On envelopes and L_p -spaces

Valentin Ferenczi and Jordi Lopez-Abad

Banach Space Webinar at UNT, July 31, 2020

Supported by Fapesp 2016/25574-8 and CNPq 303731/2019-2

Envelopes

- Praïssé Banach spaces
- **③** New and old about L_p spaces

Work in progress with J. Lopez-Abad, and joint work with J. Lopez-Abad, B. Mbombo, and S. Todorcevic.

We call envelope map a map e which assigns to every subset A of a Banach space X its envelope, i.e. a closed subspace e(A) of Xsatisfying the following properties:

- $If B \subseteq A, then e(B) \subseteq e(A).$
- $e(\overline{\operatorname{span}}(A)) = e(A).$
- e(e(A)) = e(A).

Examples of envelope maps:

- $A \mapsto \overline{\operatorname{span}}(A)$
- (X Banach lattice) $A \mapsto lat(A)$
- (X reflexive strictly convex with strictly convex dual)
 A → Env_{min}(A), the smallest 1-complemented subspace of X containing A (see Calvert 76)

We shall be interested in what we call the Korovkin envelope associated to a bounded semigroup G of operators on X.

Definition

The (Korovkin) envelope $\operatorname{Env}_G(A)$ of a subset A of X is the set of $x \in X$ such that whenever a net $(T_{\alpha})_{\alpha} \in G$ converges pointwise on A to Id_A, then $(T_{\alpha}(x))_{\alpha}$ converges to x.

Korovkin and others were mostly interested in G = the semigroup of contractions, in which case the word "shadow" was used, and in the semigroup of positive contractions, when X is a lattice.

A Korovkin set A is a set such that $\operatorname{shadow}(A) = X$. The set $\{1, t, t^2\}$ is a Korovkin set for C(0, 1) (Wulbert 68, improving on Korovkin 60). The set $\{1, t\}$ is a Korovkin set for L_p (Bernau 74 for 1 , Berens-Lorentz 74 for <math>p = 1).

In 75 Calvert proved that: if X is a reflexive space with LUR norm and dual norm, then $\operatorname{shadow}(A) = \operatorname{Env}_{min}(A)$. (actually enough to assume the dual norm is strictly convex).

In particular, if A is a subset of L_p , 1 then

$$\operatorname{shadow}(A) = \operatorname{Env}_{\min}(A) \ (= \operatorname{lat}(A) \ \text{if} \ 1 \in A.)$$

(also true if p = 1).

We wish to concentrate on the case G = Isom(X) (the isometry group of X), and w.l.o.g. we replace the subset A by a closed subspace Y. So we define $\text{Env}(Y) := \text{Env}_{\text{Isom}(X)}(Y)$.

Equivalent definition

The envelope Env(Y) of a subspace Y of X is the largest $Z \subseteq X$ such that whenever a net $(T_{\alpha})_{\alpha}$ of isometries converges pointwise on Y, then $(T_{\alpha})_{\alpha}$ converges pointwise on Z.

Note that $\operatorname{shadow}(Y) \subseteq \operatorname{Env}(Y)$. Some easy examples:

- If X only admits trivial isometries (all isometries are multiple of the identity), then Env(Y) = X for all Y ≠ {0}.
- If H is a Hilbert space then Env(Y) = Y for any $Y \subseteq X$.

The set of subspaces of X which are envelopes (i.e., Y = Env(Y)) is some kind of "skeleton" of the isometric structure of X.

何 ト イヨ ト イヨ ト

Proposition

The following hold:

- (a) all envelopes in a separable reflexive space X are 1-complemented,
- (b) the Hilbert space is the only separable reflexive space for which all subspaces are envelopes,

(c) If $X = L_p, 1 \le p < +\infty$ then for all Y, $Env(Y) = Env_{min}(Y)$

(d) the L_p 's, 1 are the only reflexive r.i. spaces on [0,1] for which all 1-complemented subspaces are envelopes.

