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Abstract. These are lecture notes of a 4 hour mini-course course which I held at
IME-USP, on the occasion of the workshop “Geometry in Algebra and Algebra in
Geometry”, November 05 – 09, 2018.
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1. Foliations and leaf spaces

Let M be an n-dimensional manifold. A d-dimensional foliation of M is a rank d
subbundle F of the tangent bundle TM satisfying the following involutivity condition:
for all X, Y ∈ Γ(F)

[X, Y ] ∈ Γ(F).

An integral manifold of F is a connected, immersed d-dimensional submanifold S such
that TpS = Fp for all p ∈ S, and a leaf is a maximal integral manifold.

Foliations possess local normal forms according to the following

Theorem 1.1 (Local Frobenius). Let M be an n-dimensional manifold equipped with
a d-dimensional foliation F . Then F locally looks like the foliation on Rn spanned by
the first d coordinate vector fields

∂

∂x1
, . . . ,

∂

∂xd
,

1
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i.e., for every point p0 ∈M , there is a chart (U, (x1, . . . , xn)) around p0, such that

Fp =

〈
∂

∂x1
|p, . . . ,

∂

∂xd
|p
〉

for all p ∈ U .

The terminology “foliation” is motivated by the following

Theorem 1.2 (Global Frobenius). Let M be an n-dimensional manifold equipped with
a d-dimensional foliation F . Then the leaves of F form a partition of M (by immersed,
connected, d-dimensional submanifolds). For every point p0 ∈ M , there is a chart
(U, (x1, . . . , xn)) around p0, such that, for every leaf L, the intersection L ∩ U is a
countable disjoint union of submanifolds of the form (xd+1, . . . , xn) = const.

Example 1.3. Let π : M → B be a surjective submersion, with connected fibers, let
dimM = n and let dimB = n − d. The vertical bundle VM := ker dπ ⊂ TM is a
foliation whose leaves are the fibers of π.

Example 1.4. Consider the 2-dimensional torus T2 = R2/Z2 with coordinates (x, y).
The (rank 1) subbundle K spanned by the vector field

∂

∂x
+ α

∂

∂y
, α ∈ R,

is a foliation. If α is irrational, the leaves of K are immersed copies of the line wrapping
around the torus infinitely many times, and each leaf is dense. In this case, K is called
the Kronecker foliation.

Remark 1.5. One can generalize the above definition of a foliation in several directions.
The following two are of a particular interest and motivate the importance of foliations
in Differential Geometry.

• Every Lie groupoid G ⇒M (resp. Lie algebroid A⇒M) determines a, possibly
singular, foliation F on M . The leaves of F are (connected components of)
isomorphism classes of objects of the groupoid. By singular, we roughly mean
that the dimension of Fp (hence the dimension of the leaves) may jump, as p
ranges over M .
• Every system of PDEs in d independent variables determines a (usually) infinite

dimensional manifold E , naturally equipped with a d-dimensional foliation C.
Solutions of E are in one-to-one correspondence with d-dimensional integral sub-
manifolds (however talking about leaves, and using the terminology “foliation”
is slightly inappropriate, as the Frobenius Theorem fails in infinite dimensions).

Both Lie groupoids and PDEs are ubiquitous in Differential Geometry, and this ex-
plains our interest in foliations (as simple instances of both).

Let M be a smooth manifold equipped with a foliation F . The space of leaves of F
is denoted M/F , or simply M. Topologically, it is a quotient of M under the obvious
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surjection π : M → M. When M is a manifold and π : M → M is a surjective submersion,
we say that F is simple. In other words, a simple foliation is a foliation arising as in
Example 1.3. Not all foliations are simple. For instance, the leaf space T2/K of the
Kronecker foliation K on the torus T2, is not even Hausdorff. Actually, every point in
T2/K is dense!

There is a natural question: how should we understand the leaf space M? Just as a
(usually very pathological) topological space? Is there a way to do differential geometry
on M? For instance, can we define smooth functions, vector fields, differential forms,
etc. on M in any reasonable way?

There are various models for M, all based on the holonomy groupoid of F . The
holonomy groupoid is a certain global construction attached to every foliation. The
models for M based on the holonomy groupoid are rather strong conceptually, but they
are not very handy, and it’s not obvious how to make standard differential geometric
computations with them. Additionally, it is not clear how to construct them in a setting
where the Frobenius Theorem fails (notice that the Frobenius Theorem may fail in both
the existence and the uniqueness of leaves on infinite dimensional manifolds, e.g. PDEs).

In this mini-course, I will propose a purely infinitesimal approach, which does not
rely on the holonomy groupoid, nor on the Frobenius Theorem and works in infinite
dimensions. “Our” approach is algebraic and homological/homotopical. Additionally,
it is manageable in the sense that, in principle, it allows for concrete computations.
Finally, it is natural in the sense that it provides a receipt: from any given construction
in differential geometry (smooth functions, vector fields, differential forms, etc.) it says
how to construct its analogue on a leaf space.

This approach is not really new, nor original: it is based on ideas of Alexandre
Vinogradov coming from the infinite jet space approach to PDEs, and, at the end of
the day, it is a super-simplified version of Homotopic/Derived Geometry.

We stress from the beginning that “our” calculus will not only provide information
on the leaf space M as a topological space, but will also (partly) remember about the
internal structure of points of M (as leaves of a foliation).

2. Smooth functions on a leaf space I: leaf-wise constant functions

We will present “our” calculus up to homotopy on leaf spaces in a pedagogical way.
We begin with smooth functions. We will use the simple foliation case as a toy example,
and as a source of inspiration on how to give the appropriate definition in the general
case.

Remark 2.1. Notice that beginning with functions on M is a rather natural choice
according to a standard meta-mathematical geometry/algebra duality principle stating
that: the full information on a space is contained in an appropriate algebra of admissible
functions on it. In the following, in honour of the GAAG workshop, I will refer to this
principle as the GAAG principle. In Differential Geometry, admissible functions are
smooth functions.
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So let’s start with a manifold M equipped with a simple foliation F . Recall that this
means that F is exactly the vertical bundle with respect to a surjective submersion
π : M → B with connected fibers: F = VM . In this case the leaf space M is just B. In
particular, it is equipped with a canonical smooth manifold structure, and there is an
obvious definition of smooth functions C∞(M) on M:

C∞(M) = C∞(B). (1)

Of course, Definition (1) does not make sense for a generic foliation. To get a hint how
to give a definition in the general case, it is useful to express the right hand side C∞(B)
of (1) purely in terms of (M,F). This is easy, according to the following obvious

Proposition 2.2. Let π : M → B be a surjective submersion with connected fibers,
and let F = VM be the vertical bundle with respect to π. Then the pull-back

π∗ : C∞(B)→ C∞(M)

is an injection identifying C∞(B) with the subalgebra

{f ∈ C∞(M) : X(f) = 0 for all X ∈ Γ(F)} ⊂ C∞(M). (2)

Now notice that, given a manifold M with a generic foliation F , the subalgebra (2)
makes sense, and consists of leaf-wise constant functions on M . Proposition 2.2 now
suggests to define

C∞(M) := {f ∈ C∞(M) : X(f) = 0 for all X ∈ Γ(F)} . (3)

In particular, every function f ∈ C∞(M) descends to a honest continuous function on
M.

