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Introduction

I R = (R,+, ·, 1) - unital ring (associative).

I Definition: Let L : R → R be an additive map. We say L
leaves the set H invariant if L(H) ⊂ H. The map L strongly
preserves H when L(H) = H.

I Definition Let L : R → R be an additive map. For a given
relation ∼ in R, we say that L preserves ∼ when L(A) ∼ L(B)
whenever A ∼ B. When L(A) ∼ L(B) if and only if A ∼ B we
say that L strongly preserves the relation ∼ .
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R = Mn(F)

I Mn(F) = Mn to denote the algebra of all n × n matrices with
entries in F = algebraically closed field of zero characteristic.

I Rk = {A ∈ Mn | A has rank k} (1 ≤ k ≤ n); U = Rn.

I N = {A ∈ Mn | A is nilpotent}.
I P = {A ∈ Mn | A is potent}.
I E = {A ∈ Mn | A2 = A}.
I S = {A ∈ Mn | A is algebraic of degree 2}.

For now, let us suppose that the map L : Mn → Mn is linear and
that also preserves one (and only one) of the above sets.
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For instance, if the map L is either of the form (1) or (2) - the so
called standard form - where

L(X ) = M1XM2, (1)

and

L(X ) = M1X
tM2, (2)

then L preserves any of the previous sets - here M1,M2 are suitable
invertible matrices. The problem now is to decide - modulo the
center of Mn and up to some nonzero constant (in some cases) - if
every linear map that preserves any of the above mentioned sets has
necessarily the standard form.
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This question was answered positively:
I H = Rk and F = C by L. Beasley [1]1.
I H = R1 by M. Marcus and B. Moyls [20]2

I H = N and L(N) = N by P. Botta, S. Pierce, and W. Watkins
[2]3 (M2 = M−1

1 ).
I H = P by M. Brešar and P. Šemrl [5]4 (F = C and M2 = M−1

1 ).
1L. B. Beasley. Linear transformations on matrices: the invariance of rank k

matrices. Linear Algebra Appl., 3 (4) (1970), 407-427.
http://dx.doi.org/10.1016/0024-3795(70)90033-9.

2M. Marcus and B. Moyls. Transformations on tensor product spaces.
Pacific J. Math. 9 (1959), 1215-1221

3P. Botta, S. Pierce, W. Watkins. Linear transformations that preserve the
nilpotent matrices. Pacific J. Math., 104 (1983), 39-46.
http://dx.doi.org/10.2140/pjm.1983.104.39.

4M. Brešar, P. Šemrl. Linear transformations preserving potent matrices.
Proc. Amer. Math. Soc., 119 (1) (1993), 81–86.
http://dx.doi.org/10.2307/2159827.
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I H = E by M. Brešar and P. Šemrl [6]5 (M2 = M−1
1 ).

I H = S and L(S) = S by M. Alves and W. Franca [14]6 (M2 =
M−1

1 ).

I H = U by M. Marcus and R. Purves [21]7.

5M. Brešar, P. Šemrl. Mappings which preserve idempotents, local
automorphisms, and local derivations. Canad. J. Math., 45(3) (1993),
483-496. https://doi.org/10.4153/CJM-1993-025-4.

6W. Franca, M. Alves. Linear transformations preserving algebraic elements
of degree 2. Linear Multilinear Algebra, 70 (2022), 4191-4213.
https://dx.doi.org/10.1080/03081087.2021.1873228.

7M. Marcus, R. Purves. Linear transformations on algebras of matrices II:
The invariance of the elementary symmetric functions Canad. J. Math., 11
(1959), 383–396. https://doi.org/10.4153/CJM-1959-039-4.

Willian Franca (Universidade Federal de Juiz de Fora) Problem(s) in LPP



Introduction
The idea behind the proof for S and n ≥ 3

Question 1:
Maps preserving multiplicative commutators

The case R = Mn
A more general case

Question 2:
Bibliography

The idea behind the proof for S and n ≥ 3

For convenience, for each λ ∈ F and k ∈ {1, . . . , n− 1}, we set the
following elements

A(λ, k) =

[
λ · Ik 0

0 (−kλn−k ) · In−k

]
. (3)

