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Main Notions I
• F is a field, A an F -algebra, L a Lie algebra, J a Jordan

algebra.
• F ⟨X ⟩ the free associative algebra freely generated by

X = {x1, x2, . . .} over F (we do not require 1 ∈ F ⟨X ⟩).
• The elements of F ⟨X ⟩ are the (non-commutative)

polynomials in the xi .
• If f (x1, . . . , xn) ∈ F{X} and f (a1, . . . ,an) = 0 for every

ai ∈ A then f is a polynomial identity for A.
• The set of all PI’s for A is a T-ideal Id(A) in F ⟨X ⟩.
• L(X ) is the free Lie algebra freely generated by X over F .
• J(X ) is the free Jordan algebra freely generated by X over

F .



Polynomial identities I
• If A is associative, the product [a,b] = ab − ba makes it a

Lie algebra A(−). Every Lie algebra is a subalgebra of
some A(−) (PBW Theorem).

• By a theorem of Witt, L(X ) is isomorphic to the Lie algebra
of F ⟨X ⟩ generated by X .

• If A is associative, and F of characteristic different from 2,
the product a ◦ b = (ab + ba)/2 makes it a Jordan algebra
A(+). The Jordan algebras A(+) and their subalgebras are
special, the remaining are exceptional.

• The Jordan algebra SJ(X ) inside F ⟨X ⟩(+) generated by X
is the free special Jordan algebra.

• Pay attention: J(X ) ∼= SJ(X ) if and only if |X | ≤ 2.
Moreover, SJ(X ) has homomorphic images that are
exceptional.



Concrete identities I
• As in the associative case one defines identities for Lie and

Jordan algebras.
• Standard polynomial sn =

∑
σ∈Sn

(−1)σxσ(1) · · · xσ(n)
(associative).
If dimA = n then A satisfies sk , k > n. (The proof is easy:
just recall how you prove a determinant of an m × m matrix
is 0 whenever its rows, or columns, are LD.)



Concrete identities II
• (Amitsur, Levitzki) Mn(F ) satisfies s2n and satisfies no

identities of degree < 2n.
This is much harder. Several proofs due to Amitsur and
Levitzki, Kostant, Swan, Razmyslov, Procesi, and Rosset.
For 2 × 2 matrices it is easy. Take a basis of M2(F ): I, A,
B, C. One writes s4 as sums of products of two
commutators easily:

2([x1, x2] ◦ [x3, x4]− [x1, x3] ◦ [x2, x4] + [x1, x4] ◦ [x2, x3])

Then one cannot substitute I in a commutator, hence 3
basic elements remain to substitute. But s4 is alternating in
4 variables hence it vanishes.
If n > 2 it requires rather delicate arguments.



Concrete identities III
• For n = 2 one knows the whole picture of the identities of

M2(F ). That is s4 and h = [[x1, x2]
2, x3] generate all of

them. In characteristic 0: Razmyslov, Drensky. If F is
infinite and of characteristic p > 3 the same holds (PK). If
p = 3, one more identity of degree 6 is required.

• A theorem of Kemer: in characteristic 0, the identities of
M2(F ) follow from s4 "only": that is asymptotically, for n
large enough, “all” identities of degree n for M2(F ) follow
from s4. And the Hall polynomial [[x1, x2]

2, x3] is needed
only to settle identities of low degree.

• For n > 2 it becomes worse: A big open problem!
Not only computational but (my guess) lack of adequate
methods.



Some reductions I
• If A is an algebra (associative, Lie, Jordan, or whatever),

and f (x1, . . . , xn) an identity of A we can linearize it and
obtain a multilinear identity for A. It is a consequence of f .
How to linearize a polynomial: recall the method of
producing a bilinear form starting from quadratic one (basic
Linear Algebra). Sometimes this is called polarization. The
reverse process: symmetrizing (restituting) is analogous.

• If F is an infinite field every identity for A is equivalent to a
(finite) collection of multihomogeneous identities.

• If F is of characteristic 0, every identity for A is equivalent
to a (finite) collection of multilinear identities.



Some reductions II
• The PBW theorem produces a basis of F ⟨X ⟩ starting from

a basis of L(X ). We fix an order on the basis of L(X ) by
the degree first and then for commutators of the same
degree, arbitrarily.

