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Linguistic motivation

» A long standing conjecture says that Brazilian Portuguese
(BP) and European Portuguese (EP) implement different
rhythms.

» But there is no satisfactory formal notion of linguistic rhythm.
» This is a challenging and important problem in linguistics.

» Even more difficult: we want to retrieve rhythmic patterns
looking only to written texts of BP and EP!!!
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A few facts about BP and EP

» BP and EP share the same lexicon
» Even if they have different syntaxes, BP and EP produce a
great number of superficially identical sentences

» We are looking for a needle in a haystack!
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How to retrieve evidences that BP and EP have different
rhythms?

» Recipe:

» Get samples of BP and EP rhythmic sequences

» Find a good class of models for these samples

» See if the models which best fit BP and EP samples coincide.



Getting samples of BP and EP rhythmic sequences

» The data we analyzed is an encoded corpus of newspaper
articles.

» This corpus contains all the 365 editions of the years 1994
and 1995 from the daily newspapers Folha de Sdo Paulo
(Brazil) and O Pdblico (Portugal).



Encoding hypothetical rhythmic features

We encode the words by assigning one of four symbols to each
syllable according to whether

(i) it is stressed or not;
(i) it is the beginning of a prosodic word or not.

By prosodic word we mean a lexical word together with the
functional non stressed words which precede it.



A five symbols alphabet

This double 0-1 classification can be represented by the four
symbols alphabet {0,1,2,3} where

» 0 = non-stressed, non prosodic word initial syllable;
» 1 = stressed, non prosodic word initial syllable;
» 2 = non-stressed, prosodic word initial syllable;

» 3 = stressed, prosodic word initial syllable.

Additionally we assign an extra symbol (4) to encode the end of
each sentence. We call A={0,1,2,3,4} the alphabet obtained in
this way.



An example

Example: “O menino ja comeu o doce” (The boy already ate the
candy)

Sentence O me ni no j& co meu o do ce .
Code 2 0 1 0 3 2 1 2 1 0 4
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Modeling samples of symbolic sequences

» The encoding described above produced sequences taking
values in the alphabet A.

> At first sight we can't see any kind of regular (deterministic)
behavior in these sequences.

» Apparently the same subsequences may appear in BP and EP
texts.

» What can be a model for these sequences?

» Answer: use a probability measure on the set of infinite
sequences of symbols in the alphabet A.
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Chains

with memory of variable length

Introduced by Rissanen (1983) as a universal system for data
compression.

He called this model a finitely generated source or a tree
machine.

Statisticians call it variable length Markov chain (Bihlman
and Wyner 1999).

Also called prediction suffix tree in bio-informatics (Bejerano
and Yona 2001).
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Heuristics

v

When we have a symbolic chain describing

v

a syntatic structure,

v

a prosodic contour,

v

a DNA sequence,

> a protein,....

v

it is natural to assume that each symbol depends only on a
finite suffix of the past

v

whose length depends on the past.
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Warning!

» We are not making the usual markovian assumption:

» at each step we are under the influence of a suffix of the past
whose length depends on the past itself.

» Even if it is finite, in general the length of the relevant part of
the past is not bounded above!

» This means that in general these are chains of infinite order,
not Markov chains.
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Contexts

» Rissanen called the relevant suffixes of the past contexts.

» The set of all contexts should have the suffix property: no
context is a proper suffix of another context.

» This means that we can identify the end of each context
without knowing what happened sooner.

» The suffix property implies that the set of all contexts can be
represented as a rooted tree with finite branches.
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Chains with variable length memory

It is a stationary stochastic chain (X,) taking values on a finite
alphabet A and characterized by two elements:

» The tree of all contexts.

» A family of transition probabilities associated to each context.

» Given a context, its associated transition probability gives the
distribution of occurrence of the next symbol immediately
after the context.



Stochastic chains with variable length memory

For example: if (X;) is a Markov chain of order 2 on the alphabet
{0,1}, then
7 =1{00,01, 10, 11}.

This set can be identified with the tree



Example: the renewal process on Z

A=1{0,1}

7 = {1,10, 100, 1000, . . .

p(1 | 0¥1) = qu
where 0 < g, < 1, for any kK > 0, and

qu=+oo.

k>0
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A mathematical question

» Given a probabilistic context tree (7, p) does it exist at least
(at most) one stationary chain (X,) compatible with it?

» First answer: verify if the infinite order transition probabilities
defined by (7, p) satisfy the sufficient conditions which assure
the existence and uniqueness of a chain of infinite order.

