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Linguistic motivation

I A long standing conjecture says that Brazilian Portuguese
(BP) and European Portuguese (EP) implement different
rhythms.

I But there is no satisfactory formal notion of linguistic rhythm.

I This is a challenging and important problem in linguistics.

I Even more difficult: we want to retrieve rhythmic patterns
looking only to written texts of BP and EP!!!
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I Get samples of BP and EP rhythmic sequences
I Find a good class of models for these samples
I See if the models which best fit BP and EP samples coincide.
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Getting samples of BP and EP rhythmic sequences

I The data we analyzed is an encoded corpus of newspaper
articles.

I This corpus contains all the 365 editions of the years 1994
and 1995 from the daily newspapers Folha de São Paulo
(Brazil) and O Público (Portugal).



Encoding hypothetical rhythmic features

We encode the words by assigning one of four symbols to each
syllable according to whether

(i) it is stressed or not;
(ii) it is the beginning of a prosodic word or not.

By prosodic word we mean a lexical word together with the
functional non stressed words which precede it.



A five symbols alphabet

This double 0-1 classification can be represented by the four
symbols alphabet {0, 1, 2, 3} where

I 0 = non-stressed, non prosodic word initial syllable;
I 1 = stressed, non prosodic word initial syllable;
I 2 = non-stressed, prosodic word initial syllable;
I 3 = stressed, prosodic word initial syllable.

Additionally we assign an extra symbol (4) to encode the end of
each sentence. We call A = {0, 1, 2, 3, 4} the alphabet obtained in
this way.



An example

Example: “O menino já comeu o doce” (The boy already ate the
candy)

Sentence O me ni no já co meu o do ce .
Code 2 0 1 0 3 2 1 2 1 0 4



Modeling samples of symbolic sequences

I The encoding described above produced sequences taking
values in the alphabet A.

I At first sight we can’t see any kind of regular (deterministic)
behavior in these sequences.

I Apparently the same subsequences may appear in BP and EP
texts.

I What can be a model for these sequences?
I Answer: use a probability measure on the set of infinite

sequences of symbols in the alphabet A.
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Chains with memory of variable length

I Introduced by Rissanen (1983) as a universal system for data
compression.

I He called this model a finitely generated source or a tree
machine.

I Statisticians call it variable length Markov chain (Bühlman
and Wyner 1999).

I Also called prediction suffix tree in bio-informatics (Bejerano
and Yona 2001).
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Heuristics

I When we have a symbolic chain describing

I a syntatic structure,

I a prosodic contour,

I a DNA sequence,

I a protein,....

I it is natural to assume that each symbol depends only on a
finite suffix of the past

I whose length depends on the past.
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Warning!

I We are not making the usual markovian assumption:

I at each step we are under the influence of a suffix of the past
whose length depends on the past itself.

I Even if it is finite, in general the length of the relevant part of
the past is not bounded above!

I This means that in general these are chains of infinite order,
not Markov chains.
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Contexts

I Rissanen called the relevant suffixes of the past contexts.

I The set of all contexts should have the suffix property: no
context is a proper suffix of another context.

I This means that we can identify the end of each context
without knowing what happened sooner.

I The suffix property implies that the set of all contexts can be
represented as a rooted tree with finite branches.
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Chains with variable length memory

It is a stationary stochastic chain (Xn) taking values on a finite
alphabet A and characterized by two elements:

I The tree of all contexts.

I A family of transition probabilities associated to each context.
I Given a context, its associated transition probability gives the

distribution of occurrence of the next symbol immediately
after the context.
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Stochastic chains with variable length memory

For example: if (Xt) is a Markov chain of order 2 on the alphabet
{0, 1}, then

τ = {00, 01, 10, 11}.

This set can be identified with the tree

0 1

0 1 0 1



Example: the renewal process on Z

A = {0, 1}

τ = {1, 10, 100, 1000, . . .}

p(1 | 0k1) = qk

where 0 < qk < 1, for any k ≥ 0, and∑
k≥0

qk = +∞ .



A mathematical question

I Given a probabilistic context tree (τ, p) does it exist at least
(at most) one stationary chain (Xn) compatible with it?

I First answer: verify if the infinite order transition probabilities
defined by (τ, p) satisfy the sufficient conditions which assure
the existence and uniqueness of a chain of infinite order.

I But this is a bad answer: what we really want to know is if
there exists a stochastic process having contexts almost surely
finite.

I Recently A. Gallo in his PhD dissertation gave sufficient
conditions for this.
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The algorithm Context

I Starting with a finite sample (X0, . . . ,Xn−1) the goal is to
estimate the context at step n.

I Start with a candidate context (Xn−k(n), . . . ,Xn−1), where
k(n) = log n.

I Then decide to shorten or not this candidate context using
some gain function. For instance the log-likelihood ratio
statistics.



The algorithm Context

I Starting with a finite sample (X0, . . . ,Xn−1) the goal is to
estimate the context at step n.

I Start with a candidate context (Xn−k(n), . . . ,Xn−1), where
k(n) = log n.

I Then decide to shorten or not this candidate context using
some gain function. For instance the log-likelihood ratio
statistics.



The algorithm Context

I Starting with a finite sample (X0, . . . ,Xn−1) the goal is to
estimate the context at step n.

I Start with a candidate context (Xn−k(n), . . . ,Xn−1), where
k(n) = log n.

I Then decide to shorten or not this candidate context using
some gain function. For instance the log-likelihood ratio
statistics.



Good and bad news

I Recently this algorithm was extended for the case of
unbounded trees and its tconsistency was proved by several
authors (Csiszar and Talata, Galves and Leonardi, Ferrari and
Wyner,...).

I The hidden difficulty: there is always a threshold constant C
in the gain function that we use to decide to shorten or not
the candidate context.

I For asymptotic consistency results, the specific value of C is
irrelevant.

I But if you are an applied statistician and you must select the
context tree based on a finite sample, the choice of C matters!
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The smallest maximizer criterion

I Assume that the sample was really produced by a probabilistic
context tree (τ?, p?).

I Consider now the set of candidate context trees maximizing
the probability of the sample for each number of degrees of
freedom.

I It turns out that this sample of champion trees is totally
ordered and contains the tree τ?.

I Moreover, there is a change of regime in the gain of likelihood
at τ?.

I In the case the tree τ? is bounded this is a rigorous result.
I A similar result for a different class of models was recently

pointed out by Massart and co-authors.
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A simulation study

We simulate a sequence x1, . . . , xn over the alphabet
A = {0, 1, 2, 3, 4} using the following context tree

0 1
2 3 4

0
1 2 3

0
2

0 1 2 3 0 2

To perform the simulation we assign transition probabilities to each
branch of the tree.
Using the tree and the transition probabilities we simulate 100,000
symbols.



A simulation study

I The candidates champion tress have successively
1, 8, 11, 13, 16, 17, · · · leaves. The tree with 13 leaves
corresponds to the correct tree (the tree we use to simulate
the data).

I When we plot the log-likelihood of the sample as a function of
the number of leaves we see a change of regime, as stated by
our Theorem.



A simulation study
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Application to the linguistic data set

I The sample consists of 80 articles randomly selected from the
1994 and 1995 editions.

I We chose 20 articles from each year for each newspaper.

I We ended up with a sample of 97,750 symbols for BP and
105,326 symbols for EP.



Application to the linguistic data set
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Application to the linguistic data set
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Application to the linguistic data set
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