Definition (3) has both positive and negative features. Among positive features, it
boils down to the natural definition in the simple case. Additionally, as C∞(M) is
equipped with an algebra structure, it is in the spirit of the GAAG principle. However,
in general, C∞(M) is far to small to provide useful information on M. For instance, when
M = T2 in the 2-torus, and F = K is the Kronecker foliation on it, then C∞(M) =
C∞(T2/K) consists of constant functions only. For this reason, we consider (3) as a
temporary definition, to be improved later on, during the mini-course.

3. Vector field on a leaf space I: infinitesimal symmetries

We now begin discussing calculus on a leaf space. In this section we take care of
vector fields.

First notice that, whenever a notion of smoothness is available, the GAAG principle
can be extended to include the following addendum: calculus on a smooth space is
part of the Commutative Algebra of the algebra of admissible functions. We call this
addendum the 2nd GAAG principle. For instance, vector fields on a manifold M are
the same as derivations of the algebra C∞(M). Notice that the 2nd GAAG principle is
not very useful for generic leaf spaces, in this form. For instance, smooth functions on
the leaf space of a Kronecker foliation are just constants, hence their derivations are all
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trivial. In order to improve our point of view, we look again at the simple case. So,
let F be the vertical bundle on M with respect to a surjective submersion π : M → B
with connected fibers. In this case, there is an obvious definition of vector fields χ(M)
on M:

χ(M) = χ(B).

Unfortunately, this definition does not make sense for a generic foliation. However, we
can proceed, as for functions, expressing χ(B) purely in terms of (M,F). To do this
we need a

Lemma 3.1. Let π : M → B be a surjective submersion with connected fibers, and
let F = VM be the vertical bundle with respect to π. Then a vector field Y on M is
π-projectable if and only if it is an infinitesimal symmetry of F .

This statement needs some explanations. First of all, for a surjective submersion
π : M → B, a vector field Y on M is called π-projectable, if there exists a vector field
YB on B such that π∗Y = YB. The assignment Y 7→ YB is a surjection from projectable
vector fields to vector fields on B.

Additionally, for a foliation F on M , a vector field Y ∈ χ(M) is an infinitesimal
symmetry of F if it generates a flow {Φt} by symmetries of F , i.e. dΦt(Fp) = FΦt(p),
for every t, and every point p in the domain of Φt. Equivalently,

[Y,Γ(F)] ⊂ Γ(F).

As usual in Differential Geometry, infinitesimal symmetries of F form a Lie subalgebra
in χ(M) that we denote χ(M,F).

We are now ready to state the main proposition of this section:

Proposition 3.2. Let π : M → B be a surjective submersion with connected fibers,
and let F = VM be the vertical bundle with respect to π. The projection

χ(M,F)→ χ(B), Y 7→ YB

is a Lie algebra map, with kernel consisting of vertical vector fields Γ(F). In other
words, there is a canonical short exact sequence of Lie algebras

0→ Γ(F)→ χ(M,F)→ χ(B)→ 0

identifying χ(B) with the quotient

χ(M,F)/Γ(F). (4)

Now notice that, given a manifold M with a generic foliation F , the quotient (4) makes
sense. Indeed, by involutivity, sections of F form an ideal in χ(M,F). Proposition 3.2
now suggests to define

χ(M) := χ(M,F)/Γ(F). (5)

In the following, we denote by
YM

the class in χ(M) of an infinitesimal symmetry Y ∈ χ(M,F).
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Definition (5) has some positive features. First of all, again by construction, it boils
down to the obvious definition in the simple case. Second, χ(M) is equipped with a
Lie algebra structure as we expect from vector fields. Actually, in this respect, not
only vector fields on a manifold form a Lie algebra, they are actually sections of a Lie
algebroid, or, more algebraically, they form a Lie-Rinehart algebra, and we expect χ(M)
to possess the same structure. This is indeed the case as we now discuss. But first let’s
recall what is a Lie-Rinehart algebra.

A Lie-Rinehart algebra is a pair (A,L) where A is an associative commutative algebra
with unit, and L is a Lie algebra. Additionally,

• L is an A-module,
• A is an L-module,

and there are the following compatibilities

(1) L acts on A by derivations;
(2) the action L→ DerA is A-linear;
(3) for every Y, Z ∈ L, and every a ∈ A

[Y, aZ] = (Y.a)Z + a[Y, Z].

Sometimes we refer to L as a Lie-Rinehart algebra (over A).
A Lie algebroid structure E ⇒ M on a vector bundle E → M is then the same as

a Lie-Rinehart algebra structure on the pair (C∞(M),Γ(E)) (extending the obvious
pre-existing structures).

Proposition 3.3. Let M be a manifold equipped with a foliation F . Then the pair

(C∞(M), χ(M))

is a Lie-Rinehart algebra in a canonical way. The algebra structure (resp. Lie alge-
bra structure) on C∞(M) (resp. χ(M)) are the preexisting ones. The C∞(M)-module
structure on χ(M) is given by

f(YM) = (fY )M, f ∈ C∞(M), Y ∈ χ(M,F).

Finally, the χ(M)-module structure on C∞(M) is given by

YM.f = Y (f), f ∈ C∞(M), Y ∈ χ(M,F).

However, Definition (5) has also negative features. For instance, for the Kronecker
foliation, while C∞(T2/K) is trivial, χ(T2/K) is not, hence it cannot consist of deriva-
tions of C∞(T2/K) unlike somehow prescribed by the 2nd GAAG principle. For this
reason, we consider (5) just a temporary definition.

4. Differential forms on a leaf space I: basic forms

Next we take care of differential forms. We adopt our now customary strategy. When
F is the vertical bundle with respect to a surjective submersion π : M → B with
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connected fibers, the obvious definition of differential forms Ω(M) on M is

Ω(M) = Ω(B).

Next, we express Ω(B) purely in terms of (M,F), with the following

Proposition 4.1. Let π : M → B be a surjective submersion with connected fibers,
and let F = VM be the vertical bundle with respect to π. Then the pull-back

π∗ : Ω(B)→ Ω(M)

is an injection identifying Ω(B) with the graded subalgebra

{ω ∈ Ω(M) : iXω = LXω = 0 for all X ∈ Γ(F)} ⊂ Ω(M). (6)

Now, given a manifold M with a generic foliation F , the subalgebra (6) makes sense
and, for obvious reasons, its elements are usually called basic forms. So we put

Ω(M) := {ω ∈ Ω(M) : iXω = LXω = 0 for all X ∈ Γ(F)} ⊂ Ω(M). (7)

Notice that the de Rham differential preserves basic forms. Hence, Ω(M), equipped
with the restricted differential, is not just a graded algebra, but a differential graded
algebra (DGA). This is precisely what we expect from differential forms on a space.

Additionally, χ(M) and Ω(M) define a Cartan calculus on the leaf-space M. For in-
stance, the interior product of a vector field YM ∈ χ(M) with a differential form ω ∈ Ω(M)
is defined as

iYMω := iY ω,

and one can check that it is a well-defined differential form in Ω(M). Similarly, the Lie
derivative of ω along YM is defined as

LYMω := LY ω,

and it is a well-defined form in Ω(M). Finally, one can easily check that all classical
Cartan identities hold true in this setting. However, for similar reasons as for functions
and vector fields, we consider (7) as a temporary definition.

