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Main Notions |

F is afield, A an F-algebra, L a Lie algebra, J a Jordan
algebra.

F(X) the free associative algebra freely generated by
X = {X1,Xo,...} over F (we do not require 1 € F(X)).

The elements of F(X) are the (non-commutative)
polynomials in the x;.

If f(x1,...,%n) € F{X} and f(ay,...,an) = 0 for every
a; € Athen f is a polynomial identity for A.

The set of all PI's for Ais a T-ideal Id(A) in F(X).
L(X) is the free Lie algebra freely generated by X over F.

J(X) is the free Jordan algebra freely generated by X over
F.



Polynomial identities |

If Ais associative, the product [a, b] = ab — ba makes it a
Lie algebra A(-). Every Lie algebra is a subalgebra of
some A(-) (PBW Theorem).

By a theorem of Witt, L(X) is isomorphic to the Lie algebra
of F(X) generated by X.

If Ais associative, and F of characteristic different from 2,
the product ao b = (ab + ba)/2 makes it a Jordan algebra
A, The Jordan algebras A(+) and their subalgebras are
special, the remaining are exceptional.

The Jordan algebra SJ(X) inside F(X)(*) generated by X
is the free special Jordan algebra.

Pay attention: J(X) = SJ(X) if and only if | X| < 2.
Moreover, SJ(X) has homomorphic images that are
exceptional.



Concrete identities |

® As in the associative case one defines identities for Lie and
Jordan algebras.

e Standard polynomial sp = s (=1)7X5(1) " - * Xo(n)
(associative).
If dim A = nthen A satisfies sk, k > n. (The proof is easy:
just recall how you prove a determinant of an m x m matrix
is 0 whenever its rows, or columns, are LD.)



Concrete identities Il

¢ (Amitsur, Levitzki) M, (F) satisfies so, and satisfies no
identities of degree < 2n.
This is much harder. Several proofs due to Amitsur and
Levitzki, Kostant, Swan, Razmyslov, Procesi, and Rosset.
For 2 x 2 matrices it is easy. Take a basis of Mx(F): 1, A,
B, C. One writes s4 as sums of products of two
commutators easily:

2([x1, Xo] o [X3, Xa] — [X1, X3] o [X2, Xa] + [X1, Xa] 0 [X2, X3])

Then one cannot substitute / in a commutator, hence 3
basic elements remain to substitute. But s, is alternating in
4 variables hence it vanishes.

If n > 2 it requires rather delicate arguments.



Concrete identities Il

® For n = 2 one knows the whole picture of the identities of
My (F). That is s; and h = [[xq, X2]?, x3] generate all of
them. In characteristic 0: Razmyslov, Drensky. If F is
infinite and of characteristic p > 3 the same holds (PK). If
p = 3, one more identity of degree 6 is required.

¢ A theorem of Kemer: in characteristic 0, the identities of
My (F) follow from s4 "only": that is asymptotically, for n
large enough, “all” identities of degree n for Mx(F) follow
from s4. And the Hall polynomial [[x1, X2]2, X3] is needed
only to settle identities of low degree.

e For n > 2 it becomes worse: A big open problem!
Not only computational but (my guess) lack of adequate
methods.



Some reductions |

¢ If Ais an algebra (associative, Lie, Jordan, or whatever),
and f(x1, ..., Xn) an identity of A we can linearize it and
obtain a multilinear identity for A. It is a consequence of f.
How to linearize a polynomial: recall the method of
producing a bilinear form starting from quadratic one (basic
Linear Algebra). Sometimes this is called polarization. The
reverse process: symmetrizing (restituting) is analogous.

e If Fis an infinite field every identity for A is equivalent to a
(finite) collection of multihomogeneous identities.

¢ If Fis of characteristic 0, every identity for A is equivalent
to a (finite) collection of multilinear identities.



Some reductions Il

The PBW theorem produces a basis of F(X) starting from
a basis of L(X). We fix an order on the basis of L(X) by
the degree first and then for commutators of the same
degree, arbitrarily.

