Stochastic chains with memory of variable length

Antonio Galves
Universidade de São Paulo

2009, Année de la France au Brésil

Stochastic modeling and linguistic rhythm retrieval from written texts

1. A discussion about stochastic modeling
2. The model is a stochastic chain with memory of variable length
3. A linguistic case study
4. Joint work with Charlotte Galves, Nancy Garcia and Florencia Leonardi.

Stochastic modeling and linguistic rhythm retrieval from written texts

1. A discussion about stochastic modeling
2. The model is a stochastic chain with memory of variable length
3. A linguistic case study
4. Joint work with Charlotte Galves, Nancy Garcia and Florencia Leonardi.

Stochastic modeling and linguistic rhythm retrieval from written texts

1. A discussion about stochastic modeling
2. The model is a stochastic chain with memory of variable length
3. A linguistic case study
4. Joint work with Charlotte Galves, Nancy Garcia and Florencia Leonardi.

Stochastic modeling and linguistic rhythm retrieval from written texts

1. A discussion about stochastic modeling
2. The model is a stochastic chain with memory of variable length
3. A linguistic case study
4. Joint work with Charlotte Galves, Nancy Garcia and Florencia Leonardi.

Linguistic motivation

- A long standing conjecture says that Brazilian Portuguese (BP) and European Portuguese (EP) implement different rhythms.
- But there is no satisfactory formal notion of linguistic rhythm.
- This is a challenging and important problem in linguistics.
- Even more difficult: we want to retrieve rhythmic patterns looking only to written texts of BP and EP!!!

Linguistic motivation

- A long standing conjecture says that Brazilian Portuguese (BP) and European Portuguese (EP) implement different rhythms.
- But there is no satisfactory formal notion of linguistic rhythm.
- This is a challenging and important problem in linguistics.
- Even more difficult: we want to retrieve rhythmic patterns looking only to written texts of BP and EP!!!

Linguistic motivation

- A long standing conjecture says that Brazilian Portuguese (BP) and European Portuguese (EP) implement different rhythms.
- But there is no satisfactory formal notion of linguistic rhythm.
- This is a challenging and important problem in linguistics.
- Even more difficult: we want to retrieve rhythmic patterns looking only to written texts of BP and EP!!!

Linguistic motivation

- A long standing conjecture says that Brazilian Portuguese (BP) and European Portuguese (EP) implement different rhythms.
- But there is no satisfactory formal notion of linguistic rhythm.
- This is a challenging and important problem in linguistics.
- Even more difficult: we want to retrieve rhythmic patterns looking only to written texts of BP and EP!!!

A few facts about BP and EP

- BP and EP share the same lexicon
- Even if they have different syntaxes, BP and EP produce a great number of superficially identical sentences
- We are looking for a needle in a haystack!

A few facts about BP and EP

- BP and EP share the same lexicon
- Even if they have different syntaxes, BP and EP produce a great number of superficially identical sentences
- We are looking for a needle in a haystack!

A few facts about BP and EP

- BP and EP share the same lexicon
- Even if they have different syntaxes, BP and EP produce a great number of superficially identical sentences
- We are looking for a needle in a haystack!

How to retrieve evidences that BP and EP have different rhythms?

- Recipe:
- Get samples of BP and EP rhythmic sequences
- Find a good class of models for these samples
- See if the models which best fit BP and EP samples coincide.

How to retrieve evidences that BP and EP have different rhythms?

- Recipe:
- Get samples of BP and EP rhythmic sequences
- Find a good class of models for these samples
- See if the models which best fit BP and EP samples coincide.

How to retrieve evidences that BP and EP have different rhythms?

- Recipe:
- Get samples of BP and EP rhythmic sequences
- Find a good class of models for these samples
- See if the models which best fit BP and EP samples coincide.

How to retrieve evidences that BP and EP have different rhythms?

- Recipe:
- Get samples of BP and EP rhythmic sequences
- Find a good class of models for these samples
- See if the models which best fit BP and EP samples coincide.