5. Smooth functions on a leaf space II: leaf-wise cohomology

We have preliminary definitions of smooth functions, vector fields, and differential
forms on a leaf space. Unfortunately, for the reasons that we already mentioned, they
are not optimal definitions. Our next aim is improving them.

As usual, let M be a manifold equipped with a foliation F . We begin noticing that
smooth functions C∞(M) on the leaf space M are the 0-cohomology of a suitable cochain
complex: the leaf-wise de Rham complex.

Leaf-wise differential forms are defined as sections of the vector bundle ∧•F∗. Hence
they are skew-symmetric C∞(M)-multilinear maps

Γ(F)× · · · × Γ(F)→ C∞(M).
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We denote by ΩF = Γ(∧•F∗) the graded algebra of leaf-wise differential forms, and, for
every q ≥ 0, by Ωq

F = Γ(∧qF∗) the module of leaf-wise q-forms.
The algebra ΩF is not just an algebra. It is a differential graded algebra (DGA) with

the leaf-wise de Rham differential dF defined by the usual Chevalley-Eilenberg formula:
for all ω ∈ Ωq

F , and all X1, . . . , Xq+1 ∈ Γ(F),

dFω(X1, . . . , Xq+1) =
∑
i

(−)i+1Xi(ω(. . . , X̂i, . . .))

+
∑
i<j

(−)i+jω([Xi, Xj], . . . , X̂i, . . . , X̂j, . . .).

and the involutivity of F is equivalent to d2
F = 0. The cohomology of (ΩF , dF) is called

the leaf-wise de Rham cohomology, and it is denoted by HF . Let us compute the 0-th
leaf-wise de Rham cohomology. It is the kernel of the map

dF : C∞(M)→ Ω1(F),

so it consists of smooth functions f ∈ C∞(M), such that dFf = 0, i.e.

0 = dFf(X) = X(f),

for all X ∈ Γ(F). In other words, H0
F consists exactly of leaf-wise constant functions:

H0
F = C∞(M).

Remark 5.1. There are good reasons to interpret to full cohomology HF as smooth
functions on M, not just its 0 degree piece. In our opinion, one of the most interesting
originates in the (geometric) theory of PDEs. We already mentioned that, given a
system of PDEs, say E0, one can naturally construct an infinite dimensional manifold
E and a d-dimensional foliation C on it. Here d is the number of independent variables,
and d-dimensional integral submanifolds of C identify with solutions of E0. In this case,
one can show that

Hd
C
∼= {variational principles constrained by E0}

Hd−1
C
∼= {conservation laws for E0}

Hd−2
C
∼= {gauge charges for E0} .

In all these cases, the right hand side consists of functionals on the space of solutions.

Remark 5.1 strongly suggests that we interpret the full cohomology space HF as
functions on the leaf-space. Now on we adopt this interpretation and denote

C∞(M) := HF .

Being a space of functions, we expect C∞(M) to possess an algebra structure. This is
indeed the case: as C∞(M) is the cohomology of a DGA, it possesses a natural graded
algebra structure (extending that of C∞(M)).

Even when C∞(M) is trivial, C∞(M) needs not be so, because it may have non-trivial
contributions in higher degrees.
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Remark 5.2. Let F be the vertical bundle with respect to a surjective submersion
π : M → B. We assume for simplicity that (M,π) is a locally trivial fiber bundle. In
this case, one can show that C∞(M) is the space of sections of a vector bundle over B
whose fiber over b ∈ B is the cohomology of the fiber π−1(b).

Last remark shows that C∞(M) contains some information on the internal structure
of points of M.

Remark 5.3. The graded algebra C∞(M) is not yet our ultimate definition of the space
of functions on M. Actually, C∞(M) is equipped with additional structure encoding the
full quasi-isomorphism class of the DGA (ΩF , dF) that we wish to take into account.

6. Vector fields on a leaf space II: the Bott connection

Next we want to improve our definition of vector fields on the leaf-space M. The
first step is noticing that vector fields χ(M) on the leaf space M are (isomorphic to) the
0-cohomology of a suitable cochain complex.

To do this we need a new notion of representation of a foliation. So let M be a
manifold equipped with a foliation. A representation of F is a vector bundle E → M
equipped with a flat F-connection, i.e. an R-linear operator

∇ : Γ(F)→ EndRΓ(E), X 7→ ∇X

such that

(1) ∇fX = f∇X ,
(2) ∇X(fe) = X(f)e+ f∇Xe,
(3) ∇[X1,X2] = [∇X1 ,∇X2 ]

for all X,X1, X2 ∈ Γ(F), all f ∈ C∞(M), and all e ∈ Γ(E).
Every representation (E,∇) of F gives rise to a cochain complex: the leaf-wise de

Rham complex with coefficients in E. E-valued leaf-wise differential forms are sections
of the vector bundle ∧•F∗ ⊗ E. In other words, they are skew-symmetric C∞(M)-
multilinear maps

Γ(F)× · · · × Γ(F)→ Γ(E).

We denote by ΩF(E) = Γ(∧•F∗ ⊗ E) the graded ΩF -module of E-valued leaf-wise
differential forms, and, for every q ≥ 0, by Ωq

F(E) = Γ(∧qF∗ ⊗ E) the module of
E-valued leaf-wise q-forms.

As E is not just a vector bundle but a representation, ΩF(E) is not just a module, but
a DG module over the DGA (ΩF , dF). This means, first of all, that ΩF(E) is equipped
with a differential, also called leaf-wise de Rham differential, denoted by dF again, and
defined by the obvious formula: for all ε ∈ Ωq

F(E), and all X1, . . . , Xq+1 ∈ Γ(F):

dFε(X1, . . . , Xq+1) =
∑
i

(−)i+1∇Xi
(ε(. . . , X̂i, . . .))

+
∑
i<j

(−)i+jε([Xi, Xj], . . . , X̂i, . . . , X̂j, . . .).
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Now, (ΩF(E), dF) is a DG module over (ΩF , dF) in the sense that

dF(ω ∧ ε) = dFω ∧ ε+ (−)|ω|ω ∧ dFε,
for all ω ∈ ΩF , and all ε ∈ ΩF(E), where, as usual, |ω| denotes the degree of ω. The
cohomology of (ΩF(E), dF) is called the leaf-wise de Rham cohomology with coefficients
in E, and it is denoted by HF(E). As (ΩF(E), dF) is a DG module, HF(E) is a graded
HF -module.

Given a foliation, the normal bundle provides a canonical representation. The normal
bundle is defined as the quotient bundle

T⊥M = TM/F .
In particular, there is a short exact sequence of vector bundles:

0→ F → TM → T⊥M → 0.

We denote by χ⊥(M) the module of sections of T⊥M , and, given a vector field Y ∈
χ(M), we denote by Y⊥ ∈ χ⊥(M) its class modulo Γ(F).

The normal bundle T⊥M is canonically equipped with a flat F -connection∇Bott called
the Bott connection and defined by

∇Bott
X Y⊥ = [X, Y ]⊥

for all X ∈ Γ(F), and all Y ∈ χ(M). In particular we can take the leaf-wise de Rham
cohomology HF(T⊥M) with coefficients in T⊥M . Let us compute the 0-th cohomology.
It is the kernel of the map

dF : χ⊥(M)→ Ω1
F(T⊥M),

so it consists of normal vector fields Y⊥ ∈ χ⊥(M), such that dFY⊥ = 0, i.e.