(a) uses LUR renormings (Lancien 93) and duality. One proof of (c)(d) uses Peller's description (1980) of the WOT closure of $Isom(L_p)$ through the existence of "dilations" (as well as the same topic replacing L_p by a general r.i. space on [0, 1]).

From now on X is always infinite dimensional. Let us recall Mazur rotation problem. Assume X is separable and the linear isometry group Isom(X) acts transitively on S_X . Must X be isomorphic, or even isometric, to a Hilbert space?

There are non-separable counterexamples: $(L_p)_U$, for $1 \le p < +\infty$, or \mathbb{G}_U (here \mathbb{G} denotes the Gurarij space).

Problem

Find a property (P) of the Hilbert stronger than transitivity and for which there are non-separable non-Hilbertian examples. Investigate whether the Hilbert is the only separable space with (P).

One example of such a property (P) is "ultrahomogeneity", a multidimensional form of transitivity.

A space X is ultrahomogeneous if any partial isometry between finite dimensional subspaces of X extends to a (surjective) isometry of X.

Proposition

Are ultrahomogeneous

- $\mathbb{G}_{\mathcal{U}}$, Aviles-Cabello-Castillo-González-Moreno (2013)
- (*L_p*)_U for 1 ≤ *p* < +∞, *p* ≠ 4, 6, 8, ...,
 F.-LopezAbad-Mbombo-Todorcevic (2019)

Lusky (78) had proved that those L_p are "almost" ultrahomogeneous (AUH): "for any partial isometry t between finite dimensional subspaces E and F of X and $\varepsilon > 0$, there exists an isometry T on X such that $||T|_E - t|| \le \epsilon$ ". This used Plotkin-Rudin 76. This is not quite enough to deduce the Proposition. The following assertions are equivalent and we called Fraissé an infinite dimensional space satisfying them.

- (1) $\forall \varepsilon > 0$ and $k \in \mathbb{N}$, $\exists \delta > 0$ such that for any $(1 + \delta)$ -isometric map t between subspaces E, F of X of dimension k, there exists $T \in \text{Isom}(X)$ such that $||T|_E t|| < \varepsilon$,
- (2) the subgroup $\text{Isom}(X)_{\mathcal{U}} = \{(T_n)_n, T_n \in \text{Isom}(X) \forall n\}$ of $\text{Isom}(X_{\mathcal{U}})$ acts ultrahomogeneously on $X_{\mathcal{U}}$.

This is formally stronger than AUH. The Gurarij space $\mathbb G$ is Fraïssé from Kubis-Solecki (2013) but also:

Theorem

(F. - Lopez-Abad - Mbombo- Todorcevic 2019) The spaces L_p , $p \neq 4, 6, \ldots$ are Fraïssé.

Conjecture

The Gurarij space and the L_p spaces for appropriate p are the only separable Fraïssé or even AUH spaces.

A countable structure A is Fraïssé when it is ultrahomogeneous (with respect to the class Age(A) of its finite substructures). The KPT-correspondence (Kechris-Pestov-Todorcevic 05) states that the extreme amenability of (Aut(A), ptwise) is equivalent to a Ramsey Property of embeddings between elements of Age(A) (a topological group is extremely amenable if any continuous action on a compact space admits a fixed point).

Our definition of Fraïssé Banach space was originally aimed at proving a KPT-correspondence to recover the extreme amenability of $\mathcal{U}(H)$ (Gromov-Milman 83) and $\operatorname{Isom}(L_p)$ (Giordano-Pestov 07) through Ramsey methods instead of concentration of measure. The group $\operatorname{Isom}(\mathbb{G})$ is also extremely amenable (Bartosova -Lopez-Abad - Lupini - Mbombo 17). Note that Fraïssé people usually "start" with $\operatorname{Age}(A)$ and construct A from it. In the L_p -situation this is somewhat reversed. Among properties of Fraïssé spaces we have:

- if X, Y are separable Fraïssé and are finitely representable into each other, then they are isometric (X ≡ Y)
- if Y separable is finitely representable into a Fraïssé space X, then Y isometrically embeds into it

Therefore:

- every Fraïssé space contains an isometric copy of ℓ_2 (from Dvoretsky) an unusual way of proving that ℓ_2 embeds isometrically into $L_p \dots$
- \bullet separable Fraïssé spaces either have finite cotype or are isometric to $\mathbb G$

Fraïssé/AUH spaces and envelopes

The envelope Env(Y) admits an equivalent definition in separable AUH spaces.