Getting samples of BP and EP rhythmic sequences

- The data we analyzed is an encoded corpus of newspaper articles.
- This corpus contains all the 365 editions of the years 1994 and 1995 from the daily newspapers Folha de São Paulo (Brazil) and O Público (Portugal).

Encoding hypothetical rhythmic features

We encode the words by assigning one of four symbols to each syllable according to whether
(i) it is stressed or not;
(ii) it is the beginning of a prosodic word or not.

By prosodic word we mean a lexical word together with the functional non stressed words which precede it.

A five symbols alphabet

This double 0-1 classification can be represented by the four symbols alphabet $\{0,1,2,3\}$ where

- $0=$ non-stressed, non prosodic word initial syllable;
- 1 = stressed, non prosodic word initial syllable;
- 2 = non-stressed, prosodic word initial syllable;
- $3=$ stressed, prosodic word initial syllable.

Additionally we assign an extra symbol (4) to encode the end of each sentence. We call $A=\{0,1,2,3,4\}$ the alphabet obtained in this way.

An example

Example: "O menino já comeu o doce" (The boy already ate the candy)
$\begin{array}{lccccccccccc}\text { Sentence } & \text { O } & \text { me } & \text { ni } & \text { no } & \text { já } & \text { co } & \text { meu } & \text { o } & \text { do } & \text { ce } & . \\ \text { Code } & 2 & 0 & 1 & 0 & 3 & 2 & 1 & 2 & 1 & 0 & 4\end{array}$

Modeling samples of symbolic sequences

- The encoding described above produced sequences taking values in the alphabet A.
- At first sight we can't see any kind of regular (deterministic) behavior in these sequences.
- Apparently the same subsequences may appear in BP and EP texts.
- What can be a model for these sequences?
- Answer: use a probability measure on the set of infinite sequences of symbols in the alphabet A.

Modeling samples of symbolic sequences

- The encoding described above produced sequences taking values in the alphabet A.
- At first sight we can't see any kind of regular (deterministic) behavior in these sequences.
- Apparently the same subsequences may appear in BP and EP texts.
- What can be a model for these sequences?
- Answer: use a probability measure on the set of infinite sequences of symbols in the alphabet A.

Modeling samples of symbolic sequences

- The encoding described above produced sequences taking values in the alphabet A.
- At first sight we can't see any kind of regular (deterministic) behavior in these sequences.
- Apparently the same subsequences may appear in BP and EP texts.
- What can be a model for these sequences?
- Answer: use a probability measure on the set of infinite sequences of symbols in the alphabet A.

Modeling samples of symbolic sequences

- The encoding described above produced sequences taking values in the alphabet A.
- At first sight we can't see any kind of regular (deterministic) behavior in these sequences.
- Apparently the same subsequences may appear in BP and EP texts.
- What can be a model for these sequences?
- Answer: use a probability measure on the set of infinite sequences of symbols in the alphabet A.

Modeling samples of symbolic sequences

- The encoding described above produced sequences taking values in the alphabet A.
- At first sight we can't see any kind of regular (deterministic) behavior in these sequences.
- Apparently the same subsequences may appear in BP and EP texts.
- What can be a model for these sequences?
- Answer: use a probability measure on the set of infinite sequences of symbols in the alphabet A.

Chains with memory of variable length

- Introduced by Rissanen (1983) as a universal system for data compression.
- He called this model a finitely generated source or a tree machine.
- Statisticians call it variable length Markov chain (Bühlman and Wyner 1999).
- Also called prediction suffix tree in bio-informatics (Bejerano and Yona 2001).

Chains with memory of variable length

- Introduced by Rissanen (1983) as a universal system for data compression.
- He called this model a finitely generated source or a tree machine.
- Statisticians call it variable length Markov chain (Bühlman and Wyner 1999).
- Also called prediction suffix tree in bio-informatics (Bejerano and Yona 2001).

Chains with memory of variable length

- Introduced by Rissanen (1983) as a universal system for data compression.
- He called this model a finitely generated source or a tree machine.
- Statisticians call it variable length Markov chain (Bühlman and Wyner 1999).
- Also called prediction suffix tree in bio-informatics (Bejerano and Yona 2001).

