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Notations

SX = unit sphere of X .

Isom(X )= group of linear surjective isometries of X , with the
Strong Operator Topology SOT.

Emb(F ,X ) = set of linear isometric embeddings of F into X , with
SOT.

Usually F is finite dimensional, so SOT can be replaced by the
distance induced by the norm on L(F ,X ).

p a real number in the separable Banach range: 1 ≤ p < +∞
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Classical isometry groups

1 If H=Hilbert, then Isom(H) is the unitary group U(H).
It acts transitively on SH , meaning there is a single and full
orbit for the action Isom(H) y SH .

2 For 1 ≤ p < +∞, p 6= 2, every isometry on Lp = Lp(0, 1) is of
the form

T (f )(.) = h(.)f (φ(.)),

where φ is a measurable transformation of [0, 1] onto itself,
and h such that |h|p = d(λ ◦ φ)/dλ, λ the Lebesgue measure
(Banach-Lamperti 1932-1958). So

3 Isom(Lp) acts almost transitively on SLp , meaning that the
action Isom(Lp) y SLp admits dense orbits.
∀x , y ∈ SLp ,∀ε > 0,∃T ∈ Isom(Lp) : ‖Tx − y‖ ≤ ε.
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Classical isometry groups

1 If H=Hilbert, then Isom(H) is the unitary group U(H).
It acts transitively on SH , meaning there is a single and full
orbit for the action Isom(H) y SH .

3 Isom(Lp) acts almost transitively on SLp , meaning that the
action Isom(Lp) y SLp admits dense orbits.

A norm is transitive (resp. almost transitive) if the associated
isometry group acts transitively (resp. almost transitively) on the
associated unit sphere.
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Mazur rotation problem

If G = Isom(X) acts transitively on SX , must X be isometric?
isomorphic? to a Hilbert space.

(a) if dim X < +∞: YES to both

(b) if dim X = +∞ and is separable: ???

(c) if dim X = +∞ and is non-separable: NO to both

Proof

(a) Average a given inner product by using the Haar measure on G
and observe that this new inner product turns all T ∈ G into
unitaries and therefore, by transitivity, must induce the original
norm.

[x , y ] =

∫
T∈Isom(X ,‖.‖)

< Tx ,Ty > dµ(T ),
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Mazur rotation problem

If G = Isom(X) acts transitively on SX , must X be isometric?
isomorphic? to a Hilbert space.

(a) if dim X < +∞: YES to both

(b) if dim X = +∞ and is separable: ???

(c) if dim X = +∞ and is non-separable: NO to both

Proof

(c) Use ultrapowers.....
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Ultrapowers

It is an easy observation that if X is almost transitive then for any
non-principal ultrafilter U , XU is transitive. Actually the subgroup
Isom(X )U of isometries T of the form

T ((xn)n∈N) = (Tn(xn))n∈N

where Tn ∈ Isom(X ), acts transitively on XU .

So we get (and using Henson 1976).

Proposition

The space (Lp(0, 1))U = Lp(∪c[0, 1]c) is transitive.

Note that Cabello-Sanchez (1998) studies Πn∈NLpn(0, 1) for
pn → +∞ and obtains a transitive M-space.
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On renormings of classical spaces

Note that for p 6= 2, Lp is not transitive, and `p not almost
transitive. Furthermore

Theorem (Dilworth - Randrianantoanina, 2014)

Let 1 < p < +∞, p 6= 2. Then
`p does not admit an equivalent almost transitive norm.

Question

Let 1 ≤ p < +∞, p 6= 2. Show that the space Lp([0, 1]) does not
admit an equivalent transitive norm.

By the way, F. and Rosendal (2017) show that a transitive norm
on a separable space must be strictly convex. So maybe the case
p = 1 is not out of hand.
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Ultrahomogeneity

Definition

Let X be a Banach space.