0 = dFY⊥(X) = ∇Bott
X Y⊥ = [X, Y ]⊥,

for all X ∈ Γ(F). This shows that Y is an infinitesimal symmetry of F . Hence
H0
F(T⊥M) consists of infinitesimal symmetries modulo sections of F , i.e.

H0
F(T⊥M) ∼= χ(M).

This isomorphism identify the class YM of an infinitesimal symmetry Y ∈ χ(M,F) with
the class Y⊥ in normal vector fields χ⊥(M).

It is now natural to adopt a similar point of view as for functions, and interpret the
full cohomology space HF(T⊥M) as vector fields on the leaf-space. So we denote

�(M) := HF(T⊥M).

Being a space of vector fields, we expect �(M) (more precisely the pair (C∞(M), �(M)))
to possess a Lie-Rinehart algebra structure. We know already that the 0-degree piece
(C∞(M), χ(M)) is indeed a Lie-Rinehart algebra, and we would like to extend this struc-
ture to higher degrees. This is indeed possible. However it is not as easy as in the case
of functions. The reason why it’s not so easy is that T⊥M -valued leaf-wise differential
forms are not a DG Lie-Rinehart algebra.
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We will show that (C∞(M), �(M)) is a graded Lie-Rinehart algebra in 2 different ways:

(1) defining by hands the structure maps;
(2) more conceptually, presenting �(M) as the cohomology of a canonical DG-Lie-

Rinehart algebra.

We begin with the first (not very conceptual) method. We need to recall the Frölicher-
Njenhuis calculus of vector valued differential forms. So, let M be a manifold, and de-
note by Ω(M,TM), the graded Ω(M)-module of TM -valued differential forms, i.e. skew-
symmetric, C∞(M)-multilinear maps

χ(M)× · · · × χ(M)→ χ(M).

Equivalently, TM -valued differential forms can be viewed as differential form valued
vector fields, i.e. R-linear operators

Z : C∞(M)→ Ω(M)

satisfying the obvious Leibniz rule. We will often take this point of view.

Proposition 6.1. For every Z ∈ Ω(M,TM) there exist

(1) a unique graded derivation

iZ : Ω(M)→ Ω(M)

of degree |Z| − 1, called the interior product with Z, such that, for all f ∈
C∞(M),
• iZf = 0, and
• iZdf = Z(f);

(2) a unique graded derivation

LZ : Ω(M)→ Ω(M)

of degree |Z|, called the Lie derivative along Z, such that, for all f ∈ C∞(M),
• LZf = Z(f), and
• LZdf = dZ(f).

Every graded derivation ∆ : Ω(M)→ Ω(M) is of the form

∆ = iJ + LK
for some unique J,K ∈ Ω(M,TM).

Proposition 6.2. For every Z1, Z2 ∈ Ω(M,TM), there exist

(1) a unique [Z1, Z2]nr ∈ Ω(M,TM) of degree |Z1| + |Z2| − 1, called the Nijenhuis-
Richardson bracket of Z1 and Z2, such that

[iZ1 , iZ2 ] = i[Z1,Z2]nr ;

(2) a unique [Z1, Z2]fn ∈ Ω(M,TM) of degree |Z1| + |Z2|, called the Frölicher-
Nijenhuis bracket of Z1 and Z2, such that

[LZ1 ,LZ2 ] = L[Z1,Z2]fn .
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The Frölicher-Nijenhuis bracket [−,−]fn gives Ω(M,TM) the structure of a graded
Lie algebra, extending the Lie algebra of vector fields.

Next we want to interpret T⊥M -valued leaf-wise differential forms as honest TM -
valued differential forms, so to be able to apply the Frölicher-Nijenhuis bracket. This
can only be done by choosing some extra data.

We begin noticing that there are obvious projections:

P : Ω(M)→ ΩF , and P : Ω(M,TM)→ ΩF(T⊥M) (8)

that consist in restricting a form to sections of F and then projecting to T⊥M (in the
second case). Now, consider again the short exact sequence

0→ F → TM → T⊥M → 0

A splitting T⊥M → TM is equivalent to the choice of a subbundle N ⊂ TM comple-
mentary to F , i.e. TM = F ⊕ N . Given such a splitting, sections of T⊥M identify
with sections of N , i.e. certain honest vector fields. Additionally, we have a splitting
F∗ → T ∗M of the dual short exact sequence

0← F∗ ← T ∗M ← (T⊥M)∗ ← 0,

allowing us to identify leaf-wise differential forms with certain honest differential forms.
Overall, (together with the projections (8)), we get two inclusions of C∞(M)-modules

ΩF ↪→ Ω(M), and ΩF(T⊥M) ↪→ Ω(M,TM).

both denoted I, depending of N , and inverting the P on the right. With the inclusions I
at hand, we are ready to present the structure maps of the graded Lie-Rinehart algebra

(C∞(M), �(M)).

Recall that C∞(M) = HF , and �(M) = HF(T⊥M). In particular, C∞(M) is already a
graded algebra and �(M) is already a graded C∞(M)-module. It remains to describe
the Lie algebra structure on �(M) and the action of this Lie algebra on C∞(M). So,
take Y,Y1,Y2 ∈ �(M), and f ∈ C∞(M). They are cohomology classes of dF -coboundaries
Z,Z1, Z2 ∈ ΩF(T⊥M), and ω ∈ ΩF . We define

[[Y1,Y2]] := the cohomology class of P [IZ1, IZ2]fn,

and

Y(f) := the cohomology class of P (LIZIω).

Theorem 6.3. With the structure maps just defined, (C∞(M), �(M)) is a well-defined
graded Lie-Rinehart algebra.

Notice that there is still something weird about the definition of �(M): it does not yet
consist of derivations of C∞(M). We will discuss this specific point a little bit later.
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7. Differential forms on the leaf space II: the F-spectral sequence

We proceed as for functions and vector fields. Differential forms Ω(M) on the leaf
space M are the 0-cohomology of the leaf-wise de Rham complex with coefficients in
normal differential forms.

A normal differential 1-form is a section of the dual bundle (T⊥M)∗ that we also
denote by T ∗⊥M . Equivalently, it is a honest 1-form η ∈ Ω1(M) vanishing on F :

η(X) = 0 for all X ∈ Γ(F).

Normal differential form are sections of the vector bundle ∧•T ∗⊥M . Equivalently, they
are honest differential forms in the graded subalgebra spanned by normal 1-forms. Yet
in other words, differential forms η ∈ Ω(M) such that

iXη = 0 for all X ∈ Γ(F).

We denote by Ω⊥(M) = Γ(∧•T ∗⊥M) ⊂ Ω(M) the graded subalgebra of normal forms,
and, for every k ≥ 0, by Ωp

⊥(M) = Γ(∧pT ∗⊥M) ⊂ Ωp(M) the submodule of normal k
forms.

The vector bundle ∧•T ∗⊥M is canonically equipped with a flat F -connection, “dual”
to the Bott connection, and also denoted ∇Bott. By definition

∇Bott
X η = LXη

for all X ∈ Γ(F), and all η ∈ Ω⊥(M). In particular we can take the leaf-wise de Rham
cohomology HF(∧•T ∗⊥M) with coefficients in ∧•T ∗⊥M . The 0-th cohomology consists of
normal forms η ∈ Ω⊥(M) such that

0 = dFη(X) = ∇Bott
X η = LXη,

for all X ∈ Γ(F), equivalently, differential forms η ∈ Ω(M) such that

iXη = LXη = 0 for all X ∈ Γ(F),

i.e. basic differential forms. So

H0
F(∧•T ∗⊥M) = Ω(M).