Chains with memory of variable length

- Introduced by Rissanen (1983) as a universal system for data compression.
- He called this model a finitely generated source or a tree machine.
- Statisticians call it variable length Markov chain (Bühlman and Wyner 1999).
- Also called prediction suffix tree in bio-informatics (Bejerano and Yona 2001).

Heuristics

- When we have a symbolic chain describing
- a syntatic structure,
- a prosodic contour,
- a DNA sequence,
- a protein,....
$>$ it is natural to assume that each symbol depends only on a finite suffix of the past
- whose length depends on the past.

Heuristics

- When we have a symbolic chain describing
- a syntatic structure,
- a prosodic contour,
- a DNA sequence,
> a protein,....
- it is natural to assume that each symbol depends only on a finite suffix of the past
- whose length depends on the past.

Heuristics

- When we have a symbolic chain describing
- a syntatic structure,
- a prosodic contour,
- a DNA sequence,
- a protein,....
- it is natural to assume that each symbol depends only on a finite suffix of the past
- whose length depends on the past.

Heuristics

- When we have a symbolic chain describing
- a syntatic structure,
- a prosodic contour,
- a DNA sequence,
- a protein,....
- it is natural to assume that each symbol depends only on a finite suffix of the past
- whose length depends on the past.

Heuristics

- When we have a symbolic chain describing
- a syntatic structure,
- a prosodic contour,
- a DNA sequence,
- a protein,....
> it is natural to assume that each symbol depends only on a finite suffix of the past
- whose length depends on the past.

Heuristics

- When we have a symbolic chain describing
- a syntatic structure,
- a prosodic contour,
- a DNA sequence,
- a protein,....
- it is natural to assume that each symbol depends only on a finite suffix of the past
- whose length depends on the past.

Heuristics

- When we have a symbolic chain describing
- a syntatic structure,
- a prosodic contour,
- a DNA sequence,
- a protein,....
- it is natural to assume that each symbol depends only on a finite suffix of the past
- whose length depends on the past.

Warning!

- We are not making the usual markovian assumption:
- at each step we are under the influence of a suffix of the past whose length depends on the past itself.
- Even if it is finite, in general the length of the relevant part of the past is not bounded above!
- This means that in general these are chains of infinite order, not Markov chains.

Warning!

- We are not making the usual markovian assumption:
- at each step we are under the influence of a suffix of the past whose length depends on the past itself.
- Even if it is finite, in general the length of the relevant part of the past is not bounded above!
* This means that in general these are chains of infinite order, not Markov chains.

Warning!

- We are not making the usual markovian assumption:
- at each step we are under the influence of a suffix of the past whose length depends on the past itself.
- Even if it is finite, in general the length of the relevant part of the past is not bounded above!
- This means that in general these are chains of infinite order, not Markov chains.

Warning!

- We are not making the usual markovian assumption:
- at each step we are under the influence of a suffix of the past whose length depends on the past itself.
- Even if it is finite, in general the length of the relevant part of the past is not bounded above!
- This means that in general these are chains of infinite order, not Markov chains.

Contexts

- Rissanen called the relevant suffixes of the past contexts.
- The set of all contexts should have the suffix property: no context is a proper suffix of another context.
" This means that we can identify the end of each context without knowing what happened sooner.
- The suffix property implies that the set of all contexts can be represented as a rooted tree with finite branches.

Contexts

- Rissanen called the relevant suffixes of the past contexts.
- The set of all contexts should have the suffix property: no context is a proper suffix of another context.
- This means that we can identify the end of each context without knowing what happened sooner.
= The suffix property implies that the set of all contexts can be represented as a rooted tree with finite branches.

Contexts

- Rissanen called the relevant suffixes of the past contexts.
- The set of all contexts should have the suffix property: no context is a proper suffix of another context.
- This means that we can identify the end of each context without knowing what happened sooner.
- The suffix property implies that the set of all contexts can be represented as a rooted tree with finite branches.

Contexts

- Rissanen called the relevant suffixes of the past contexts.
- The set of all contexts should have the suffix property: no context is a proper suffix of another context.
- This means that we can identify the end of each context without knowing what happened sooner.
- The suffix property implies that the set of all contexts can be represented as a rooted tree with finite branches.