X is called ultrahomogeneous when for every finite
dimensional subspace E of X and every two isometric
embeddings i1, i2 : E → X there is a linear isometry
g ∈ Isom(X ) such that g ◦ i1 = i2;

X is called approximately ultrahomogeneous (AuH) when for
every finite dimensional subspace E of X , every two isometric
embedding i1, i2 : E → X and every ε > 0 there is a linear
isometry g ∈ Isom(X ) such that ‖g ◦ i1 − i2‖ < ε;
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Examples

Note that ultrahomogeneous ⇒ transitive, and (AuH)⇒ almost
transitive

Fact

Any Hilbert space is ultrahomogeneous.

Theorem

Are (AuH):

The Gurarij space (Kubis-Solecki 2013)

Lp[0, 1] for p 6= 4, 6, 8, . . . (Lusky 1978)

But none of them are ultrahomogeneous.
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Examples

Theorem

Are (AuH):

The Gurarij space (Kubis-Solecki 2013)

Lp[0, 1] for p 6= 4, 6, 8, . . . (Lusky 1978)

Note that

the Gurarij is the unique separable, universal, (AuH) space
(Lusky 1976 + Kubis-Solecki 2013).

Lusky’s result is based on the equimeasurability theorem by
Rudin / Plotkin, 1976. His proof gives (AuH).

Lp is not (AuH) for p = 4, 6, 8, . . . :
B. Randrianantoanina (1999) proved that for those p′s there
are two isometric subspaces of Lp (due to Rosenthal), with an
unconditional basis, complemented/ uncomplemented.
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Fräıssé theory in one slide

Given a (hereditary) class F of finite (or sometimes finitely
generated) structures, Fräıssé theory (Fräıssé 1954)
investigates the existence of a countable structure A, universal
for F and ultrahomogeneous (any t isomorphism between
finite substructures extends to a global automorphism of A)

Fräıssé theory shows that this is equivalent to certain
amalgamation properties of F .

Then A is unique up to isomorphism and called the Fräıssé
limit of F .
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Well, maybe just one more slide for examples...

Example

if F={finite sets}, then A = N

In this case isomorphisms of the structure are just bijections.

Example

if F={finite ordered sets}, then A = (Q, <).

Isomorphisms are order preserving bijections.

Many works exist about extension of this theory to the metric
setting (i.e. with epsilons), but they are often at the same time too
general and too restrictive for us. We focus on the Banach space
setting.
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Fräıssé spaces

Given two Banach spaces E and X , and δ ≥ 0, let Embδ(E ,X ) be
the collection of all linear δ- embeddings T : E → X , i.e. such that
‖T‖, ‖T−1‖ ≤ 1 + δ, equipped with the distance induced by the
norm.
We consider the canonical action Isom(X ) y Embδ(E ,X )

Definition (F., Lopez-Abad, Mbombo, Todorcevic)

X is weak Fräıssé if and only if for every E ⊂ X of finite
dimension, and every ε > 0 there is δ > 0 such that whenever i1, i2
are δ-embeddings of E into X , there is a linear isometry g on X
such that ‖g ◦ i1 − i2‖ ≤ ε.
X is Fräıssé if and only it is weak Fräıssé and δ depends only on ε
and the dimension of E .
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Fräıssé spaces

Definition

X is Fräıssé if and only if for every k ∈ N and every ε > 0 there is
δ = δ(ε, k) > 0 such that whenever i1, i2 are δ-embeddings of some
E of dimension k into X , there is a linear isometry g on X such
that ‖g ◦ i1 − i2‖ ≤ ε.
I.e. the action Isom(X ) y Embδ(E ,X ) is ”ε-transitive”

Note that Fräıssé ⇒ weak Fräıssé ⇒ (AuH)
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Valentin Ferenczi Universidade de São Paulo Lp spaces



Examples of Fräıssé spaces

Hilbert spaces are Fräıssé (ε = δ, exercise);

the Gurarij space is Fräıssé (actually ε = 2δ) ;

Lp is not Fräıssé for p = 4, 6, 8, . . . since not AUH.

On the other hand,

Theorem

(F.,Lopez-Abad, Mbombo, Todorcevic) The spaces Lp[0, 1] for
p 6= 4, 6, 8, . . . are Fräıssé.

