Medusa - A Distributed Sound Environment

Flávio Luiz Schiavoni, Marcelo Queiroz, Fernando Iazzetta

USP - University of São Paulo - Brazil
Mobile Interactive Musical Processes
http://www.eca.usp.br/mobile/portal/

May 07, 2011
Scenario
Outline

- Scenario
- Goals
Outline

- Scenario
- Goals
- Related works
Outline

- Scenario
- Goals
- Related works
- Methodology
Outline

- Scenario
- Goals
- Related works
- Methodology
- Desirable Features
Outline

- Scenario
- Goals
- Related works
- Methodology
- Desirable Features
- System Architecture
- Results
Outline

- Scenario
- Goals
- Related works
- Methodology
- Desirable Features
- System Architecture
- Results
- Future works
This project is part of Mobile (Interactive Musical Processes) research group.
The research group involves Musicians, Electrical Engineers, Computer Scientists, Visual Artists, ...
Goals

- Speed up network music setup
- Create a network music environment
- Rich range of interaction possibilities
- Local Area Network as Case Study
Some related work address the problem of synchronous music communication between networked computers, such as

- OSC [Lazzaro and Wawrzynek2001]
- NetJack [Carôt et al.2009]
- SoundJack [Carôt et al.2006]
- JackTrip [Cáceres and Chafe2009b, Cáceres and Chafe2009a]
- eJamming [Renaud et al.2007]
- Otherside [Anagnostopoulos2009]
- LDAS [Sæbø and Svensson2006]
- ReWire [Kit2010].
Our Methodology intend to join different research areas to design a sound environment:

- Distributed Systems
Our Methodology intend to join different research areas to design a sound environment:

- Distributed Systems
- Computer Network
Our Methodology intend to join different research areas to design a sound environment:

- Distributed Systems
- Computer Network
- Musical Computing
Our Methodology intend to join different research areas to design a sound environment:

- Distributed Systems
- Computer Network
- Musical Computing
- Software engineering
Our Methodology intend to join different research areas to design a sound environment:

- Distributed Systems
- Computer Network
- Musical Computing
- Software engineering
- Network Music Performance
Methodology

- Map desirable features
Methodology

- Map desirable features
- Verify priorities and dependence
Methodology

- Map desirable features
- Verify priorities and dependence
- Architectural view of features
Methodology

- Map desirable features
- Verify priorities and dependence
- Architectural view of features
- Implementation / Prototype
Methodology

- Map desirable features
- Verify priorities and dependence
- Architectural view of features
- Implementation / Prototype
- Validation
Desirable Features...

- Transparency
Desirable Features...

- Transparency
- Heterogeneity
Desirable Features...

- Transparency
- Heterogeneity
- Graphical display of status and messages
Desirable Features...

- Transparency
- Heterogeneity
- Graphical display of status and messages
 - Latency and communication status

Flávio Luiz Schiavoni, Marcelo Queiroz, Fernando Iazzetta

Medusa - A Distributed Sound Environment
Desirable Features...

- Transparency
- Heterogeneity
- Graphical display of status and messages
 - Latency and communication status
 - Network status
Desirable Features...

- Transparency
- Heterogeneity
- Graphical display of status and messages
 - Latency and communication status
 - Network status
 - Input/Output status

Flávio Luiz Schiavoni, Marcelo Queiroz, Fernando Iazzetta
Medusa - A Distributed Sound Environment
Desirable Features...

- Transparency
- Heterogeneity
- Graphical display of status and messages
 - Latency and communication status
 - Network status
 - Input/Output status
 - IO stream amplitudes
Desirable Features...

- Transparency
- Heterogeneity
- Graphical display of status and messages
 - Latency and communication status
 - Network status
 - Input/Output status
 - IO stream amplitudes
 - CPU Meter
- Memory Meter
- Multiple IO information types
 - Audio
 - MIDI
 - Control Messages
 - User text messages
Desirable Features...

- Transparency
- Heterogeneity
- Graphical display of status and messages
 - Latency and communication status
 - Network status
 - Input/Output status
 - IO stream amplitudes
 - CPU Meter
 - Memory Meter

Flávio Luiz Schiavoni, Marcelo Queiroz, Fernando Iazzetta

Medusa - A Distributed Sound Environment
Desirable Features...

- Transparency
- Heterogeneity
- Graphical display of status and messages
 - Latency and communication status
 - Network status
 - Input/Output status
 - IO stream amplitudes
 - CPU Meter
 - Memory Meter
- Multiple IO information types
Desirable Features...

- Transparency
- Heterogeneity
- Graphical display of status and messages
 - Latency and communication status
 - Network status
 - Input/Output status
 - IO stream amplitudes
 - CPU Meter
 - Memory Meter
- Multiple IO information types
 - Audio
Desirable Features...

- Transparency
- Heterogeneity
- Graphical display of status and messages
 - Latency and communication status
 - Network status
 - Input/Output status
 - IO stream amplitudes
 - CPU Meter
 - Memory Meter
- Multiple IO information types
 - Audio
 - MIDI
Desirable Features...