Chains with variable length memory

It is a stationary stochastic chain $\left(X_{n}\right)$ taking values on a finite alphabet A and characterized by two elements:

- The tree of all contexts.
- A family of transition probabilities associated to each context.
- Given a context, its associated transition probability gives the distribution of occurrence of the next symbol immediately after the context.

Chains with variable length memory

It is a stationary stochastic chain $\left(X_{n}\right)$ taking values on a finite alphabet A and characterized by two elements:

- The tree of all contexts.
- A family of transition probabilities associated to each context.
- Given a context, its associated transition probability gives the distribution of occurrence of the next symbol immediately after the context.

Chains with variable length memory

It is a stationary stochastic chain $\left(X_{n}\right)$ taking values on a finite alphabet A and characterized by two elements:

- The tree of all contexts.
- A family of transition probabilities associated to each context.
- Given a context, its associated transition probability gives the distribution of occurrence of the next symbol immediately after the context.

Stochastic chains with variable length memory

For example: if $\left(X_{t}\right)$ is a Markov chain of order 2 on the alphabet $\{0,1\}$, then

$$
\tau=\{00,01,10,11\}
$$

This set can be identified with the tree

Example: the renewal process on \mathbb{Z}

$$
\begin{gathered}
A=\{0,1\} \\
\tau=\{1,10,100,1000, \ldots\} \\
p\left(1 \mid 0^{k} 1\right)=q_{k}
\end{gathered}
$$

where $0<q_{k}<1$, for any $k \geq 0$, and

$$
\sum_{k \geq 0} q_{k}=+\infty .
$$

A mathematical question

- Given a probabilistic context tree (τ, p) does it exist at least (at most) one stationary chain (X_{n}) compatible with it?
- First answer: verify if the infinite order transition probabilities defined by (τ, p) satisfy the sufficient conditions which assure the existence and uniqueness of a chain of infinite order.
- But this is a bad answer: what we really want to know is if there exists a stochastic process having contexts almost surely finite.
- Recently A. Gallo in his PhD dissertation gave sufficient conditions for this.

A mathematical question

- Given a probabilistic context tree (τ, p) does it exist at least (at most) one stationary chain $\left(X_{n}\right)$ compatible with it?
- First answer: verify if the infinite order transition probabilities defined by (τ, p) satisfy the sufficient conditions which assure the existence and uniqueness of a chain of infinite order.
- But this is a bad answer: what we really want to know is if there exists a stochastic process having contexts almost surely finite.
- Recently A. Gallo in his PhD dissertation gave sufficient conditions for this.

A mathematical question

- Given a probabilistic context tree (τ, p) does it exist at least (at most) one stationary chain (X_{n}) compatible with it?
- First answer: verify if the infinite order transition probabilities defined by (τ, p) satisfy the sufficient conditions which assure the existence and uniqueness of a chain of infinite order.
- But this is a bad answer: what we really want to know is if there exists a stochastic process having contexts almost surely finite.
- Recently A. Gallo in his PhD dissertation gave sufficient conditions for this.

A mathematical question

- Given a probabilistic context tree (τ, p) does it exist at least (at most) one stationary chain (X_{n}) compatible with it?
- First answer: verify if the infinite order transition probabilities defined by (τ, p) satisfy the sufficient conditions which assure the existence and uniqueness of a chain of infinite order.
- But this is a bad answer: what we really want to know is if there exists a stochastic process having contexts almost surely finite.
- Recently A. Gallo in his PhD dissertation gave sufficient conditions for this.

Back to our case study

- How to assign probabilistic context trees to the samples of BP and EP encoded texts?
- Obvious answer: for each sample choose the one which maximizes the probability of the sample!
- Bad answer: this is just too naive...
- A bigger model will always give a bigger probability to the sample!

Back to our case study

- How to assign probabilistic context trees to the samples of BP and EP encoded texts?
- Obvious answer: for each sample choose the one which maximizes the probability of the sample!
- Bad answer: this is just too naive.
- A bigger model will always give a bigger probability to the sample!