How can we get convinced that this is the relevant definition?
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Lp is not Fräıssé for p = 4, 6, 8, . . . since not AUH.

On the other hand,

Theorem

(F.,Lopez-Abad, Mbombo, Todorcevic) The spaces Lp[0, 1] for
p 6= 4, 6, 8, . . . are Fräıssé.
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Properties of Fräıssé spaces

Proposition

Assume that Y are Fraissé, and that X is separable. Then are
equivalent:

(1) X is finitely representable in Y

(2) every finite dimensional subspace of X embeds isometrically
into Y

(3) X embeds isometrically in Y

In particular (by Dvoretsky) `2 is the minimal separable Fräıssé
space; and the Gurarij is the maximal one.
Let

Age(X )=the set of finite dimensional subspaces of X , and

for F ,G classes of finite dimensional spaces, F ≡ G mean that
any element of F has an isometric copy in G and vice-versa.
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space; and the Gurarij is the maximal one.
Let

Age(X )=the set of finite dimensional subspaces of X , and

for F ,G classes of finite dimensional spaces, F ≡ G mean that
any element of F has an isometric copy in G and vice-versa.

Valentin Ferenczi Universidade de São Paulo Lp spaces



Properties of Fräıssé spaces

Let

Age(X )=the set of finite dimensional subspaces of X , and

for F ,G classes of finite dimensional spaces, F ≡ G mean that
any element of F has an isometric copy in G and conversely.

Proposition

Assume X and Y are separable Fräıssé. Then are equivalent

(1) X is finitely representable in Y and vice-versa,

(2) Age(X ) ≡ Age(Y ),

(3) X and Y are isometric.

So separable Fräıssé spaces are uniquely determined, among Fräıssé
spaces, by their age modulo ≡.
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Properties of Fräıssé spaces

Let

Age(X )=the set of finite dimensional subspaces of X , and

for F ,G classes of finite dimensional spaces, F ≡ G mean that
any element of F has an isometric copy in G and conversely.

Proposition

Assume X and Y are separable Fräıssé. Then are equivalent

(1) X is finitely representable in Y and vice-versa,

(2) Age(X ) ≡ Age(Y ),

(3) X and Y are isometric.

We also obtained internal characterizations of classes of finite
dimensional spaces which are ≡ to the age of some Fräıssé
(”amalgamation properties”). For such a class F we write
X =Fräıssé lim F to mean ”X separable and Age(X ) ≡ F”
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Fräıssé is an ultraproperty

Proposition

The following are equivalent.

1) X is Fräıssé.

2) XU is Fräıssé and (Isom(X ))U is SOT-dense in Isom(XU ),

3) XU is ultrahomogeneous under the action of (Isom(X ))U

4) XU is ultrahomogeneous and (Isom(X ))U is SOT-dense in
Isom(XU ).
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Fräıssé is an ultraproperty

In particular, it follows that if X is Fräıssé, then its ultrapowers are
Fräıssé and ultrahomogeneous.

Corollary

The non-separable Lp-space (Lp(0, 1))U is ultrahomogeneous.

A similar fact was observed for the Gurarij, by Aviles, Cabello,
Castillo, Gonzalez, Moreno, 2013.

Question

Is there a non-Hilbertian separable ultrahomogeneous space? an
ultrahomogeneous renorming of Lp(0, 1)?
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Lp spaces and Fräıssé

1 Transitivities of isometry groups

2 Fräıssé spaces

3 Fräıssé properties of Lp spaces

4 KPT correspondence
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Lp spaces are Fräıssé, p 6= 4, 6, 8, . . .

Note the result by G. Schechtman 1979 (as observed by D.
Alspach 1983)

Theorem (Schechtman)

For any 1 ≤ p <∞ any ε > 0, there exists δ = δp(ε) > 0 such that

Embδ(`
n
p, Lp(µ)) ⊂ (Emb(`np, Lp(µ)))ε.

for every n ∈ N, and finite measure µ.

So the Fräıssé property in Lp is satisfied in a strong sense for
subspaces isometric to an `np.