» But this is a bad answer: what we really want to know is if
there exists a stochastic process having contexts almost surely
finite.

> Recently A. Gallo in his PhD dissertation gave sufficient
conditions for this.
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Back to our case study

» How to assign probabilistic context trees to the samples of BP
and EP encoded texts?

» Obvious answer: for each sample choose the one which
maximizes the probability of the sample!

» Bad answer: this is just too naive...

» A bigger model will always give a bigger probability to the
sample!
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A basic statistical question

Given a sample is it possible to estimate the smallest probabilistic
context tree generating it ?

In the case of finite context trees, Rissanen (1983) introduced the
algorithm Context to estimate in a consistent way the probabilistic
context tree out from a sample.
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The algorithm Context

» Starting with a finite sample (Xo, ..., X,—-1) the goal is to
estimate the context at step n.

> Start with a candidate context (X,_x(n), - --,Xn-1), where
k(n) = log n.

» Then decide to shorten or not this candidate context using
some gain function. For instance the log-likelihood ratio
statistics.
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Good and bad news

> Recently this algorithm was extended for the case of
unbounded trees and its tconsistency was proved by several
authors (Csiszar and Talata, Galves and Leonardi, Ferrari and
Wyner,...).

» The hidden difficulty: there is always a threshold constant C
in the gain function that we use to decide to shorten or not
the candidate context.

» For asymptotic consistency results, the specific value of C is
irrelevant.

» But if you are an applied statistician and you must select the
context tree based on a finite sample, the choice of C matters!



The smallest maximizer criterion

» Assume that the sample was really produced by a probabilistic
context tree (7%, p*).



The smallest maximizer criterion

» Assume that the sample was really produced by a probabilistic
context tree (7%, p*).

» Consider now the set of candidate context trees maximizing

the probability of the sample for each number of degrees of
freedom.



The smallest maximizer criterion

» Assume that the sample was really produced by a probabilistic
context tree (7%, p*).

» Consider now the set of candidate context trees maximizing
the probability of the sample for each number of degrees of
freedom.

» It turns out that this sample of champion trees is totally
ordered and contains the tree 7*.



The smallest maximizer criterion

» Assume that the sample was really produced by a probabilistic
context tree (7%, p*).

» Consider now the set of candidate context trees maximizing

the probability of the sample for each number of degrees of
freedom.

» It turns out that this sample of champion trees is totally
ordered and contains the tree 7*.

> Moreover, there is a change of regime in the gain of likelihood
at 7.



The smallest maximizer criterion

» Assume that the sample was really produced by a probabilistic
context tree (7%, p*).

» Consider now the set of candidate context trees maximizing

the probability of the sample for each number of degrees of
freedom.

» It turns out that this sample of champion trees is totally
ordered and contains the tree 7*.

> Moreover, there is a change of regime in the gain of likelihood
at 7.

» In the case the tree 7* is bounded this is a rigorous result.



The smallest maximizer criterion

» Assume that the sample was really produced by a probabilistic
context tree (7%, p*).

» Consider now the set of candidate context trees maximizing
the probability of the sample for each number of degrees of
freedom.

» It turns out that this sample of champion trees is totally
ordered and contains the tree 7*.

> Moreover, there is a change of regime in the gain of likelihood
at 7.

» In the case the tree 7* is bounded this is a rigorous result.

» A similar result for a different class of models was recently
pointed out by Massart and co-authors.



A simulation study

We simulate a sequence xi, ..., x, over the alphabet
A={0,1,2,3,4} using the following context tree

To perform the simulation we assign transition probabilities to each
branch of the tree.

Using the tree and the transition probabilities we simulate 100,000
symbols.



A simulation study

» The candidates champion tress have successively
1,8,11,13,16,17,- - - leaves. The tree with 13 leaves
corresponds to the correct tree (the tree we use to simulate
the data).

» When we plot the log-likelihood of the sample as a function of
the number of leaves we see a change of regime, as stated by
our Theorem.



A simulation study

Change of regime of the log-likelihood function
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Application to the linguistic data set

» The sample consists of 80 articles randomly selected from the
1994 and 1995 editions.

» We chose 20 articles from each year for each newspaper.

» We ended up with a sample of 97,750 symbols for BP and
105,326 symbols for EP.



Application to the linguistic data set
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Application to the linguistic data
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Application to the linguistic data set

BP tree EP tree