Proposition

Assume X is separable AUH and Y is a subspace of X. Then Env(Y) is the largest subspace Z containing Y such that

- every isometric embedding $t: Y \to X$ extends uniquely to an isometric embedding $\tilde{t}: Z \to X$
- the map $t \mapsto \tilde{t}$ is SOT-SOT continuous

Furthermore $\tilde{t}(\operatorname{Env}(Y)) = \operatorname{Env}(t(Y))$.

Corollary

If X is separable AUH, Y, Z subspaces of X then

$$Y \equiv Z \Rightarrow \operatorname{Env}(Y) \equiv \operatorname{Env}(Z).$$

Examples of envelopes in L_p

Proposition

The following subspaces Y of L_p have envelope isometric to L_p .

•
$$(1 \le p < +\infty, p \ne 4, 6, ...)$$

 $Y = \ell_2$ and, unless $p = 2, Y = \ell_2^n, n \ge 2$

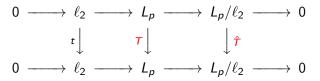
•
$$(1 \le p \le q \le 2) Y = L_q$$

• (
$$1 \leq p < q \leq 2$$
) $Y = \ell_q$

Define a subspace Y of X to be full if Env(Y) = X. As a consequence of the above:

- L_p ($p \neq 4, 6, ...$) contains a full copy of ℓ_2 (we have no "explicit" description of such)
- this induces a topological embedding of U(l₂) as a subgroup of Isom(L_p)

There is a unique exact sequence (up to isometric equivalence) associated to full embeddings of ℓ_2 into L_p . Indeed if



are exact sequences associated to full copies of ℓ_2 , and t an isometry between these two copies, then we get an extension T inducing an isometry \hat{T} making the above diagram commute.

Therefore there is a isometrically unique quotient L_p/ℓ_2 of L_p by any choice of full copy of ℓ_2 .

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Question

Identify the space L_p/ℓ_2 ?

- if p > 1 then ℓ₂ is complemented so L_p/ℓ₂ ≃ L_p: L_p/ℓ₂ is a certain renorming of L_p
- if p = 1 then ℓ_2 is uncomplemented and $L_1/\ell_2 \simeq$?
- Same question for L_p/L_q or L_p/ℓ_q , $1 \le p < q < 2$.

What about possible other Fraïssé spaces?

- If X is separable and Fraïssé then
 - X contains an isometric copy of l₂. Must it contain a full isometric copy of l₂?
 - if yes, then $\operatorname{Isom}(X)$ contains a subgroup isomorphic to $\mathcal{U}(\ell_2)$
 - if p(X) := sup{p : X has type p}, then X contains an isometric copy of L_{p(X)} (through Maurey-Pisier); similarly for q(X) if < +∞
 - (in case X is 1-complemented in its bidual) if Y is a K-complemented subspace of X then all isometric copies of Y inside X are K-complemented

Also

Proposition

If X separable Fraïssé admits a C_{∞} -bump function then $X \simeq \ell_2$.

- H. Berens, G. Lorentz, Korovkin theorems for sequences of contractions on L_p-spaces, in Linear operators and approximation, II (Oberwolfach Math. Res. Inst., Oberwolfach, 1974), 367-375. Int. Ser. Num. Math., Vol. 25, 1974.
- Image: Image
- A. Kechris, V. Pestov, S. Todorcevic, Fraissé limits, Ramsey theory, and topological dynamics of automorphism groups. Geom. Funct. Anal. 15 (2005), no. 1, 106–189.
- B. Randrianantoanina, *Norm-one projections in Banach spaces*, Taiwanese Journal of Mathematics 5, No. 1 (2001), 35-95.