Back to our case study

- How to assign probabilistic context trees to the samples of BP and EP encoded texts?
- Obvious answer: for each sample choose the one which maximizes the probability of the sample!
- Bad answer: this is just too naive...
- A bigger model will always give a bigger probability to the sample!

Back to our case study

- How to assign probabilistic context trees to the samples of BP and EP encoded texts?
- Obvious answer: for each sample choose the one which maximizes the probability of the sample!
- Bad answer: this is just too naive...
- A bigger model will always give a bigger probability to the sample!

A basic statistical question

Given a sample is it possible to estimate the smallest probabilistic context tree generating it ?

A basic statistical question

Given a sample is it possible to estimate the smallest probabilistic context tree generating it ?

In the case of finite context trees, Rissanen (1983) introduced the algorithm Context to estimate in a consistent way the probabilistic context tree out from a sample.

The algorithm Context

- Starting with a finite sample $\left(X_{0}, \ldots, X_{n-1}\right)$ the goal is to estimate the context at step n.
- Start with a candidate context $\left(X_{n-k(n)}, \ldots, X_{n-1}\right)$, where $k(n)=\log n$.
- Then decide to shorten or not this candidate context using some gain function. For instance the log-likelihood ratio statistics.

The algorithm Context

- Starting with a finite sample $\left(X_{0}, \ldots, X_{n-1}\right)$ the goal is to estimate the context at step n.
- Start with a candidate context $\left(X_{n-k(n)}, \ldots, X_{n-1}\right)$, where $k(n)=\log n$.
- Then decide to shorten or not this candidate context using some gain function. For instance the log-likelihood ratio statistics.

The algorithm Context

- Starting with a finite sample $\left(X_{0}, \ldots, X_{n-1}\right)$ the goal is to estimate the context at step n.
- Start with a candidate context $\left(X_{n-k(n)}, \ldots, X_{n-1}\right)$, where $k(n)=\log n$.
- Then decide to shorten or not this candidate context using some gain function. For instance the log-likelihood ratio statistics.

Good and bad news

- Recently this algorithm was extended for the case of unbounded trees and its tconsistency was proved by several authors (Csiszar and Talata, Galves and Leonardi, Ferrari and Wyner,...).
- The hidden difficulty: there is always a threshold constant C in the gain function that we use to decide to shorten or not the candidate context.
- For asymptotic consistency results, the specific value of C is irrelevant.
- But if you are an applied statistician and you must select the context tree based on a finite sample, the choice of C matters!

Good and bad news

- Recently this algorithm was extended for the case of unbounded trees and its tconsistency was proved by several authors (Csiszar and Talata, Galves and Leonardi, Ferrari and Wyner,...).
- The hidden difficulty: there is always a threshold constant C in the gain function that we use to decide to shorten or not the candidate context.
- For asymptotic consistency results, the specific value of C is irrelevant.
- But if you are an applied statistician and you must select the context tree based on a finite sample, the choice of C matters!

Good and bad news

- Recently this algorithm was extended for the case of unbounded trees and its tconsistency was proved by several authors (Csiszar and Talata, Galves and Leonardi, Ferrari and Wyner,...).
- The hidden difficulty: there is always a threshold constant C in the gain function that we use to decide to shorten or not the candidate context.
- For asymptotic consistency results, the specific value of C is irrelevant.
- But if you are an applied statistician and you must select the context tree based on a finite sample, the choice of C matters!

Good and bad news

- Recently this algorithm was extended for the case of unbounded trees and its tconsistency was proved by several authors (Csiszar and Talata, Galves and Leonardi, Ferrari and Wyner,...).
- The hidden difficulty: there is always a threshold constant C in the gain function that we use to decide to shorten or not the candidate context.
- For asymptotic consistency results, the specific value of C is irrelevant.
- But if you are an applied statistician and you must select the context tree based on a finite sample, the choice of C matters!