We adopt the same point of view as for functions and vector field and denote


(M) := HF(∧•T ∗⊥M).

Notice that 
(M) is bi-graded by the leaf-wise degree q and the normal degree p:


(M) =
⊕
q,p

Hq
F(∧pT ∗⊥M).

We also write

p(M) = HF(∧pT ∗⊥M).

so that

(M) =

⊕
p


p(M)
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Being a space of differential forms, we expect 
(M) to be a DGA. For the algebra
structure, it is easy to see that 
(M) inherits that of

ΩF(∧•T ∗⊥M) ∼= ΩF ⊗ Ω⊥(M),

where the tensor product is over smooth functions on M . What about the differential?
We expect to have a cochain complex

· · · −→ 
p(M)
ddR−→ 
p+1(M)

ddR−→ · · · .

We know already that the 0-degree piece Ω(M) is a DGA, and we would like to extend
the differential to higher leaf-wise degrees. This is indeed possible: the differential ddR

exists. Notice, however, that cochains ΩF(∧•T ∗⊥M) possess just one differential dF :
there is no other canonical differential

· · · −→ ΩF(∧pT ∗⊥M) −→ ΩF(∧p+1T ∗⊥M) −→ · · ·

responsible for the appearance of ddR. So, in order to construct ddR, we need a different
strategy. Actually, ddR can be constructed in at least three different ways:

(1) by hands,
(2) via a(n easy) spectral sequence argument,
(3) presenting Ω(M) as the (horizontal) cohomology of a canonical double differential

algebra.

We illustrate the first two methods in this section. Let’s begin with the first one.
The idea is interpreting ∧•T ∗⊥M -valued leaf-wise forms as honest differential forms, so
to be able to apply the standard de Rham differential. Again, this can only be done by
choosing the extra datum of a splitting T⊥M → TM of the short exact sequence

0→ F → TM → T⊥M → 0.

Such a splitting induces a dual splitting of the dual short exact sequence

0← F∗ ← T ∗M ← T ∗⊥M ← 0,

and, in turn, a direct sum decomposition T ∗M ∼= F∗ ⊕ T ∗⊥M . From the latter we
immediately get a factorization

Ω(M) ∼= ΩF ⊗ Ω⊥(M) = ΩF(∧•T ∗⊥M),

where the tensor product is over C∞(M). In particular, we have a module isomorphism

I : ΩF ⊗ Ω⊥(M)→ Ω(M)

and, for any p, q ∈ N0, projections

Pp,q : Ω(M)→ Ωq
F ⊗ Ωp

⊥(M).

We are now ready to define a differential

ddR : 
p(M)→ 
p+1(M)
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for all p. So, take � ∈ Ωp(M). It is the cohomology class of a dF -coboundary ω ∈
ΩF(∧pT ∗⊥M). We define

ddR� := the cohomogly class of Pp+1,•(dIω).

Theorem 7.1. With the differential just defined, 
(M) is a well-defined DGA.

We now come to the spectral sequence argument. For every p ∈ N, let

F pΩ ⊂ Ω(M)

be the ideal spanned by

Ωp
⊥(M) ⊂ Ωp(M) ⊂ Ω(M).

One can easily check using the involutivity of F that

Ω(M) ⊃ F 1Ω ⊃ · · · ⊃ F pΩ ⊃ · · ·
is a filtration of the de Rham complex (by ideals). Hence there is a spectral sequence
{(Er, dr)} computing the de Rham cohomology of M . A closer inspection reveals that,
for all p, q, there is a canonical identification

Ep,q
0
∼= Ωq

F(∧pT ∗⊥M),

and, under this identification, the differential

d0 : Ep,•
0 → Ep,•+1

0

identifies with the leaf-wise differential

dF : Ω•F(∧pT ∗⊥M)→ Ω•+1
F (∧pT ∗⊥M).

It follows that

Ep,•
1 = Hp,•(E0, d0) ∼= HF(∧pT ∗⊥M) = 
p(M).

So, the differential

d1 : Ep,•
1 → Ep+1,•

1

induces a differential

ddR : 
p(M)→ 
p+1(M).

One can check that the latter is the same as the differential defined above.
One can also define interior products and Lie derivatives. Namely, let Y ∈ �(M) be

the cohomology class of a cocycle Z ∈ ΩF(T⊥M), and let � ∈ 
p(M) be the cohomology
class of a cocycle η ∈ ΩF(∧pT ∗⊥M). We put

iY� := the cohomology class of Pp−1,•(iIZIη)

and

LY� := the cohomology class Pp,•(LIZIη).

The latter forms are well-defined and one can check that appropriate graded versions
of the Cartan identities hold true in this setting.
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Remark 7.2. It is very nice that 
(M) possesses the “correct” algebraic structure for
differential forms (on a space). However, one may still wonder whether or not there
are more facts supporting our interpretation. I can provide one more evidence from the
theory of PDEs. So, let E0, E , C, and d be as in Remark 5.1. In this case, one can show
that

Hd
C

ddR−→ Hd
C(Ω

1
⊥)

associates to a (constrained) variational principle, the associated Euler-Lagrange equa-
tions (with Lagrange multipliers). In other words, in this case, (in leaf-wise degree d)
the first de Rham differential ddR : C∞(M)→ 
1(M) is exactly the functional differential.

The case of functions, vector fields, and differential forms, suggests the following
recipe to find the analogue �(M) on the leaf-space M of any (natural) construction Φ in
differential geometry:

(1) Find the normal analogue Φ⊥(M) of Φ;
(2) Recognize that Φ⊥(M) carries a representation of F ;
(3) Define �(M) as HF(Φ⊥(M));
(4) Check that �(M) possesses the “correct” algebraic structure.

This recipe has been successfully tested on other constructions like multivector fields
and scalar differential operators.

8. Vector fields on a leaf space III: χ(F [1])

We announced that �(M) can be presented as cohomology of a DG Lie-Rinehart al-
gebra, and that the latter structure is responsible for the graded Lie-Rinehart algebra
structure on �(M). In this section we explain this in some details.

First notice that the DGA ΩF can be thought of as the DGA of functions on a
DG manifold. Informally, a graded manifold is a manifold whose coordinates carry
(integer) degrees. Coordinates of even degree commute (with all other coordinates),
while coordinates of odd degrees anticommute. A DG manifold is a graded manifold
equipped with a degree 1 vector field Q squaring to zero: Q2 = 0. More rigorously, a
(real) graded manifold M is a honest manifold M , equipped with a graded C∞(M)-
algebra, denoted C∞(M), which is isomorphic to a graded algebra of the form

Γ(S•V),

where V =
⊕

k Vk →M is a graded bundle over M (concentrated in non-zero degrees),
and S•V is its graded symmetric algebra (notice that, in order to accommodate for
complex graded manifolds, the definition must be slightly improved). According to
the definition, coordinates on M , together with a local frame of Γ(V), serve as graded
coordinates onM. We stress, however, that the isomorphism C∞(M) ∼= Γ(S•V) is not
part of the data. The simplest, non trivial instance of a graded manifold (M,C∞(M))
is obtained by putting

C∞(M) = Γ(∧•V ∗)



CALCULUS UP TO HOMOTOPY ON LEAF SPACES 17

where V →M is a non-graded vector bundle. In other words C∞(M) = Γ(S•V), where
V →M is the graded vector bundle given by

Vk =

{
0 if k 6= 1
V ∗ if k = 1

.