Note however that this holds for p = 4, 6, 8, . . ., so things have to
be more complicated for other subspaces and p 6= 4, 6, 8, . . ..
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Lp spaces are Fräıssé, p 6= 4, 6, 8, . . .

We use:

Proposition

TFAE for X :

X is Fräıssé

Isom(X ) y Embδ(E ,X ) is ε-transitive for some δ depending
on ε and E
each Bk(X ) is compact in the Banach-Mazur distance, where
Bk(X ) = class of k-dim. spaces isom. embeddable in X .

It is known that Bk(Lp) is closed.
(actually Bk(X ) is closed ⇔ Bk(X ) = Bk(XU )).

So we only need to show that Isom(X ) y Embδ(E ,X ) is
ε-transitive for some δ depending on ε and E .
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Lp spaces are Fräıssé, p 6= 4, 6, 8, . . .

Proposition (Plotkhin and Rudin (1976))

For p /∈ 2N, suppose that (f1, . . . , fn) ∈ Lp(Ω0,Σ0, µ0) and
(g1, . . . , gn) ∈ Lp(Ω1,Σ1, µ1) and

‖1 +
n∑

j=1

aj fj‖µ0 = ‖1 +
n∑

j=1

ajgj‖µ1 for every a1, . . . , an.

Then (f1, . . . , fn) and (g1, . . . , gn) are equidistributed

Equidistributed here means that for any Borel B ∈ Rn,

µ0((f1, . . . , fn)−1(B)) = µ1((g1, . . . , gn)−1(B)).

This was used by Lusky (1978) to prove

Corollary

Those Lp’s are (AuH).

Valentin Ferenczi Universidade de São Paulo Lp spaces
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Lp spaces are Fräıssé, p 6= 4, 6, 8, . . .

it is possible to prove a ”continuous” version of the above, in the
sense that if

(1+δ)−1‖1+
n∑

j=1

ajgj‖µ1 ≤ ‖1+
n∑

j=1

aj fj‖µ0 ≤ (1+δ)‖1+
n∑

j=1

ajgj‖µ1

then (f1, . . . , fn) and (g1, . . . , gn) are ”ε-equimeasurable” in some
sense, in order to deduce that: those Lp’s are Fräıssé.
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Fraissé limits of non hereditary classes

It is also possible and useful to develop the theory with respect to
certain classes of finite dimensional subspaces, which are not ≡ to
Age(X ), because they are not hereditary.

For Lp(0, 1) we can use the family of `np’s and the perturbation
result of Schechtmann to give meaning to

Theorem

For any 1 ≤ p < +∞,

Lp = lim `np.
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Extreme amenability

1 Transitivities of isometry groups

2 Fräıssé spaces

3 Fräıssé properties of Lp spaces

4 Kechris-Pestov-Todorcevic correspondence
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Fräıssé and Extreme Amenability

Definition

A topological group G is called extremely amenable (EA) when
every continuous action G y K on a compact K has a fixed point;
that is, there is p ∈ K such that g · p = p for all g ∈ G .
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Examples of extremely amenable groups

1 The group Aut(Q, <) of strictly increasing bijections of Q
(with the pointwise convergence topology) (Pestov,1998);

2 The group of isometries of the Urysohn space with pointwise
convergence topology. (Pestov, 2002);

3 The unitary group U(H) endowed with SOT (i.e. the
pointwise convergence topology) (Gromov-Milman,1983);

4 The group of linear isometries of the Lebesgue spaces Lp[0, 1],
1 ≤ p 6= 2 <∞, with the SOT (Giordano-Pestov, 2006);

5 The group of linear isometries of the Gurarij space G
(Bartosova-LopezAbad-Lupini-Mbombo, 2018)
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The KPT correspondence

For finite structures, when A is the Fräıssé limit of F , then holds
the Kechris-Pestov-Todorcevic correspondence.

Theorem (Kechris-Pestov-Todorcevic)

The group (Aut(A), ptwise cv topology) is extremely amenable if
and only if F satisfies the Ramsey property.