A standard argument shows that over an infinite field, if A
is unital associative algebra, then its identities are
determined by its proper identities.

A polynomial in F(X) is proper if it is a linear combination
of products of commutators.

This simply means that if f(xq,...,xm) is
multihomogeneous of degree m; in x;, , substituting x; by

X; + 1 and taking the component of degree m; — 1 one gets
0 for every i.



Some reductions IlI

e If f is multilinear one can interpret the above as taking the
partial derivative in x;; that is why Specht called the proper
polynomials "constants".



Identities in concrete algebras |

Let A be an associative algebra. Clearly the following problem
arises.

Question
Find all polynomial identities for A.

But it is too general to expect a meaningful answer.

Question, slightly modified
Find generators for T(A), the T-ideal of A.
Here we mean generators as a T-ideal (recall that these are

ideals in the free algebra that are closed under
endomorphisms).



Identities in concrete algebras |l
Theorem, Kemer

If Ais associative and if F is of characteristic 0, then T(A) is
finitely generated.

Analogous results hold for large classes of Lie algebras
(ltyakov), Jordan algebras (Vais and Zelmanov), alternative
algebras (lltyakov).

In characteristic p > 0 Kemer’s theorem fails.

For Lie algebras the first examples were given by Vaughan-Lee
(in characteristic 2), and later on by Drensky (in any
characteristic p > 0).

For associative algebras, the examples were much harder. The
first ones were given by Belov, Grishin, Shchigolev, almost
simultaneously.



|dentities in concrete algebras Il
Question, further modified

Find the identities of least degree for A.
Analogously for Lie and for Jordan algebras.

Clearly we want to study "important" algebras A.



Associative algebras

Full matrix algebras

Amitsur and Levitzki!

¢ The least degree of an identity for M,(F) is 2n.
e Up to a scalar multiple, so,, is the only identity of degree 2n.

e There is a little known exception. If |F| = 2 and n = 2 then
there are two more identities of degree 4.

e |If n> 2 and if F is of characteristic 0, then all identities of
degree 2n + 1 also follow from sp,.

* The consequences of s;,; were studied in detail by Benanti
and Drensky.

So for matrix algebras we have a reasonably good answer to
our problem.



Lie algebras

There is no analogue of the AL Theorem for simple Lie
algebras. Not even for sl,(F).

The identities of sh(F) are known: Razmyslov, Drensky in
characteristic 0, and Vasilovsky, when F is infinite of
characteristic p # 2.

The identities of the remaining simple Lie algebras are not
known. It is known that for the Witt algebra, the least
degree identity is

D ()7 [X0: Xo(1)s Xo(2) Xr(3): Xoa)]: & € Sas

of degree 5. This is the analog of the standard identity in
the Lie case.

The same polynomial is an identity for skh(F). It is of least
degree for sh(F).



Jordan algebras

Even less is known for the identities in simple Jordan algebras.

¢ |f V is a vector space with a symmetric bilinear form b then
B = F & V becomes a Jordan algebra with the product

(a+u)o(B+V)=(af+b(u,v)) + (av + pu).

It is special. It is simple if b is nondegenerate and
dimV > 1.
¢ The identities of B are known (lltyakov, Vasilovsky).
¢ The least degree of an identity for B equals 5.

¢ Thus the least degree of an identity for the 2 x 2 symmetric
matrices is also 5. (This algebra is of the type B when
dimV =2)



Basics on standard polynomials |

The standard polynomial sy, is not a Lie element (that is, it
does not belong to L(X)) whenever n > 2.

It is not a proper polynomial if mis odd. But it is proper if m
is even.

That is why we consider the polynomial

bm = Z(_1 )U[XO7X0'(1)7XU(2)7 s 7X0'(m)]7 S va

of degree m+ 1 and call it the Lie standard polynomial of
degree m.

Clearly if dim L = m then /i is an identity whenever k > m,
thus ¢4 must be an identity for sh(F).

