E

(
Sl

t |X l
t = i

)
and

θ(i , j) = E
(
|Sl

t − Sl
t+1|

∣∣ X l
t = i , X l

t+1 = j
)

.
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Constants and correction term

a = θ(0, 0)− θ(0)
θ(1, 1)− θ(0, 0)

θ(1)− θ(0)
, b =

θ(1, 1)− θ(0, 0)

θ(1)− θ(0)
,

and the correction εl is language dependent and defined as

εl = pl
0,1 (θ(1, 0) + θ(0, 1)− θ(0, 0)− θ(1, 1)) .
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Consequence

The theorem together with the ergodicity of the chains
(
Sl

t
)

explains the linear relationship in the data.
We observe that in the corpus

0.008 < εl < 0.009

and
0.065 < E

(
|Sl

t − Sl
t+1|

)
< 0.075.
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Further directions of research

We still don’t know what is a rhythmic feature!
We still don’t have a model for the rhythmic classes
But the symbolic chains behind the sonority open new
perspectives of research.
An example of this is the discrimination between Brazilian
and European Portuguese, modeling stress contours
obtained by codifying written texts, using Suffix
Probabilistic Trees.
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