- Transparency
- Heterogeneity
- Graphical display of status and messages
 - Latency and communication status
 - Network status
 - Input/Output status
 - IO stream amplitudes
 - CPU Meter
 - Memory Meter
- Multiple IO information types
 - Audio
 - MIDI
 - Control Messages
Desirable Features...

- Transparency
- Heterogeneity
- Graphical display of status and messages
 - Latency and communication status
 - Network status
 - Input/Output status
 - IO stream amplitudes
 - CPU Meter
 - Memory Meter
- Multiple IO information types
 - Audio
 - MIDI
 - Control Messages
 - User text messages
Desirable Features

- Legacy software integration [Young2001]
Desirable Features

- Legacy software integration [Young2001]
 - Audio integration

- MIDI integration

- Control integration

- Sound processing capabilities [Chafe et al.2000]

- Master Mixer [Cáceres and Chafe2009a]

- Silence Detection [Bolot and García1996]

- Data compression [Chafe et al.2000]

- Loopback [Cáceres and Chafe2009a]
Desirable Features

- Legacy software integration [Young2001]
 - Audio integration
 - MIDI integration
Desirable Features

- Legacy software integration [Young2001]
 - Audio integration
 - MIDI integration
 - Control integration
Desirable Features

- Legacy software integration [Young2001]
 - Audio integration
 - MIDI integration
 - Control integration
- Sound processing capabilities [Chafe et al.2000]
Desirable Features

- Legacy software integration [Young2001]
 - Audio integration
 - MIDI integration
 - Control integration
- Sound processing capabilities [Chafe et al.2000]
 - Master Mixer [Cáceres and Chafe2009a]
Desirable Features

- Legacy software integration [Young2001]
 - Audio integration
 - MIDI integration
 - Control integration
- Sound processing capabilities [Chafe et al.2000]
 - Master Mixer [Cáceres and Chafe2009a]
 - Silence Detection [Bolot and García1996]
Desirable Features

- **Legacy software integration** [Young2001]
 - Audio integration
 - MIDI integration
 - Control integration

- **Sound processing capabilities** [Chafe et al.2000]
 - Master Mixer [Cáceres and Chafe2009a]
 - Silence Detection [Bolot and García1996]
 - Data compression [Chafe et al.2000]
Desirable Features

- Legacy software integration [Young2001]
 - Audio integration
 - MIDI integration
 - Control integration
- Sound processing capabilities [Chafe et al.2000]
 - Master Mixer [Cáceres and Chafe2009a]
 - Silence Detection [Bolot and García1996]
 - Data compression [Chafe et al.2000]
 - Loopback [Cáceres and Chafe2009a]
C++
Development API

- C++
- Jack
- C++
- Jack
- QT
Development API

- C++
- Jack
- QT
- SCTP
Peer Connection: No Central Server (Sources and Sinks)
System Architecture

- Peer Connection: No Central Server (Sources and Sinks)
- Layered architecture in each computer (Node)
System Architecture

- Peer Connection: No Central Server (Sources and Sinks)
- Layered architecture in each computer (Node)
- Network messages to ensure environment integrity
Node Architecture

Figure: Node Architecture
Network Communication

- UDP for Broadcast Communication
- TCP for Unicast Communication
- SCTP for Streaming
Network Communication
- UDP for Broadcast Communication
- TCP for Unicast Communication
- SCTP for Streaming

Sound Resources
- Jack Connection API
- JackInput (Singleton)
- JackOutput (Collection)
Node Architecture - Resources

- **Network Communication**
 - UDP for Broadcast Communication
 - TCP for Unicast Communication
 - SCTP for Streaming

- **Sound Resources**
 - Jack Connection API
 - JackInput (Singleton)
 - JackOutput (Collection)

- **Configuration File**
Node Architecture - Control

- Main Control (Facade / Bridge)
Node Architecture - Control

- Main Control (Facade / Bridge)
- Sound Control (Sound Resources / Jack API)
Main Control (Facade / Bridge)
Sound Control (Sound Resources / Jack API)
Network Control (Network Communication)
Node Architecture - Control

- Main Control (Facade / Bridge)
- Sound Control (Sound Resources / Jack API)
- Network Control (Network Communication)
- Log Control (Log file)
Node Architecture - Control

- Main Control (Facade / Bridge)
- Sound Control (Sound Resources / Jack API)
- Network Control (Network Communication)
- Log Control (Log file)
- Message Control (Environment Messages)
Node Architecture - Control

- Main Control (Facade / Bridge)
- Sound Control (Sound Resources / Jack API)
- Network Control (Network Communication)
- Log Control (Log file)
- Message Control (Environment Messages)
- Configuration Control (Configuration File)
Local Settings = Sound Settings + Network Settings
Sound Settings = SoundPorts + SoundConnections
Environment = All Nodes + Global Node Connections
Local Settings = Sound Settings + Network Settings
Sound Settings = SoundPorts + SoundConnections
Environment = All Nodes + Global Node Connections
This model allows heterogeneous nodes and is easily extendable.
Node Architecture - GUI