The smallest maximizer criterion

- Assume that the sample was really produced by a probabilistic context tree (τ^{\star}, p^{\star}).
- Consider now the set of candidate context trees maximizing the probability of the sample for each number of degrees of freedom.
- It turns out that this sample of champion trees is totally ordered and contains the tree τ^{\star}.
- Moreover, there is a change of regime in the gain of likelihood at τ^{\star}.
- In the case the tree τ^{\star} is bounded this is a rigorous result.
- A similar result for a different class of models was recently pointed out by Massart and co-authors.

The smallest maximizer criterion

- Assume that the sample was really produced by a probabilistic context tree (τ^{\star}, p^{\star}).
- Consider now the set of candidate context trees maximizing the probability of the sample for each number of degrees of freedom.
- It turns out that this sample of champion trees is totally ordered and contains the tree τ^{\star}.
- Moreover, there is a change of regime in the gain of likelihood
- In the case the tree τ^{\star} is bounded this is a rigorous result.
- A similar result for a different class of models was recently pointed out by Massart and co-authors.

The smallest maximizer criterion

- Assume that the sample was really produced by a probabilistic context tree (τ^{\star}, p^{\star}).
- Consider now the set of candidate context trees maximizing the probability of the sample for each number of degrees of freedom.
- It turns out that this sample of champion trees is totally ordered and contains the tree τ^{\star}.
- Moreover, there is a change of regime in the gain of likelihood
- In the case the tree τ^{\star} is bounded this is a rigorous result.
- A similar result for a different class of models was recently pointed out by Massart and co-authors.

The smallest maximizer criterion

- Assume that the sample was really produced by a probabilistic context tree (τ^{\star}, p^{\star}).
- Consider now the set of candidate context trees maximizing the probability of the sample for each number of degrees of freedom.
- It turns out that this sample of champion trees is totally ordered and contains the tree τ^{\star}.
- Moreover, there is a change of regime in the gain of likelihood at τ^{\star}.
- In the case the tree τ^{\star} is bounded this is a rigorous result.
- A similar result for a different class of models was recently pointed out by Massart and co-authors.

The smallest maximizer criterion

- Assume that the sample was really produced by a probabilistic context tree (τ^{\star}, p^{\star}).
- Consider now the set of candidate context trees maximizing the probability of the sample for each number of degrees of freedom.
- It turns out that this sample of champion trees is totally ordered and contains the tree τ^{\star}.
- Moreover, there is a change of regime in the gain of likelihood at τ^{\star}.
- In the case the tree τ^{\star} is bounded this is a rigorous result.
- A similar result for a different class of models was recently pointed out by Massart and co-authors.

The smallest maximizer criterion

- Assume that the sample was really produced by a probabilistic context tree (τ^{\star}, p^{\star}).
- Consider now the set of candidate context trees maximizing the probability of the sample for each number of degrees of freedom.
- It turns out that this sample of champion trees is totally ordered and contains the tree τ^{\star}.
- Moreover, there is a change of regime in the gain of likelihood at τ^{\star}.
- In the case the tree τ^{\star} is bounded this is a rigorous result.
- A similar result for a different class of models was recently pointed out by Massart and co-authors.

A simulation study

We simulate a sequence x_{1}, \ldots, x_{n} over the alphabet $A=\{0,1,2,3,4\}$ using the following context tree

To perform the simulation we assign transition probabilities to each branch of the tree. Using the tree and the transition probabilities we simulate 100,000 symbols.

A simulation study

- The candidates champion tress have successively $1,8,11,13,16,17, \cdots$ leaves. The tree with 13 leaves corresponds to the correct tree (the tree we use to simulate the data).
- When we plot the log-likelihood of the sample as a function of the number of leaves we see a change of regime, as stated by our Theorem.

A simulation study

Change of regime of the log-likelihood function

Application to the linguistic data set

- The sample consists of 80 articles randomly selected from the 1994 and 1995 editions.
- We chose 20 articles from each year for each newspaper.
- We ended up with a sample of 97,750 symbols for BP and 105,326 symbols for EP.

Application to the linguistic data set

EP - Log-likelihood function

Application to the linguistic data set

Application to the linguistic data set

Application to the linguistic data set

$B P$ tree

EP tree