In this case, we denoteM =: V [1], and we think of sections of V ∗ as degree 1 coordinates
on V [1]. In particular, V [1] does only possess degree 0 and degree 1 coordinates.

Calculus on a graded manifold M can be constructed algebraically applying the (1st

and 2nd) GAAG principle(s) to the graded algebra C∞(M). For instance, vector fields
on M are just derivations of C∞(M).

A DG manifold is a graded manifold M equipped with a a homological vector field,
i.e. a degree 1 vector field Q ∈ χ(M) such that Q2 = 0. A foliation F on a manifold
M provides an example of a DG manifold. Indeed, consider the graded manifold F [1].
By definition,

C∞(F [1]) = Γ(∧•F∗) = ΩF

which is canonically equipped with the homological derivation dF . So (F [1], dF) is a
DG manifold.

Vector fields on a DG manifold form a DG Lie-Rinehart algebra. The definition of a
DG Lie-Rinehart algebra should be clear: A DG Lie-Rinehart algebra is a pair (A,L),
where A is a commutative DGA (with unit), and L is a DG Lie algebra (DGLA).
Additionally,

• L is a DG A-module,
• A is a DG L-module,

and, if we forget the differentials, (A,L) is a (graded) Lie-Rinehart algebra. Sometimes
we refer to L as a DG Lie-Rinehart algebra (over A). It’s clear that if (A,L) is a DG
Lie-Rinehart algebra, then (H(A), H(L)) is a graded Lie-Rinehart algebra.

Now, let (M, Q) be a DG manifold, then (C∞(M), χ(M)) is a DG Lie-Rinehart
algebra. The differential in C∞(M) is Q, and the differential in χ(M) is the adjoint
operator [Q,−]: the graded commutator with Q.

We finally come to the example of our interest. Let F be a foliation on a manifold
M .

Theorem 8.1. There is a canonical quasi-isomorphism

P : χ(F [1])→ ΩF(T⊥M),

where χ(F [1]) is equipped with the differential [dF ,−], and ΩF(T⊥M) is equipped with
the leaf-wise differential.

Corollary 8.2. The leaf-wise cohomology

�(M) = HF(T⊥M)

is canonically equipped with a graded Lie-Rinehart algebra structure.
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We now sketch the proof of Theorem 8.1. Begin with a vector field X ∈ χ(F [1]). It
is a derivation of C∞(F [1]) = ΩF . Restricting X to the degree 0 piece, we get

X : C∞(M)→ ΩF

a leaf-wise form valued vector field on M , that we may think of as a leaf-wise form with
values in vector field. Composing the latter with the projection

χ(M)→ χ⊥(M), Y 7→ Y⊥

we get a T⊥M -valued leaf-wise form, denoted PX. This defines the map

P : χ(F [1])→ ΩF(T⊥M)

in the statement. It is easy to check that P is a cochain map. To see that it is a
quasi-isomorphism we complete it to a contraction:

χ(F [1])H
'' P

// ΩF(T⊥M)
I
oo .

This can be done, but not in a canonical way. We need to fix a splitting of the exact
sequence

0→ F → TM → T⊥M → 0. (9)

With a splitting at hand, we can define a right inverse

I : ΩF(T⊥M)→ χ(F [1])

as follows. Let Z ∈ ΩF(T⊥M), then IZ is the vector field on F [1] given by

IZ(ω) := P (LIZIω),

for all ω ∈ C∞(F [1]) = ΩF . Here P and I are exactly the maps defined in Section 6.
Finally, one can construct the homotopy H. I will not provide a formula for H in these
notes.

9. Differential forms on a leaf space III: Ω(F [1])

A similar situation occurs for differential forms. First of all, we remark that differential
forms on a DG manifold form a double DGA. Namely, without insisting too much on the
technical details, let firstM be a graded manifold. Differential forms onM are usually
defined (algebraically) in such a way that, together with the de Rham differential, they
form a DGA, whose grading is given by the total degree, i.e. the sum of the form degree,
and the internal, coordinate degree. We will follow this convention (however, other
conventions are possible). Now, let (M, Q) be a DG manifold. Then the de Rham
differential, and the Lie derivative along Q are degree 1, homological derivations of
Ω(M) commuting with each other, and we say that

(Ω(M),LQ, ddR)

is a double DGA. It follows that ddR induces a differential in the LQ-cohomology of
Ω(M) (and vice-versa).
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Theorem 9.1. For every p, there is a canonical quasi-isomorphism

Ωp(F [1])← ΩF(∧pT ∗⊥M) : P∗,
where Ωp(F [1]) is equipped with the differential LQ, and ΩF(∧pT ∗⊥M) is equipped with
the leaf-wise differential.

Corollary 9.2. The leaf-wise cohomology


(M) = HF(∧•T ∗⊥M)

is canonically equipped with a differential:

· · · −→ 
p(M)
ddR−→ 
p+1(M)

ddR−→ · · · .
(induced by the de Rham differential) turning 
(M) in a DGA.

We will not provide a proof (not even a sketch) of Theorem 9.1, nor will we describe
P∗ explicitly. We only mention that the proof is formally the same as that of Theorem
9.1. Namely, one actually shows that, for every p, there is a contraction

Ωp(F [1])H∗
'' I∗

// ΩF(∧pT⊥M)
P∗
oo ,

depending on a splitting of the short exact sequence (9) only.
We also remark that the full Cartan calculus on the leaf-space M. that we mentioned

in Section 7, can be induced from the ordinary Cartan calculus on the DG manifold
F [1] via taking the Q-cohomology. Theorems 8.1 and 9.1, and their corollaries, together
with the latter remark, strongly suggest a new paradigm on the calculus on M. Namely,
it is natural to declare that: the calculus on M is just the ordinary calculus on F [1] up
to taking cohomology. We formalize this paradigm a little bit better, providing a new
recipe to find the analogue �(M) on the leaf-space M of any (natural) construction Φ in
differential geometry:

(1) Consider Φ(F [1]);
(2) Recognize that Φ(F [1]) carries a differential Q, induced by dF in a natural way;
(3) Define �(M) as H(Φ(F),Q).

This approach has the conceptual advantage of being much closer to the spirit of the
GAAG principles: for instance, now, vector fields are honest derivations of the algebra
of admissible functions, up to taking cohomology.

For safety reasons, it is wise to add a little bit more information to our calculus up
to taking cohomology (on the leaf-space). Namely, we know that, whatever the algebra
(associative, commutative, Lie, etc.), the cohomology of a DG algebra (with its algebra
structure) is a homotopy invariant, i.e. two homotopy equivalent DG algebras share
the same cohomology (with its algebra structure). However, the cohomology does not
contain a full-information on the quasi-isomorphism class of the DG algebra. We prefer
to keep this information. To do that, we pass from a calculus up to taking cohomology,
to the calculus up to homotopy in the title.
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10. Vector fields on a leaf space IV: a homotopy Lie-Rinehart algebra

Roughly, a (non-curved) homotopy (associative, resp. commutative, resp. Lie, etc.)
algebra is a cochain complex K equipped with an algebraic structure (compatible with
the differential, but) satisfying the axioms of the (associative, resp. commutative, resp.
Lie, etc.) algebra only up to (a coherent system of higher) homotop(ies). See below for
more precise definitions in the case of differential, Lie, and Lie-Rinehart algebras.