Γ = {A ∈ S | A2 = 0} = {A ∈ Mn(F) \ {0} | A2 = 0}.
I Lemma1: Let T ∈ Γ. Then, rank T ≤ [n2 ].
I Lemma 2: Let B ∈ S such that tr (B) = 0. Then, either B ∈ Γ,

or there exist β ∈ F∗ and k̃ ∈ {1, . . . , n − 1} such that B is
similar to A(β, k̃) (as in (3)). In particular, either rank B ≤ [n2 ]
(when B ∈ Γ) or B ∈ GLn(F). In this last case we can assume
that k̃ ∈ {[n+1

2 ], . . . , n − 1}.
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I Lemma 3: Let λ ∈ F∗, B ∈ S and k ∈ {1, · · · , n − 1}, where
k 6= n

2 . Let us consider A = A(λ, k) as in (3). Let us suppose
that

(A + B) ∈ Γ. (4)

Then B ∈ S \ Γ.
I Lemma 4: Let A and B be two elements of S\Γ. If tr (A)=tr (B) =

0 and (A + B) ∈ Γ then (B − A) ∈ S .
I Proposition 1: Let X ,Y ∈ Γ. Let us suppose that (X + Y )

is similar to A(λ, k) (as in (3)), for given λ ∈ F∗ and k ∈
{1, . . . , n − 1}. Then, n is even and k = n

2 . Moreover, (X −
Y ) ∈ S .

I Corollary: Let X ,Y ∈ Γ. Let us suppose that (X + Y ) ∈ S
and (X − Y ) /∈ S . Then, (X + Y ) ∈ Γ.
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I Proposition 2: Let A ∈ Mn(F) \ {0}. Then A = aI for some
nonzero scalar a if and only if

A + B ∈ S ⇐⇒ B ∈ S (5)

for all B ∈ Mn(F).

I Propostion 3: Let f : Mn(F) → Mn(F) be a linear map such
that f (S) = S . Then, the map g : Mn(F) → Mn(F); X 7−→
f (X )−

(
tr (f (X )−X )

n

)
· I satisfies the following conditions:

i) g(S) = S , that is, g strongly preserves S ;
ii) g preserves trace, that is, tr (X ) = tr (g(X )) for all X ∈
Mn(F).
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Question 1:

Can we obtain a similar result for Sj - the set of all matrices algebraic
of degree j with 2 < j ≤ m.
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Maps preserving multiplicative commutators

In 1961 I. N. Herstein, at the end of his AMS Hour talk, suggested
the following problem:
Characterize all bijective additive mappings θ : R → R ′, where
R and R ′ are two unital simple rings, satisfying the condition
θ(xyx−1y1) = θ(x)θ(y)θ(x)−1θ(y)−1 for all invertible x , y ∈ R.

From the above we may derive directly the following:

I θ preserves invertibility, that is, θ(U) ⊂ U ′.

I θ preserves multiplicative commutators.
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The condition θ(xyx−1y−1) = θ(x)θ(y)θ(x)−1θ(y)−1 yields:

I θ(1) = 1, that is, θ is unital.

I θ(x)θ(y) = θ(y)θ(x) whenever xy = yx , where x , y ∈ U.

Hereafter, let us assume that:

I θ is bijective and linear (over its center), and R = R ′.

I θ(U) = U.

In this setting, we may define the map G : R × R → R, where
G (r1, r2) = θ(θ−1(r1)θ−1(r2)) for all r1, r2 ∈ U.
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From the fact that each element x ∈ U may be written as x = θ(y)
with y ∈ U, we may infer that

[θ(y2), θ(y)] = G (x , x)x − xG (x , x) = 0 for all x ∈ U. (6)

An bilinear (biadditive) map G fulfilling the condition above pos-
sesses what is called a commuting trace on U. This is an example
of a Functional Identity (F.I.) - in this case on a subset which is not
closed under addition.
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I This approach of constructing the map G as before was first
introduced by M. Brešar when he was investigating linear bi-
jective maps L : S → S ′ that locally preserves commutativity,
that is, [L(s2), L(s)] = 0 for all s ∈ S [7, Theorem 5.5]8.

I In the case that S is a (unital) prime ring and char(S) 6= 2, it is
known [7, Theorem 4.1] that a biadditive map D : S × S → S
whose trace is commuting on S has the form

D(s, s) = λs2 + µ(s)s + ν(s, s) (7)

where λ lies in Z(S) (=the center of S), µ : S → Z(S) is
additive and ν : S × S → Z(S) is biadditive.

8M. Brešar, Commuting maps: a survey, Taiwanese J. Math. 8 (2004), no.
3, 361-397.
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The case R = Mn

I In [12]9 we showed that every biadditive map G : Mn ×Mn →
Mn whose trace is commuting on U has the standard form (7).