Flávio Luiz Schiavoni, Marcelo Queiroz, Fernando Iazzetta Medusa - A Distributed Sound Environment
• Action Messages (Unicast)
 • add a port
 • connect a node
Environment Maintenance

- Action Messages (Unicast)
 - add a port
 - connect a node

- Information Messages (BroadCast)
 - port added
 - node connected
HI_GUYS — HI_THERE — BYE
HI_GUY — HI_THERE — BYE
START_TRANSPORT — STOP_TRANSPORT
HI_GUYS — HI_THERE — BYE
START_TRANSPORT — STOP_TRANSPORT
CONNECT_NODE — NODE_CONNECTED —
DISCONNECT_NODE — NODE_DISCONNECTED
HI_GUYS — HI_THERE — BYE
START_TRANSPORT — STOP_TRANSPORT
CONNECT_NODE — NODE_CONNECTED —
DISCONNECT_NODE — NODE_DISCONNECTED
ADD_PORT — PORT_ADDED — REMOVE_PORT —
PORT_REMOVED
HI_GUYS — HI THERE — BYE
START_TRANSPORT — STOP_TRANSPORT
CONNECT_NODE — NODE_CONNECTED —
DISCONNECT_NODE — NODE_DISCONNECTED
ADD_PORT — PORT_ADDED — REMOVE_PORT —
PORT_REMOVED
CONNECT_PORT — PORT_CONNECTED —
DISCONNECT_PORT — PORT_DISCONNECTED
HI_GUYS — HI_THERE — BYE
START_TRANSPORT — STOP_TRANSPORT
CONNECT_NODE — NODE_CONNECTED —
DISCONNECT_NODE — NODE_DISCONNECTED
ADD_PORT — PORT_ADDED — REMOVE_PORT —
PORT_REMOVED
CONNECT_PORT — PORT_CONNECTED —
DISCONNECT_PORT — PORT_DISCONNECTED
CHAT
HI_GUYS — HI_THERE — BYE
START_TRANSPORT — STOP_TRANSPORT
CONNECT_NODE — NODE_CONNECTED —
DISCONNECT_NODE — NODE_DISCONNECTED
ADD_PORT — PORT_ADDED — REMOVE_PORT —
PORT_REMOVED
CONNECT_PORT — PORT_CONNECTED —
DISCONNECT_PORT — PORT_DISCONNECTED
CHAT
LOOP_BACK
Figure: A HI_GUYYS Message
Results

- Messages may help Network Music configuration
- Messages may help Network Music configuration
- Possibilities of heterogeneous node configuration
Results

- Messages may help Network Music configuration
- Possibilities of heterogeneous node configuration
- GUI and configuration file speed up configuration
Results

- Messages may help Network Music configuration
- Possibilities of heterogeneous node configuration
- GUI and configuration file speed up configuration
- Environment view gives instantaneous feedback
Results

- Messages may help Network Music configuration
- Possibilities of heterogeneous node configuration
- GUI and configuration file speed up configuration
- Environment view gives instantaneous feedback
- Difficulties in testing different network conditions
Future work

- Implementation of full desirable features list
Future work

- Implementation of full desirable features list
- Better thread-safe implementation
Future work

- Implementation of full desirable features list
- Better thread-safe implementation
- Testing other network protocols
Future work

- Implementation of full desirable features list
- Better thread-safe implementation
- Testing other network protocols
- Integration with NetJack / JackTrip
The authors would like to thank the support of the funding agencies CNPq and FAPESP - São Paulo Research Foundation (grant 2008/08623-8).
http://sourceforge.net/projects/medusa-audionet/
fls@ime.usp.br
Questions?

Thanks!
Ilias Anagnostopoulos.
2009.
The otherside web-based collaborative multimedia system.

Jean-Chrysostome Bolot and Andrés Vega García.
1996.
Control mechanisms for packet audio in the internet.

2006.
Network music performance (NMP) in narrow band networks.
In *Proceedings of the 120th AES Convention*, Paris, France.

A. Carôt, T. Hohn, and C. Werner.
2009.

Flávio Luiz Schiavoni, Marcelo Queiroz, Fernando IazzettaMedusa - A Distributed Sound Environment
Netjack—remote music collaboration with electronic sequencers on the internet.
In *Proceedings of the Linux Audio Conference*, page 118, Parma, Italy.

Chris Chafe, Scott Wilson, Al Leistikow, Dave Chisholm, and Gary Scavone.
2000.
A simplified approach to high quality music and sound over IP.
In *Proceedings of the COST G-6 Conference on Digital Audio Effects (DAFX-00*, pages 159–164.

Juan-Pablo Cáceres and Chris Chafe.
2009a.
Jacktrip: Under the hood of an engine for network audio.

Juan-Pablo Cáceres and Chris Chafe.

Asbjørn Sæbø and U. Peter Svensson.
2006.
A low-latency full-duplex audio over IP streamer.

John P. Young.
Using the Web for live interactive music.