• A standard argument shows that over an infinite field, if A
is unital associative algebra, then its identities are
determined by its proper identities.

• A polynomial in F ⟨X ⟩ is proper if it is a linear combination
of products of commutators.

• This simply means that if f (x1, . . . , xm) is
multihomogeneous of degree mi in xi , , substituting xi by
xi + 1 and taking the component of degree mi − 1 one gets
0 for every i .



Some reductions III
• If f is multilinear one can interpret the above as taking the

partial derivative in xi ; that is why Specht called the proper
polynomials "constants".



Identities in concrete algebras I
Let A be an associative algebra. Clearly the following problem
arises.

Question
Find all polynomial identities for A.

But it is too general to expect a meaningful answer.

Question, slightly modified

Find generators for T (A), the T-ideal of A.

Here we mean generators as a T-ideal (recall that these are
ideals in the free algebra that are closed under
endomorphisms).



Identities in concrete algebras II
Theorem, Kemer

If A is associative and if F is of characteristic 0, then T (A) is
finitely generated.

Analogous results hold for large classes of Lie algebras
(Iltyakov), Jordan algebras (Vais and Zelmanov), alternative
algebras (Iltyakov).
In characteristic p > 0 Kemer’s theorem fails.
For Lie algebras the first examples were given by Vaughan-Lee
(in characteristic 2), and later on by Drensky (in any
characteristic p > 0).
For associative algebras, the examples were much harder. The
first ones were given by Belov, Grishin, Shchigolev, almost
simultaneously.



Identities in concrete algebras III
Question, further modified

Find the identities of least degree for A.
Analogously for Lie and for Jordan algebras.

Clearly we want to study "important" algebras A.



Associative algebras

Full matrix algebras

Amitsur and Levitzki!

• The least degree of an identity for Mn(F ) is 2n.
• Up to a scalar multiple, s2n is the only identity of degree 2n.
• There is a little known exception. If |F | = 2 and n = 2 then

there are two more identities of degree 4.
• If n > 2 and if F is of characteristic 0, then all identities of

degree 2n + 1 also follow from s2n.
• The consequences of sm were studied in detail by Benanti

and Drensky.
So for matrix algebras we have a reasonably good answer to
our problem.



Lie algebras

• There is no analogue of the AL Theorem for simple Lie
algebras. Not even for sln(F ).

• The identities of sl2(F ) are known: Razmyslov, Drensky in
characteristic 0, and Vasilovsky, when F is infinite of
characteristic p ̸= 2.

• The identities of the remaining simple Lie algebras are not
known. It is known that for the Witt algebra, the least
degree identity is∑

(−1)σ[x0, xσ(1), xσ(2), xσ(3), xσ(4)], σ ∈ S4,

of degree 5. This is the analog of the standard identity in
the Lie case.

• The same polynomial is an identity for sl2(F ). It is of least
degree for sl2(F ).



Jordan algebras

Even less is known for the identities in simple Jordan algebras.
• If V is a vector space with a symmetric bilinear form b then

B = F ⊕ V becomes a Jordan algebra with the product

(α+ u) ◦ (β + v) = (αβ + b(u, v)) + (αv + βu).

It is special. It is simple if b is nondegenerate and
dimV > 1.

• The identities of B are known (Iltyakov, Vasilovsky).
• The least degree of an identity for B equals 5.
• Thus the least degree of an identity for the 2 × 2 symmetric

matrices is also 5. (This algebra is of the type B when
dimV = 2.)



Basics on standard polynomials I
• The standard polynomial sm is not a Lie element (that is, it

does not belong to L(X )) whenever n > 2.
• It is not a proper polynomial if m is odd. But it is proper if m

is even.
• That is why we consider the polynomial

ℓm =
∑

(−1)σ[x0, xσ(1), xσ(2), . . . , xσ(m)], σ ∈ Sm,

of degree m + 1 and call it the Lie standard polynomial of
degree m.

• Clearly if dimL = m then ℓk is an identity whenever k > m,
thus ℓ4 must be an identity for sl2(F ).

• It follows from dim slm(F ) = m2 − 1 that ℓm2 is an identity
for slm(F ).