In the same work we have proved that if θ : Mn → Mn is a
bijective linear map satisfying the following conditions:

I θ(U) = U.

I [θ(x2), θ(x)] = 0 for all x ∈ U.
Then, θ(y) = λφ(y) for all y ∈ Mn where φ is a (anti)isomorphism.

9W. Franca. Commuting traces of multiadditive maps on invertible and
singular matrices. Linear Multilinear Algebra, 61 (2013), 1528-1535.
http://dx.doi.org/10.1080/03081087.2012.758259.
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A more general case

I Theorem (2016): Let R be a unital simple ring and let G :
R × R → R be an biadditive map. Let us assume that the
following conditions holds:
i) The prime field of Z(R) contains at least 11 elements.
ii) G is commuting on U.
iii) E = {e ∈ R | e2 = e} spans R as a vector space over its
center Z(R).
iv) G (1, r) = G (r , 1) = r for all r ∈ R.

Then, the trace of G has the form (7).
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I Corollary: Let θ : R → R be a bijective map which is linear
over Z(R). In addition, let us suppose:

θ(xyx−1y−1) = θ(x)θ(y)θ(x)−1θ(y)−1 for all x , y ∈ U.

Furthermore, let us assume that the following conditions are
fulfilled:
i) θ(U) = U.
ii) The prime field of Z(R) contains at least 11 elements.
iii) R does not satisfy S4.
iv) E spans R as a vector space over its center Z. Besides, let
us assume that there exist e1, e2 ∈ E such that (e1 + e2) ∈ E.
Then, θ is an isomorphism.
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Question2:

Can we obtain a similar result under the assumption that R is a
(semi)simple Banach algebra?
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THANK YOU!!!!
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[6] M. Brešar, P. Šemrl. Mappings which preserve idempotents,
local automorphisms, and local derivations. Canad. J. Math.,
45(3) (1993), 483-496. https://doi.org/10.4153/CJM-1993-
025-4.
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Historical background

In 1961 Herstein posed several problems about Jordan, Lie, and
group structure of rings. In particular, he was interested in the de-
scription of Jordan homomorphisms, Lie homomorphisms and maps
preserving multiplicative commutators.

I Definition: Let R and S two rings. An additive map f : R → S
is called a Lie homomorphism if f (xy − yx) = f (x)f (y) −
f (y)f (x) for all x , y ∈ R. In the same fashion, a map is called
a Jordan homomorphism if f (xy + yx) = f (x)f (y) + f (y)f (x)
holds.

Examples of Lie maps: Homomorphisms and the negative of anti-
homomorphisms.
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I In 1951 Hua characterized Lie automorphisms of a simple Ar-
tinian ring R = Mn(D) for n ≥ 3, where D is a division ring
whose characteristic is neither 2 nor 3. He showed that such
maps are of the form φ + τ , where φ is an automorphism or
the negative of an antiautomorphism of R and τ is an additive
mapping of R into its center which send commutators to zero.

I In 1956 Herstein showed any Jordan authomorphism of a sim-
ple ring R, where its characteristic is neither 2 nor 3, is either
an authomorphism or an anti-isomorphism.
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I In 1963 Martindale characterized Lie isomorphisms θ : R → S
of simple rings under the assumption that characteristic of R
is different from 2 and 3 and that R contains three nonzero
orthogonal idempotents whose sum is the identity. He showed
that such maps are of the form φ+ τ , where φ is an isomomor-
phism or the negative of an anti-isomomorphism of R onto S
and τ is an additive mapping of R into the center of S sending
commutators to zero.
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In 1993 Brešar used the description of commuting maps to charac-
terize Lie homomorphisms of prime rings. This was the first result
on Lie maps where the basic results of functional identities have
been applied.

I Theorem : (Brešar, 1993) Let R and S be unital simple rings
such that the characteristic of R and S is not 2. Let θ : R → S
be a Lie isomorphism. If neither R nor S satisfies S4 then θ is of
the form φ+τ , where φ is an isomomorphism or a negative of an
antiisomomorphism of R into S , and τ is an additive mapping
of R into the center of S sending commutators to zero.
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The Theorem above was proved under the additional technical as-
sumption that R and S do not satisfy S4. This assumption was
removed by Blau in 2002 who used the classical structure theory of
PI rings together with some Martindale’s results. Later, in 2003,
Brešar and Šemrl found another more straightforward proof based
only on commuting maps.
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