It follows from dim s/(F) = m? — 1 that £,,» is an identity
for slm(F).

But is it of least degree?



Concrete identities |

A negative answer
NO! /g is of degree 10.

¢ Drensky and Kasparian (1983) studied the identities in
Ms(F) in characteristic 0.

* They used the representation theory of the symmetric
group Sy, direct and heavy computations, and the
"equivalent" theory of polynomial representations of the
general linear groups GLp,.

Recall that passing to GL., has the advantage of
considering polynomials in "fewer" variables. But one loses
the multilinearity.

¢ They proved that all identities of degree 8 for Ms(F) follow
from sg.



Concrete identities Il

They also described the central polynomials of low degree
for M3(F): they proved that the least degree of a central
polynomial for this algebra equals 8.

For siy(F) their results read as follows.

There is no identity for skz(F) of degree 7 or less.
The Lie algebra sk3(F) satisfies identities of degree 8.
But it does not satisfy the identity /7.

Hence one cannot expect a direct analogue of the AL
Theorem in the case of siy(F).



More general setting |
A paper by |. Benediktovich and A. Zalesskii (1979, in Russian
only) studies the following.

® | et F be of characteristic 0. Define the almost standard
polynomials as the multilinear polynomials

m+1
DD (= )TiXo(1) - Xo(i1) X1 X+ Xo(m)

Denote the above by an(k) whenever o = 1, and a; = 0 if
i # k.

e Denote by aj;, the sum of all a,(k) where k is even, and by
a,, the one where k is odd.



Problems and results |

Problem
Describe the almost standard identities for M,(F).

® The polynomials a;,, ap,, and am(k) for k > nand
k < m— n+ 2 are consequences of s, whenever m > n.
(Direct computation, easy.)

¢ The polynomial a45_4(2n — 2) is not an identity for M,(F).
This is trickier. As the polynomials are multilinear it suffices
to evaluate them on the matrix units e;. Substitute the
variables xq to x4,_4 as follows:
The first n — 2 of these by €; ;. 1
The next n variables by e ;
The next n — 1 variables by e; ,
The next n — 1 variables by e ;



Problems and results |l

Put e, p for xap_3.

® Then use the (obvious) interpretation in the language of
directed graphs and paths: the vertices go from 1 to n, and
the edges (arrows) are the e ;.
The argument is not immediate though it goes along the
lines of proof to the AL theorem given by R. Swan. In fact
here it is easier (as one should expect!)



The theorem for matrices

Theorem

Let F be of characteristic 0. An almost standard polynomial f
(with m > 2n) is an identity for M,(F) if and only if f is a linear
combination of the polynomials aj,, a,, and am(k) where
k>2nand k < m—2n+2.

Corollary

The Lie polynomial ¢, (of degree m + 1) is an identity for s/,(F)
(or, to that effect, for M,(F)()) if and only if m > 4n — 4.



Remarks |

The theorem and the corollary above give the least degree
of a standard Lie identity for si,(F). It equals 4n — 3.

When n = 2 this is the exact value. But recall that there is
another identity of degree 5 for sh(F) which does not
follow from /4.

When n = 3 the bound is not precise, it gives an identity of
degree 9. And we saw there is one of degree 8 (although
not standard Lie identity).

What about the following conjecture:

Does the least degree of an identity for sl,(F) equal
3n—17?

What about the remaining simple f.d. Lie algebras?
(Assuming F is of characteristic 0 and algebraically
closed.)



Remarks Il

If L is simple but infinite dimensional the problem is wilder.
For Jordan algebras it seems to be more difficult.

If we take the upper triangular matrices UT, as an
associative or Lie algebra, the identities are easy to
deduce.

But what about the identities of the upper triangular
matrices as a Jordan algebra? The least degree?

If nis even, this least degree is 2n because [x, y]? is a
Jordan element.

But if nis odd? Does this least degree equal 2n, or is it
2n+17

Clearly one may ask all of the above for graded algebras,
for superalgebras.

There are results due to many people concerning the
involutive case.
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