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Chains with variable length memory

Rissanen (1983) introduced the notion of stochastic chains
with variable length memory as a universal system for data
compression
He called this model a finitely generated source or a tree
machine.
Recently this model has become popular in the Statistics
literature under the name of variable length Markov chain
coined by Bühlman and Wyner (1999).
in Bio-informatics it was also called a probabilistic suffix
tree (Bejerano and Yona 2001).
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Variable Length Markov Chains

A VLMC is a stationary stochastic chain (Xn) taking values on a
finite alphabet A and characterized by two elements:

The set of all contexts.
A context Xn−`, . . . , Xn−1 is the finite portion of the past
X−∞, . . . , Xn−1 which is relevant to predict the next symbol
Xn.

A family of transition probabilities associated to each
context.
Given a context, its associated transition probability gives
the distribution of occurrence of the next symbol
immediately after the context.

Antonio Galves Stochastic chains



Variable Length Markov Chains

A VLMC is a stationary stochastic chain (Xn) taking values on a
finite alphabet A and characterized by two elements:

The set of all contexts.
A context Xn−`, . . . , Xn−1 is the finite portion of the past
X−∞, . . . , Xn−1 which is relevant to predict the next symbol
Xn.

A family of transition probabilities associated to each
context.
Given a context, its associated transition probability gives
the distribution of occurrence of the next symbol
immediately after the context.

Antonio Galves Stochastic chains



Context trees

Notation: wn
m = (wm, . . . , wn).

A subset τ of ∪∞k=1A{−k ,...,−1} is a complete tree with finite
branches if

Suffix property. For no w−1
−k ∈ τ , there exists u−1

−j ∈ τ with
j < k such that w−i = u−i for i = 1, . . . , j .
Completeness. τ defines a partition of A{...,−2,−1}. Each
element of the partition coincides with the set of the
sequences in A{...,−2,−1} having w−1

−k as suffix, for some
w−1
−k ∈ τ .
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Probabilistic context trees

A probabilistic context tree on A is an ordered pair (τ, p) with

τ is a complete tree with finite branches; and
p = {p(·|w); w ∈ τ} is a family of probability measures on
A.
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Probabilistic context trees and chains

A stationary stochastic chain (Xn) is consistent with a
probabilistic context tree (τ, p) if for any infinite past x−1

−∞ and
any symbol a ∈ A we have

P
{

X0 = a | X−1
−∞ = x−1

−∞

}
= p(a | x−1

−` ) ,

where x−1
−` is the only element of τ which is a suffix of the

sequence x−1
−∞.
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The suffix property

The suffix x−1
−` is called the context of the sequence x−1

−∞

The length of the context ` = `(x−1
−∞) is a function of the

sequence.
The suffix property implies that the set {`(X−1

−∞) = k} is
measurable with respect to the σ-algebra generated by
X−1
−k .
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Bounded and unbounded trees

The length of a context w = w−1
k denoted by |w | = k .

The height of the tree τ is defined as
|τ | = max{|w |; w ∈ τ}.
If ` is bounded, τ is finite and the process (Xn) is a Markov
chain;
If ` is unbounded,the process (Xn) is a chain of infinite
order.
Rissanen, Bühlman and Wyner only considered the
bounded case.
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Why variable length memory chains are interesting?

They constitute an interesting class of chains of infinite
order;
They are able to model candidates to model rhythmic
contours in natural languages, or families of proteins!
This is due to the fact that the tree of contexts τ describes
structural dependencies present in the data.
More precisely, Rissanen’s algorithm Context captures
structural dependencies of the data.
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The algorithm Context

Rissanen (1983) not only introduced the class of variable
length memory chains;
he also introduced a consistent algorithm to estimate the
probabilistic tree which produced the data.
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The algorithm Context

Starting with a finite sample X1, . . . , Xn

First construct a candidate context X n−1
n−k(n) where

k(n) = C log n
Then decide to shorten or not this candidate context using
some gain function. For instance the log-likelihood ratio
statistics.
The intuitive reason behind the choice of the upper bound
length C log n is the impossibility of estimating the
probability of sequences of length longer than log n based
on a sample of length n.
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Estimation of the probability transitions

For any finite string w−1
−j with j ≤ n, denote Nn(w−1

−j ) the
number of occurrences of the string in the sample

Nn(w−1
−j ) =

n−j∑
t=0

1
{

X t+j−1
t = w−1

−j

}
.

If
∑

b∈A Nn(w−1
−k b) > 0, we define the estimator of the

transition probability p by

p̂n(a|w−1
−k ) =

Nn(w−1
−k a)∑

b∈A Nn(w−1
−k b)

.
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Log-likelihood ratio statistic

We also define

Λn(i , w) = −2
∑

w−i∈A

∑
a∈A

Nn(w−1
−i a) log

[
p̂n(a|w−1

−i )

p̂n(a|w−1
−i+1)

]
.

