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We address the question of the relationship between two time series

associated to the speech signal.

• the sonority function

• the intra-oral pressure evolution during the production of

speech.
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The speech sonority

• The sonority function is an index of local regularity of the

speech signal (Galves et al. 2002)

• It is defined as a mapping of the spectrogram of the acoustic

signal into a function of time taking values in the interval [0, 1].

• This function is close to 1 for spans displaying regular patterns,

characteristic of sonorant portions of the signal.

• In contrast, in regions in which the acoustic signal present a

chaotic behavior the sonority function will assume values closer

to 0, with important variations.
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A formal definition

• Let ct(i) be the Fourier coefficient for the frequency i around

time t in the spectrogram.

• We define the renormalized power spectrum by

pt(i) =
ct(i)

2

∑

f ct(f)2
.

Regular patterns characteristic of sonorant regions typically

correspond to sequences of probability measures {pt : t = 1, 2, ...}

close in the sense of relative entropy.
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The speech sonority

S(t) = exp{−β
3

∑

i=1

h(pt|pt−i)} ,

where

h (pt|pt−i) =
∑

f

pt (f) log

(

pt (f)

pt−i (f)

)

is the relative entropy of pt with respect to pt−i.
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The intra-oral pressure Ps(t).

• The time series Ps(t) was measured via a small plastic tube

(internal diameter 2 mm) inserted through the nose up to the

area behind the velum.

• The data were recorded on the workstation Physiologia that

allows synchronous recording of acoustic and aerodynamic

parameters.

For details on the method, see Demolin et al. (2004).
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A signal processing intermezzo

• In our data set, the intra-oral pressure was low-pass filtered at

70 Hz.

• Therefore to have the signals in the same space of smoothness,

we processed the sonority function with an orthogonal wavelet

transform.

• The smoothing was performed spanning the signal on the

Symmlet 8 basis and reconstructing it using only the 5 coarsest

levels.
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le bateau n’est pas amarré à la balise
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le bateau n’est pas amarré à la balise
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First guess: when the sonority is high, the intra-oral pressure

is low and conversely.
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Quantization of the sonority and the oral pressure

Define

• the chain IS(t) that codifies S(t) in zones of high and low

sonority:

IS(t) =







1 if S(t) > cs

−1 if S(t) ≤ cs ;

• the chain IP (t) that codifies Ps(t) in regions of high and low

pressure:

IP (t) =







1 if Ps(t) ≤ cp

−1 if Ps(t) > cp ;

where cs and cp are two suitable cut-points.
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Model 1

IS(t) = IP (t).η(t) ,

where η(t) is independent of IS and IP with

η(t) =







1 with P(η(t) = 1) = 1 − ǫ

−1 with P(η(t) = −1) = ǫ

η(t) accounts for processing errors.
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The data

To check the validity of the model we will analyze two data sets.

• The first one is a Kinyarwanda corpus with 27 sentences.

• The second one is a French corpus with 26 sentences.
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Proportion of time in which data behave

as predicted by Model 1

French 69.1%

Kinyarwanda 52.3%

This is far from being satisfactory !!!
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What is wrong with Model 1 ?

Model 1 does not describe the behaviour of certain phonetic

segments, for which the pressure and the sonority are both high or

low (for instance voiced constrictive consonants).

See what happens with [b] in le bateau (next figure).
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This helps understanding why Model 1 describes better

French than Kinyarwanda.

French sentences 69.1%

Kinyarwanda 52.3%

Our data set of Kinyarwanda includes a lot of glottal stops for

which both pressure and sonority are low.
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Plot of IS(t).IP (t)
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Well behaved segments for Model 1 are those for which in the

absence of noise

IS(t).IP (t) = 1

.
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Improving Model 1

• Call B, the set of well behaved phonetic segments.

• Define the auxiliary chain IC(t) by

IC(t) =







1 if σ(t) ∈ B

−1 if σ(t) /∈ B ;

where σ(t) stands for the speech signal.
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Model 2

IS(t) = IC(t).IP (t).η(t)

With this model, if σ(t) is part of a voiced constrictive consonant,

then

IC(t) = −1

and we obtain

IS(t) = −IP (t).η(t)

which is the correct prediction for this segment.

25



Superposed plots of IS(t).IP (t) and IC(t)
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Model 2 describes well the data when IS(t).IP (t) = IC(t).

Model 1 only describes well the data when IS(t).IP (t) = 1.
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Proportion of time in which data behave

as predicted by Models 1 and 2

Model 1 Model 2

French 69.1% 79.2%

Kinyarwanda 52.3% 81.6%
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However...
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...we can observe that Model 2 does not hold at the beginning and

at the end of some segments.
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Model 2 does not account for transition zones
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A problem and a way to solve it

Transition regions appear to be the price we have to pay in order to

tie continuous signals with discrete binary chains.

Let’s take these regions into account...
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A natural conjecture

Model 2 together with the remark concerning the transition zones

suggests that if

IS(t) 6= IP (t)IC(t) ,

then

• either the processing noise is present at time t (i.e. η(t) = −1)

• or t belongs to a transition zone.
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More formally...

Let e be the proportion of time in which

IS(t) 6= IP (t)IC(t) ,

and let θ be the proportion of time spent in transition zones.

The conjecture is that

e ≃ ǫ + θ ,

where

ǫ = P(η(t) = −1) .

In the above formula we are neglecting second order corrections ...
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A better estimation of ǫ

Model 1 Model 2 θ ǫ

French 69.1% 79.2% 10% 10.8%

Kinyarwanda 52.3% 81.6% 6% 12.4%

The proportion of points belonging to transition zones equals 6%

for Kinyarwanda, and equals 10% for French.

The calculation of the average noise leads to ǫ ≃ 12.4% for the

Kinyarwanda, and ǫ ≃ 10.8% for the French sentences.

This reinforces the conjecture that Model 2 describes quite well the

situation outside transition zones.
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To conclude

• It is clear that there is a number of issues related to Model 2

that have to be refined and discussed such as the identification

of the class of well behaved phonetic segments.

• It also indicates that it should be possible to improve Model 2

(i.e. to define a new Model 3) by a suitable description of the

behavior of both processes in the transition zones.

• However we think that the correlation between the sonority

function and the intra-oral pressure is well established.
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Complements

• We take time t belonging to the set {ku : k = 1, . . . , T}, where

u is the step unity of the spectrogram of the signal and T is the

number of steps present in the spectrogram of the acoustic

signal.

• In the present computation u = 2, where the units are counted

in milliseconds.

• The values of the spectrogram are estimated with a 25ms

Gaussian window. We only consider frequencies between 60

and 800 Hz. We choose the tuning constant β = 1.5.

• Our computations were made with Praat

(http://www.praat.org).
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The cut-off point for the sonority

• To define the binary chain IS(t), we use the cut-off cs = 0.7.

• This is one of the four universal cut-points identified and

estimated in Cassandro et al. (2005).

• cs seems to be the most relevant cut-point separating high and

low sonority zones.
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The cut-off point for the intra-oral pressure

• To define the binary chain IP we use the cut-off point

cp = 0.05.

• This cut-off point seems to discriminate zones of constant null

pressure from zones in which the pressure is different from zero.
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