For example Pestov’s result that Aut(Q, <) is EA is a combination
of ”(Q, <) = Fräıssé limit of finite ordered sets” and of the
classical finite Ramsey theorem on N.

Instead of stating the Ramsey property for countable strucutres, let
us see how it looks like for isometry groups on Banach spaces.
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The Approximate Ramsey Property

There is relatively well known form of the KPT correspondence,
i.e. combinatorial characterization of the extreme amenability of
an isometry group in terms of a Ramsey property of the Age, for
metric structures.
This applies without difficulty to (Isom(X ), SOT ) for a Fräıssé
Banach space X .

Definition

A collection F of finite dimensional normed spaces has the
Approximate Ramsey Property (ARP) when for every F ,G ∈ F
and r ∈ N, ε > 0 there exists H ∈ F such that every coloring c of
Emb(F ,H) into r colors admits an embedding % ∈ Emb(G ,H)
which is ε-monochromatic for c .

Here ε-monochromatic means that for some color i ,
% ◦ Emb(F ,G ) ⊂ c−1(i)ε := {τ ∈ Emb(F ,H) : d(c−1(i), τ) < ε}.
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The Approximate Ramsey Property

Theorem (KPT correspondence for Banach spaces)

For X (AuH) the following are equivalent:

Isom(X ) is extremely amenable.

Age(X ) has the approximate Ramsey property.
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The Approximate Ramsey Property for `n
p’s

The KPT correspondence extends to the setting of `np-subspaces of
Lp. This means we can recover the extreme amenability of
Isom(Lp) through internal properties: i.e. through an approximate
Ramsey property of isometric embeddings between `np’s.

Theorem (Ramsey theorem for embeddings between `np’s)

Given 1 ≤ p <∞, integers d, m, r , and ε > 0 there exists
n = np(d ,m, r , ε) such that whenever c is a coloring of
Emb(`dp , `

n
p) into r colors, there is some isometric embedding

γ : `mp → `np which is ε-monochromatic.

The case p =∞ is due to Bartosova - Lopez-Abad - Mbombo -
Todorcevic (2017). We have a direct proof for p <∞, p 6= 2.
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Comment and previous Ramsey results

Odell-Rosenthal-Schlumprecht (1993) proved that that for
every 1 ≤ p ≤ ∞, every m, r ∈ N and every ε > 0 there is
n ∈ N such that for every coloring c of S`np into r there is
Y ⊂ `np isometric to `mp so that SY is ε-monochromatic. Their
proof uses tools from Banach space theory (like
unconditionality) to find many symmetries;

Note that Odell-Rosenthal-Schlumprecht is the case d = 1!

Matoušek-Rödl (1995) proved the first result for 1 ≤ p <∞
combinatorially (using spreads).
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Consequences

We recover the result of Giordano-Pestov through KPT
correspondence, but also (through the Fräıssé Banach space
notion) some non-separable versions of it.

Theorem

The topological group (Isom(Lp), SOT ) is extremely amenable
(Giordano-Pestov).
The topological group (Isom((Lp)U ), SOT ) is also extremely
amenable.
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What are the separable Fräıssé spaces?

Assume X reflexive and Fräıssé. Then X contains a copy of the
Hilbert and furthermore every unitary on H extends uniquely and
SOT-SOT continuously to an isometry on the envelope of H, some
1-complemented subspace of X containing H (which may be
chosen to be the whole space if X = Lp).

Note that a copy of H into Lp is usually obtained as the span of a
sequence of independent Gaussians on [0, 1].
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What are the separable Fräıssé spaces?

Question

Find a separable Fräıssé (or even AUH) space different from the
Gurarij or some Lp(0, 1).

Question

Are the Hilbert and the Gurarij the only stable separable Fräıssé
spaces (Fräıssé property independent of the dimension)?

Question

Are the Lp(0, 1) spaces stable Fräıssé for p non even?

Also:

Question

Show that Lp(0, 1) does not admit an ultrahomogeneous renorming
if p 6= 2.

THANK YOU!
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