Algebraic structures are not homotopy invariant in the following sense. Let A be any
kind of DG algebra (associative, commutative, Lie, etc.), let K be a cochain complex
and let

A
f
// K

g
oo

be a pair of (mutually homotopy inverse) homotopy equivalences. We may try using
(f, g) to transfer the algebraic structure from A to K. However, if we do so, we do
not get a DG algebra structure on K but a homotopy algebra structure. On the other
hand, homotopy algebras are homotopy invariant, in the sense that, if we try to play
the same game starting from a homotopy algebra structure on A we indeed get a
homotopy algebra structure on K. This is the main reason why homotopy algebras
pop up whenever one deals at the same time with algebraic structures, cohomology and
homotopy. More precisely, we have the following

Theorem 10.1 (Homotopy Transfer). Let A be a DG algebra, let K be a cochain
complex, and let

AH
$$ P

// K
I
oo .

be a contraction. Then K can be promoted to a homotopy algebra depending only on A
and the contraction. With its homotopy algebra structure, K contains a full information
on the quasi-isomorphism class of A (more precisely the ∞-quasi-isomorphism class of
K is equivalent to the quasi-isomorphism class of A).

This statement needs some explanations. First of all we have to explain more precisely
what is a homotopy algebra. We will mainly consider the cases of a homotopy Lie
algebra (also called an L∞-algebra) and of a homotopy differential algebra (not very
popular but appearing in the theory of foliations and elsewhere). We will also quickly
consider the case of a homotopy Lie-Rinehart algebra (also called an LR∞-algebra).
We begin with L∞-algebras. There are a couple of equivalent definitions. I will present
the most complicated one, which is more intuitive for our purposes.

An L∞-algebra is a graded vector space V equipped with a family of multi-brackets
(lk)k∈N:

lk : SkV → V
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with lk being a degree 1, k-multilinear, graded symmetric map, for all k. Additionally,
the lk satisfy the following coherence conditions : for all n ∈ N∑

i+j=n

∑
σ∈Si,j

ε(σ)li+1(lj(vσ(1), . . . , vσ(j)), vσ(j+1), . . . , vσ(i+j)) = 0, (10)

for all v1, . . . , vn ∈ V , where ε(σ) is a Koszul sign.
In order to better understand this definition, let’s have a look at the identities (10)

for low n. For n = 1, we get

l1l1(v) = 0,

for all v, i.e., (V, l1) is a cochain complex. For n = 2, we get

l1(l2(v, w)) = ±l2(l1(v), w)± l2(v, l1(w)),

for all v, w, i.e. l1 is a derivation with respect to the binary bracket l2. For n = 3, we
get

l2(v, l2(w, z)) + 	 = ±l1(l3(v, w, z))± l3(l1(v), w, z)± l3(v, l1(w), z)± l3(v, w, l1(z)),

for all v, w, z, where 	 denotes graded cyclic permutations, and ± denotes the appro-
priate Koszul sign. In particular, we see that l2 satisfies the Jacobi identity, hence it’s a
Lie bracket only up to a homotopy encoded by l3. Similarly for higher n. Notice that,
as l1 is a differential, one can take the cohomology H(V, l1), and l2 induces a honest
Lie bracket on it. So the cohomology of an L∞-algebra is a honest graded Lie algebra.
Finally, we remark that every DGLA is an L∞-algebra such that lk = 0 for k > 2, up
to a shift in the degree.

Now, we want to explain briefly LR∞-algebras. First of all, given an L∞-algebra
(V, (lk)k∈N) there is a notion of an L∞-module over it. It is a graded vector space W
equipped with a family of multi-brackets (mk)k∈N:

mk : Sk−1V ⊗W → W

with mk being a degree 1, k-multilinear map, graded symmetric in the first k−1 entries,
for all k. Additionally, the mk satisfy certain coherence conditions.

An LR∞-algebra is a pair (A,L), where A is a commutative DGA (with unit), and
(L, (lk)k∈N) is an L∞-algebra. Additionally,

• (L, l1) is a DG A-module,
• A is an L∞-module over L,

there are more compatibilities, telling, e.g., that the multibrackets

mk : Sk−1L ⊗A → A

are graded A-linear in the first k − 1 entries, and they are graded derivations in the
last entry. This definition of an LR∞-algebra is actually a simplification of the “should
be” definition of a homotopy Lie-Rinehart algebra, where only the Lie bracket and the
Lie algebra action are up to homotopy, while the commutative, associative product is
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honestly associative and commutative. There is a version of the Homotopy Transfer
Theorem for LR∞-algebras:

Theorem 10.2 (Lie-Rinehart Homotopy Transfer). Let (A,L) be a DG Lie-Rinehart
algebra, let K be a DG A-module, and let

LH
$$ P

// K
I
oo

be a contraction in the category of graded A-modules, i.e., P , I,H are graded A-linear.
Then (A,K) can be promoted to an LR∞-algebra depending only on (A,L) and the
contraction. With its LR∞-algebra structure, (A,K) contains a full information on the
quasi-isomorphism class of (A,L) (more precisely, the ∞-quasi-isomorphism class of
(A,K) is equivalent to the quasi-isomorphism class of (A,L)).

We are now ready to go back to a manifold M with a foliation F (and the associated
leaf-space M). So far, we defined vector fields on M in different ways. Let us summarize
the latest outcome of our discussion. A first paradigm stated that vector fields on M
are the leaf-wise cohomology

�(M) = HF(T⊥M)

with coefficients in the normal bundle (with the Bott representation). This is a graded
Lie-Rinehart algebra. Later we realized that �(M) is also the cohomology of the DG
Lie-Rinehart algebra of vector fields on the DG manifold F [1]:

�(M) = H(χ(F [1]),Q),

where Q = [dF ,−] is the graded commutator with the leaf-wise differential dF . This
suggested us to formulate a new principle: vector fields on M are just vector fields on
F [1] up to homotopy. In other words, the relevant object here is the quasi-isomorphism
class of the DG Lie-Rinehart algebra (C∞(F [1], χ(F [1])):

vector fields on M = quasi-isomorphism class of χ(F [1]).

Of course, the quasi-isomorphism class of (C∞(F [1], χ(F [1])) is represented by
(C∞(F [1], χ(F [1])). However, we also have a contraction

χ(F [1])H
'' P

// ΩF(T⊥M)
I
oo , (11)

and one can check that P , I,H are (C∞(F [1]) = ΩF)-linear. Hence (ΩF ,ΩF(T⊥M)) is
an LR∞-algebra which also contains a full information on the quasi-isomorphism class of
(C∞(F [1], χ(F [1])) (more precisely, the ∞-quasi-isomorphism class of (ΩF ,ΩF(T⊥M))
is equivalent to the quasi-isomorphism class of (C∞(F [1], χ(F [1]))).