• But is it of least degree?



Concrete identities I

A negative answer

NO! ℓ9 is of degree 10.

• Drensky and Kasparian (1983) studied the identities in
M3(F ) in characteristic 0.

• They used the representation theory of the symmetric
group Sn, direct and heavy computations, and the
"equivalent" theory of polynomial representations of the
general linear groups GLm.
Recall that passing to GLm has the advantage of
considering polynomials in "fewer" variables. But one loses
the multilinearity.

• They proved that all identities of degree 8 for M3(F ) follow
from s6.



Concrete identities II
• They also described the central polynomials of low degree

for M3(F ): they proved that the least degree of a central
polynomial for this algebra equals 8.

• For sl3(F ) their results read as follows.
• There is no identity for sl3(F ) of degree 7 or less.
• The Lie algebra sl3(F ) satisfies identities of degree 8.
• But it does not satisfy the identity ℓ7.
• Hence one cannot expect a direct analogue of the AL

Theorem in the case of slm(F ).



More general setting I
A paper by I. Benediktovich and A. Zalesskii (1979, in Russian
only) studies the following.

• Let F be of characteristic 0. Define the almost standard
polynomials as the multilinear polynomials

∑
σ∈Sm

m+1∑
i=1

(−1)σαixσ(1) · · · xσ(i−1)xm+1xσ(i) · · · xσ(m)

Denote the above by am(k) whenever αk = 1, and αi = 0 if
i ̸= k .

• Denote by a+
m the sum of all am(k) where k is even, and by

a−
m the one where k is odd.



Problems and results I

Problem
Describe the almost standard identities for Mn(F ).

• The polynomials a+
m, a−

m, and am(k) for k > n and
k < m − n + 2 are consequences of sn whenever m ≥ n.
(Direct computation, easy.)

• The polynomial a4n−4(2n − 2) is not an identity for Mn(F ).
This is trickier. As the polynomials are multilinear it suffices
to evaluate them on the matrix units eij . Substitute the
variables x1 to x4n−4 as follows:
The first n − 2 of these by ei,i+1
The next n variables by ei,i
The next n − 1 variables by ei,n
The next n − 1 variables by en,i



Problems and results II
Put en,n for x4n−3.

• Then use the (obvious) interpretation in the language of
directed graphs and paths: the vertices go from 1 to n, and
the edges (arrows) are the ei,j .
The argument is not immediate though it goes along the
lines of proof to the AL theorem given by R. Swan. In fact
here it is easier (as one should expect!)



The theorem for matrices

Theorem
Let F be of characteristic 0. An almost standard polynomial f
(with m ≥ 2n) is an identity for Mn(F ) if and only if f is a linear
combination of the polynomials a−

m, a+
m, and am(k) where

k > 2n and k < m − 2n + 2.

Corollary

The Lie polynomial ℓm (of degree m + 1) is an identity for sln(F )
(or, to that effect, for Mn(F )(−)) if and only if m ≥ 4n − 4.



Remarks I
• The theorem and the corollary above give the least degree

of a standard Lie identity for sln(F ). It equals 4n − 3.
• When n = 2 this is the exact value. But recall that there is

another identity of degree 5 for sl2(F ) which does not
follow from ℓ4.

• When n = 3 the bound is not precise, it gives an identity of
degree 9. And we saw there is one of degree 8 (although
not standard Lie identity).

• What about the following conjecture:
Does the least degree of an identity for sln(F ) equal
3n − 1?

• What about the remaining simple f.d. Lie algebras?
(Assuming F is of characteristic 0 and algebraically
closed.)



Remarks II
• If L is simple but infinite dimensional the problem is wilder.
• For Jordan algebras it seems to be more difficult.
• If we take the upper triangular matrices UTn as an

associative or Lie algebra, the identities are easy to
deduce.

• But what about the identities of the upper triangular
matrices as a Jordan algebra? The least degree?

• If n is even, this least degree is 2n because [x , y ]2 is a
Jordan element.

• But if n is odd? Does this least degree equal 2n, or is it
2n + 1?

• Clearly one may ask all of the above for graded algebras,
for superalgebras.

• There are results due to many people concerning the
involutive case.
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