MAT3211 Álgebra Linear (2021) Lista 4

1. Diagonalização

- 1.1 Para cada uma das transformações lineares a seguir, determine se a mesma é diagonalizável. Em caso positivo, encontre uma base do espaço formado por autovetores da transformação.
 - (a) $T: \mathbb{R}^2 \to \mathbb{R}^2$, T(x, y) = (x, 0).
 - (b) $T: \mathbb{R}^2 \to \mathbb{R}^2$, T(x, y) = (2y, x).
 - (c) $T: \mathbb{R}^2 \to \mathbb{R}^2$, T(x, y) = (x + 2y, 3y).
 - (d) $T: \mathbb{R}^2 \to \mathbb{R}^2$, T(x, y) = (x + y, 2x + y).
 - (e) $T: \mathbb{R}^3 \to \mathbb{R}^3$, T(x, y, z) = (x, z, y).
 - (f) $T: \mathbb{R}^4 \to \mathbb{R}^4$, T(x, y, z, w) = (x + y + z + w, y + z + w, z + w, w).
- 1.2 Determine se as seguintes matrizes A são diagonalizáveis. Em caso positivo, encontre M tal que $M^{-1}AM$ é uma matriz diagonal.

(a)
$$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$
 (e) $\begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}$ (h) $\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & 0 & 0 \end{pmatrix}$ (b) $\begin{pmatrix} 1 & 2 \\ 0 & -1 \end{pmatrix}$ (c) $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ (f) $\begin{pmatrix} 3 & -3 & -4 \\ 0 & 3 & 5 \\ 0 & 0 & -1 \end{pmatrix}$ (i) $\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$ (d) $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ (g) $\begin{pmatrix} 1 & 0 & 2 \\ -1 & 0 & 1 \\ 1 & 0 & 2 \end{pmatrix}$ (j) $\begin{pmatrix} 2 & 1 & 3 \\ 0 & 2 & 4 \\ 0 & 0 & -1 \end{pmatrix}$

1.3 Utilize a forma diagonal pra encontrar A^n , em que $n \in \mathbb{N}$, nos seguintes casos:

(a)
$$A = \begin{pmatrix} -3 & 4 \\ -1 & 2 \end{pmatrix}$$
 (b) $A = \begin{pmatrix} 0 & 7 & -6 \\ 1 & 6 & 0 \\ 0 & 0 & -2 \end{pmatrix}$

1.4 Determine se as seguintes matrizes A são diagonalizáveis. Em caso positivo, encontre uma matriz diagonal similar a A.

(a)
$$\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$
 (d) $\begin{pmatrix} 3 & 3 & 1 \\ 0 & 3 & 2 \\ 0 & 0 & 1 \end{pmatrix}$ (f) $\begin{pmatrix} 1 & 2 & 3 & 4 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 \end{pmatrix}$ (c) $\begin{pmatrix} \pi & \sqrt{7} & 2 \\ 0 & -1 & \sqrt{2} \\ 0 & 0 & 7 \end{pmatrix}$ (e) $\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 0 & 0 & 9 \end{pmatrix}$ (g) $\begin{pmatrix} 1 & 2 & 3 & 4 \\ 0 & 2 & 3 & 4 \\ 0 & 0 & 3 & 4 \\ 0 & 0 & 0 & 4 \end{pmatrix}$

2. Polinômio minimal

- **2.1** Encontre todas as possibilidades para o polinômio minimal de um operador $T: \mathbb{R}^5 \to \mathbb{R}^5$ com polinômio característico:
 - (a) $p_T(X) = (X-3)^3(X-2)^2$
 - (b) $p_T(X) = (X-1)(X-2)(X-3)(X-4)(X-5)$.
 - (c) $p_T(X) = (X-2)^5$.
- 2.2 Determine o polinômio minimal das seguintes matrizes:

3. Forma de Jordan

- **3.1** Determine a forma de Jordan de uma matriz real 5×5 cujo polinômio característico é $(X-2)^3(X-7)^2$ e cujo polinômio minimal é $(X-2)^2(X-7)$.
- **3.2** Determine o número de matrizes não semelhantes A de tamanho 4×4 tais que seu polinômio minimal seja $(X+1)^2$.
- 3.3 Determine a forma de Jordan das seguintes matrizes:

(a)
$$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$
 (e) $\begin{pmatrix} 2 & 2 \\ 0 & 2 \end{pmatrix}$ (h) $\begin{pmatrix} 3 & -1 & 1 & -7 \\ 9 & -3 & -7 & -1 \\ 0 & 0 & 4 & -8 \\ 0 & 0 & 2 & -4 \end{pmatrix}$ (c) $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ (g) $\begin{pmatrix} 2 & 1 & 3 \\ 0 & 2 & 4 \\ 0 & 0 & -1 \end{pmatrix}$ (i) $\begin{pmatrix} 0 & -9 & 0 & 0 \\ 1 & 6 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 3 \end{pmatrix}$ (j) $\begin{pmatrix} 5 & -9 & -4 \\ 6 & -11 & -5 \\ -7 & 13 & 6 \end{pmatrix}$