Λn(i , w) is the log-likelihood ratio statistic for testing the
consistency of the sample with a probabilistic suffix tree
(τ, p) against the alternative that it is consistent with (τ ′, p′)
where τ and τ ′ differ only by one set of sibling nodes
branching from w−1

−i+1.
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Length of the estimated current context

ˆ̀(X n−1
0 ) = max

{
i = 2, . . . , k(n) : Λn(i , X n−1

n−k(n)) > C2 log n
}

,

where C2 is any positive constant.
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Rissanen’s theorem

Theorem. Given a realization X0, . . . , Xn−1 of a probabilistic
suffix tree (τ, p) with finite height, then

P
{

ˆ̀(X n−1
0 ) 6= `(X n−1

0 )
}
−→ 0

as n →∞.
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Unbounded context trees

In the unbounded case, the compactness of AZ assures that
there is at least one stationary stochastic chain consistent with
a continuous probabilistic suffix tree. Uniqueness requires
further conditions.
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Type A probabilistic context trees

A type A probabilistic context tree (τ, p) on A satisfies the
conditions:

Weakly non-nullness, that is∑
a∈A

inf
w∈τ

p(a | w) > 0 ;

Continuity

β(k) := max
a∈A

sup{|p(a |w)−p(a | v)|, v ∈ τ, w ∈ τ with w−1
−k = v−1

−k } → 0

as k →∞.
{β(k)}k ∈ N is called the continuity rate.
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A theorem for unbounded trees.

Theorem. (Duarte, Galves and Garcia) Let X0, X2, . . . , Xn−1 be
a sample from a type A unbounded probabilistic suffix tree
(τ, p) with continuity rate β(j) ≤ f (j) exp{−j}, with f (j) → 0 as
j →∞. Then, for any choice of positive constants C1 and C2
there exist positive constants C and D such that

P
{

ˆ̀(X n−1
0 ) 6= `(X n−1

0 )
}
≤ C1 log n(n−C2 + D/n) + Cf (C1 log n) .
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Ingredients of the proof

The proof has two ingredients:
the first ingredient is the convergence of the log-likelihood
ratio statistics of a finite order Markov chain.
The problem is that an unbounded probabilistic context
tree defines a chain of infinite order, not a Markov chain!
That’s why we need a second ingredient which is the
canonical Markov approximation to chains of infinite order.
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The canonical Markov approximation

Theorem.(fernández and Galves 2002) Let (Xt)t∈Z be a chain
consistent with a type A probabilistic suffix tree (τ, p) with
summable continuity rate, and let (X [k ]

t ) be its canonical Markov
approximation of order k . Then there exists a coupling between
(Xt) and (X [k ]

t ) and a constant C > 0 such that

P
{

X0 6= X [k ]
0

}
≤ Cβ(k) .

Antonio Galves Stochastic chains



The chi-square approximation

At each step of the algoithm Context we perform at most
k(n) sequential tests, where k(n) →∞ as n diverges.
To control the error in the chi-square approximation we use
a well-known asymptotic expansion for the distribution of
Λn(i , w) due to Hayakawa (1970) which implies that

P
{

Λn(i , w) ≤ x | H i
0

}
= P

{
χ2 ≤ x

}
+ D/n ,

where D is a positive constant and χ2 is random variable
with distribution chi-square with |A| − 1 degrees of
freedom.
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Another version of the algorithm Context

In a recent paper with Véronique Maume and Bernard
Schmitt we propose to use as gain function

∆n(j) = max
a∈A

|p̂n(a|X n−1
n−j )− p̂n(a|X n−1

n−(j−1))|,

where 1 ≤ j ≤ k(n);
and define ˆ̀(X n−1

0 ) as

max{j = 1, . . . , k(n) : ∆n(j) < δ} ,

where δ > 0 is any fixed threshold.
If the contexts are bounded, then any δ > 0 would do the
job.
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Following Dedecker and Prieur (2005)

For all t > 0,

P(|Nn(a
j
0)− np(aj

0)| > t) ≤ e
1
e exp

(
−t2βpmin

2enp(aj
0)

)
,

where
pmin = min

w∈τ
p(w) ,

and β is defined using Dobrushin’s coefficient...
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The paper with Bernard and Véronique can be
downloaded from
www.ime.usp.br/˜galves/artigos/arbres.pdf
The paper with Denise and Nancy can be downloaded from
www.ime.usp.br/˜galves/artigos/uvlmc.pdf
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