We conclude this section, describing explicitly the transferred structure on
(ΩF ,ΩF(T⊥M)). Recall, that the contraction (11) is defined via the choice of a splitting
σ : T⊥M → TM of the short exact sequence (9). This gives inclusions

I : ΩF → Ω(M), and I : ΩF(T⊥M)→ Ω(M,TM).
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In the remaining part of this section, we understand the inclusions I, and interpret ΩF
and ΩF(T⊥M) as subspaces of Ω(M),Ω(M,TM) respectively.

Notice that, composing the canonical projection TM → T⊥M with the splitting
σ : T⊥M → TM gives a projector Θ : TM → TM that could also be regarded as a
TM -valued 1-form, i.e., Θ ∈ Ω1(M,TM). The Frolicher-Nijenhuis bracket

R = [Θ,Θ]fn ∈ Ω2(M,TM)

measures how far is the subbundle imσ ⊂ TM from being involutive, and it is called
the curvature of the splitting σ.

Theorem 10.3. The transferred LR∞-algebra structure on (ΩF ,ΩF(T⊥M)) is the fol-
lowing. The L∞-algebra (ΩF(T⊥M), (lk)k∈M) is given by

l1(Z) = dFZ

l2(W,Z) = ±[W,Z]fn + [[R,W ]nr, Z]nr

l3(V,W,Z) = −[[[R, V ]nr,W ]nr, Z]nr

and
lk = 0 for k > 3.

for all V,W,Z ∈ ΩF(T⊥M). The L∞-module (ΩF , (mk)k∈N) is given by

m1(Z) = dFω

m2(Z|ω) = ±LZω + i[R,Z]nrω

m3(W,Z) = −i[[R,W ]nr,Z]nrω

and
mk = 0 for k > 3.

for all W,Z ∈ ΩF(T⊥M) and all ω ∈ ΩF .

11. Differential forms on a leaf space IV: a homotopy differential
algebra

As already mentioned quickly, a double DGA is a graded (associative, commutative,
unital) algebra B equipped with two commuting homological derivations d1, d2. One
can transfer a double DGA structure along a contraction to get a homotopy DGA. A
homotopy DGA is a graded (associative, commutative, unital) algebra K equipped with
a family of graded derivations (dk)k∈N satisfying the following coherence conditions : for
all n ∈ N ∑

i+j=n

[di, dj] = 0 (12)

(in particular d1 + d2 + · · · , if well-defined, is a homological derivation). Let’s have a
look at the identities (12) for low n. For n = 1, we get

d1d1 = 0,
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i.e., (K, d1) is a plain DGA. For n = 2, we get

[d1, d2] = 0.

So, in some sense, d2 is compatible with d1. For n = 3, we get

2d2d2 = [d1, d3],

i.e., d2 is a homological derivation, hence (K, d2) is a DGA only up to a homotopy en-
coded by d3. Similarly for higher n. As d1 is a differential, one can take the cohomology
H(K, d1), and d2 induces a honest differential on it. So the cohomology of a homotopy
DGA is a honest DGA. Finally, we remark that a double DGA is a homotopy DGA
such that dk = 0 for k > 2.

Notice that the definition of homotopy DGA just provided is a simplification of the
“should be” definition where only the differential is up to homotopy, while the commu-
tative, associative product is honestly associative and commutative. There is a version
of the Homotopy Transfer Theorem for homotopy DGA:

Theorem 11.1 (DGA Homotopy Transfer). Let (B, d1, d2) be a double DGA, let (K, d1)
be a DGA, and let

(B, d1)H∗
'' I∗

// (K, d1)
P∗
oo

be a contraction such that P∗, I∗ are DGA maps, and H∗ is K-linear (i.e.,
H∗(P∗(κ)α) = ±P∗(κ)H∗(α) for all κ ∈ K, and all α ∈ B). Then (K, d1) can be
promoted to a homotopy DGA depending only on (B, d1, d2) and the contraction. With
its homotopy DGA structure, K contains a full information on the quasi-isomorphism
class of (B, d1, d2) (more precisely, the ∞-quasi-isomorphism class of K is equivalent to
the quasi-isomorphism class of (B, d1, d2)).

Now, let M be a manifold with a foliation F . According to our latest principle:
differential forms on the leaf-space M are differential forms on F [1] up to homotopy. In
other words,

differential forms on M = quasi-isomorphism class of the double DGA (Ω(F [1]),LdF , ddR).

Now recall that we have a contraction

(Ω(F [1]),LdF )H∗
'' I∗

// (ΩF(∧•T ∗⊥M), dF)
P∗
oo , (13)

and one can choose P∗, I∗,H∗ so to satisfy the hypotheses of Theorem 11.1. Hence
ΩF(∧•T ∗⊥M) is a homotopy DGA which contains a full information on the quasi-
isomorphism class of (Ω(F [1]),LdF , ddR) (more precisely, the∞-quasi-isomorphism class
of ΩF(∧•T ∗⊥M) is equivalent to the quasi-isomorphism class of (Ω(F [1]),LdF , ddR)).

We now describe explicitly the transferred structure on ΩF(∧•T ∗⊥M). The contraction
(13) is defined via the choice of a splitting of (9). This gives an isomorphism

ΩF(∧•T ∗⊥M)→ Ω(M)
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that, in the remaining part of this section, we understand. Let Θ and R be as in the
previous section.

Theorem 11.2. The transferred homotopy DGA (ΩF(∧•T ∗⊥M), (dk)k∈N) is given by

d1 = dF

d2 = ddR − dF + iR

d3 = −iR
and

dk = 0 for k > 3.

In particular d1 + d2 + · · · = ddR.

We conclude discussing briefly the relationship between the LR∞-algebra of Theo-
rem (10.3) and the homotopy DGA of Theorem (11.2). Vector fields and differential
forms on a manifold are related by a Chevalley-Eilenberg construction. More generally,
there is a Chevalley-Eilenberg construction defining a (double) DGA out of a (DG) Lie-
Rinehart algebra. Similarly, there is a higher Chevalley-Eilenberg construction defining
a homotopy DGA out of an LR∞-algebra. The homotopy DGA of Theorem (11.2) and
the LR∞-algebra of Theorem (10.3) are related by this higher Chevalley-Eilenberg con-
struction. Finally, ΩF(T⊥M) and ΩF(∧•T ∗⊥M) do also define a higher Cartan calculus
involving the higher homotopy, which is another evidence that our point of view on the
leaf-space is consistent.

The table in the next page quickly summarizes what is known for other constructions
on leaf spaces. In that table, given a (graded manifold) M, we denoted by χalt

poly(M),
χsym

poly(M), and D(M) the Gertenhaber algebra of multivetor fields on M, the Poisson
algebra of fiber-wise polynomial functions on T ∗M (symmetric multi-vector fields), and
the associative algebra of scalar differential operators C∞(M)→ C∞(M) respectively.
Notice that D(M) is also the module of sections of a(n infinite dimensional, filtered)
vector bundle overM that ve denoted DM (without the brackets). Finally, the symbols
∞-DGA, P∞, G∞, and A∞ in the last column refer to homotopy DGAs, homotopy
Poisson algebras, homotopy Gerstenhaber algebras, and homotopy associative algebras
(also known as A∞-algebras) respectively. The rest should be clear.
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For more details on the technical aspects the reader may have a look at the following
three papers and references therein.
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