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Remembering VLMC

A VLMC is a stochastic chain (X0, X1, . . .) taking values on a
finite alphabet A and characterized by two elements:

The set of all contexts.
A context Xn−`, . . . , Xn−1 is the finite portion of the past
X0, . . . , Xn−1 which is relevant to predict the next symbol
Xn.

A family of transition probabilities associated to each
context.
Given a context, its associated transition probability gives
the distribution of occurrence of the next symbol
immediately after the context.
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Remembering VLMC

The set of all contexts is a suffix code. This means that no
context is a suffix of another context.

For this reason this set can be represented as a tree. This
tree with the associated transition probabilities is called a
Probabilistic Tree.

Antonio Galves, Denis Lacerda, Florencia Leonardi Probabilistic Forests



Remembering VLMC

The set of all contexts is a suffix code. This means that no
context is a suffix of another context.

For this reason this set can be represented as a tree. This
tree with the associated transition probabilities is called a
Probabilistic Tree.

Antonio Galves, Denis Lacerda, Florencia Leonardi Probabilistic Forests



Preliminary study

Variable Length Markov Chains (VLMC) have been used to
discriminate rhythmic patterns in European and Brazilian
Portuguese written texts (Galves et al. 2005).

The written texts where transformed into sequences over
the alphabet A = {0, 1, 2, 3, 4}.

The sequences where obtained using well defined rules
taking into account the boundaries between prosodic
words and the stressed syllabus.

This analysis suggests a typical contexts tree for each
language.
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Preliminary study

The typical trees for BP and EP are:

This study showed significant patterns that had been
conjectured by linguists.
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But it is also true that...

The preceding results show high variability.

The Context Algorithm used to estimate the trees is very
sensitive to spurious strings.
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A new approach: probabilistic forests

A probabilistic forest is a mixture of probabilistic trees, that is

A set Γ of probabilistic trees.

A probability distribution over this set {p(τ)}τ∈Γ.
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How to define the set of trees Γ

The set Γ depends on the problem and can be any set with
a reasonable number of trees.

For the linguistic problem, we choose the set of trees
satisfying the algebraic restrictions given by the
codification and with depth not bigger than 3.

Given a sample sequence x1, x2, . . . , xn (or a set of sample
sequences) the probability of each tree in the set is
estimated by the procedure followed in Eskin et al. (2002).
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How to estimate the probability of each tree

Following Eskin et al. (2002):

First, propose a prior weight ω0(τ).

Then, for each instant of time i update this weight by the
formula:

ωi(τ) =

ωi−1(τ) 1
|A| , if i < d(Γ)

ωi−1(τ)P̂i
τ (xi |cτ (x0, . . . , xi−1)), if n ≥ d(Γ)

where P̂i
τ (xi |cτ (x0, . . . , xi−1)) is the Maximum Likelihood

Estimate of the transition probabilities in τ with the sample
until time i , and d(Γ) is the maximal depth of the trees in Γ.
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A closed formula for ωn(τ)

These weights ωn(τ) can be rewritten as:

ωn(τ) = ωn−1(τ)P̂n
τ (xn|cτ (x0, . . . , xn−1))

= ω0(τ)
1

|A|d(Γ)

n∏
i=d(Γ)

P̂i
τ (xi |cτ (x0, . . . , xi−1))

= ω0(τ)
1

|A|d(Γ)

∏
s∈τ

∏
a∈A

(Nn(s, a) + 1)!

(Nn(s) + |A|)!
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How to estimate the probability of each tree

Finally, we normalize the weights using the formula:

pn(τ) =
ωn(τ)∑

τ ′∈Γ ωn(τ ′)

Therefore, pn(τ) is the probability of tree τ estimated with the
sample x1, x2, . . . , xn by the preceding procedure.
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Empirical results for EP

In the case of European Portuguese, we estimate the weights
of all possible trees with depth less or equal 3. We used 31
texts of Portuguese authors.

n = 148887.

ω0(τ) = (500n)−t(τ), where t(τ) is the number of terminal
nodes of τ .

pn(τ) = 0.99 for the following tree:
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Empirical results for BP

In the case of Brazilian Portuguese, we also estimate the
weights of all possible trees with depth less or equal 3. We
used 35 texts of Brazilian authors.

n = 619282.

ω0(τ) = (500n)−t(τ), where t(τ) is the number of terminal
nodes of τ .

pn(τ) = 0.8 for the following tree:
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Consistency Theorem

Theorem
Let τ be a probabilistic tree. Then for almost all sequences
x1, x2, . . . generated by τ , we have that

pn(τ) → 1 when n →∞.
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Consistency Theorem
Idea of the proof

pn(τ) =
ωn(τ)∑

τ ′∈Γ ωn(τ ′)

=

(∑
τ ′∈Γ

ωn(τ ′)

ωn(τ)

)−1

=

1 +
∑

τ ′∈Γ\{τ}

ωn(τ ′)

ωn(τ)

−1
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Consistency Theorem
Idea of the proof

ωn(τ ′)

ωn(τ)
=

ω0(τ ′)

ω0(τ)

∏
s′∈τ ′ P̂KT ,s′(xn

1 )∏
s∈τ P̂KT ,s(xn

1 )

=
ω0(τ ′)

ω0(τ)

∏
s∈τ,s≺τ ′

∏
s′∈τ ′,s′>s P̂KT ,s′(xn

1 )

P̂KT ,s(xn
1 )

∏
s′∈τ ′,s′≺τ

P̂KT ,s′(xn
1 )∏

s∈τ,s>s′ P̂KT ,s(xn
1 )
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Consistency Theorem
Idea of the proof

log
ωn(τ ′)

ωn(τ)
= log

ω0(τ ′)

ω0(τ)
+

+
∑

s∈τ,s≺τ ′

 ∑
s′∈τ ′,s′>s

log P̂KT ,s′(xn
1 )− log P̂KT ,s(xn

1 )



+
∑

s′∈τ ′,s′≺τ

log P̂KT ,s′(xn
1 )−

∑
s∈τ,s>s′≺τ

log P̂KT ,s(xn
1 )


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Consistency Theorem
Idea of the proof

Following the ideas of Csiszár and Talata (2005) we proved that

Lemma
Let s ∈ τ such that s is a proper suffix of some context in τ ′.
Then there exists a constant c < 0 such that∑

s′∈τ ′,s′>s

log P̂KT ,s′(xn
1 )− log P̂KT ,s(xn

1 ) < c log n,

eventually almost surely as n →∞.
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Consistency Theorem
Idea of the proof

Then there exist constants C1 ≤ 0 and C2 ≤ 0, not vanishing
simultaneously, such that

log
ωn(τ ′)

ωn(τ)
< log

ω0(τ ′)

ω0(τ)
+ C1 log n + C2n

With ω0(τ) = (cn)−t(τ), where t(τ) is the number of terminal
nodes of τ we have that

log
ωn(τ ′)

ωn(τ)
→ −∞ ,

when n →∞.
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Conclusion

“Only one tree represents the forest”
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