There is no largest proper operator ideal

Valentin Ferenczi, Universidade de São Paulo

Seminar in Operator Theory and Operator Algebras, University of Virginia, October 19th, 2021

Supported by Fapesp 2016/25574-8 and CNPq 303731/2019-2

Outline

- Background
- A new class of proper ideals
- More details on the proof

Operator ideals in the sense of Pietsch

All notions from the 1979 Pietsch's book "Operator ideals" An operator ideal U is a collection of subspaces U(X,Y) of L(X,Y) for all ${\it X},{\it Y}$ Banach spaces, such that

- U(X, Y) contains $F(X, Y) = \{\text{finite rank operators}\}\$
- (for all spaces Z, W and all appropriate operators T, V) $S \in U(X, Y) \Rightarrow TSV \in U(Z, W)$

In particular the class $\mathrm{U}(X):=\mathrm{U}(X,X)$ is a two-sided ideal of $\mathrm{L}(X)$ in the usual sense.

Some classical operator ideals

- F=ideal of finite rank operators
- K=ideal of compact operators
- S=ideal of strictly singular
- In=ideal of inessential operators

$$F \subsetneq F^{closure} \subsetneq K \subsetneq S \subsetneq In$$

Inessential operators were defined by Kleinecke (63) when X=Y, by Pietsch (78) in general.

Definition

 $S:X \to Y$ is inessential iff $\forall T:Y \to X$, $Id_X - TS$ is Fredholm

When there exist Fredholm operators between X and Y, then more intuitively, S is inessential iff $\forall T: X \to Y$

T Fredholm \Leftrightarrow T + S Fredholm.

Proper operator ideals

Definition (Pietsch)

A class U is proper if for any Banach space X, Id_X belongs to $U \Leftrightarrow X$ is finite dimensional

Therefore an ideal U is proper iff for any infinite-dimensional space X, U(X) is a proper ideal of L(X).

Fact

The ideals F, K, S, In are proper.

Two questions of Pietsch (79)

Question 1

Is In the largest proper operador ideal?

Question 2

Does there exist a largest proper operador ideal?

Theorem

The answer is no to both. Actually:

- In is not even a maximal proper ideal, i.e. there exists V proper ideal such that $\operatorname{In} \subsetneq V$
- moreover, there exist two proper ideals $\text{In} \subsetneq V_1, V_{-1}$ with $V_1 + V_{-1}$ not proper.

We rely heavily on previous work by Aiena-González (00) and Gowers-Maurey (97) + notes by Maurey (96), and thank M. González and A. Martínez-Abejón for useful conversations.

Aiena-González's approach: improjective operators

Definition (Tarafdar 72)

An operator $T: X \to Y$ is projective if it induces an isomorphism between infinite dimensional complemented subspaces of X and Y respectively; and improjective otherwise.

Facts

- ullet Fredholm operators between ∞ -dim spaces are projective.
- Imp is proper.
- We have the inclusion $\operatorname{In} \subseteq \operatorname{Imp}$; actually for an ideal U, U is proper $\Leftrightarrow U \subseteq \operatorname{Imp}$.

Aiena-González (00) investigated whether In = Imp or at least whether Imp is an ideal. In which case Imp would be the largest proper ideal.

Aiena-González's results: $In \subseteq Imp$

If X is an HI space then

$$L(X)$$
=Fredholm(X) $\cup S(X)$

So S(X) = In(X) = Imp(X) is the largest proper ideal of L(X). This is useless for their purpose.

 Aiena-González note that if X is an indecomposable space, then

$$L(X) = Fredholm(X) \cup Imp(X)$$

So Aiena-González need an indecomposable, non HI space.

Theorem (Gowers-Maurey 97)

There exists a Banach space $\mathbb X$ such that for any ∞ -dim subspace Y of $\mathbb X$, the following are equivalent

- Y is finite codimensional
- Y is complemented in X
- Y is isomorphic to X

The space \mathbb{X} is indecomposable and the isomorphism between \mathbb{X} and its hyperplanes is provided by the Right Shift operator R on the basis (e_n) of \mathbb{X} .

Theorem (Aiena-González, last line of p. 477)

We have $\operatorname{In}(\mathbb{X}) \subsetneq \operatorname{Imp}(\mathbb{X})$

Proof.

1 is in the essential spectrum of R, therefore $S_1 := Id_{\mathbb{X}} - R$ is not Fredholm. Therefore

- (a) it is improjective
- (b) but it is essential. Indeed $2Id_{\mathbb{X}} S_1 = Id_{\mathbb{X}} + R$ is not Fredholm, since -1 is also in the essential spectrum of R

Note: for future use and wlog, replace S_1 by some compact perturbation T_1 taking value in some Y with dim $\mathbb{X}/Y = \infty$.

Theorem (Aiena-González, last line of p. 477)

We have $\operatorname{In}(\mathbb{X}) \subsetneq \operatorname{Imp}(\mathbb{X})$

Proof.

1 is in the essential spectrum of R, therefore $S_1 := Id_{\mathbb{X}} - R$ is not Fredholm. Therefore

- (a) it is improjective
- (b) but it is essential. Indeed $2Id_{\mathbb{X}} S_1 = Id_{\mathbb{X}} + R$ is not Fredholm, since -1 is also in the essential spectrum of R

Note: for future use and wlog, replace S_1 by some compact perturbation T_1 taking value in some Y with dim $\mathbb{X}/Y = \infty$.

If Imp were an ideal, then it would be the largest proper ideal. But:

Proposition (Aiena-González, second line of p. 478)

Imp is not an ideal!

Proposition (Aiena-González)

Imp is not an ideal (actually Imp(\mathbb{X}) is not a linear subspace of $L(\mathbb{X})$).

But we can use their work by shrinking Imp to an ideal:

Proposition

There exist a proper ideal $U_1 \subseteq \text{Imp}$ such that $T_1 \in U_1$.

Since $T_1 \notin \text{In}$, let us denote $V_1 := \text{In} + U_1$:

$\mathsf{Theorem}$

The ideal In is not the largest proper ideal.

More precisely, $\operatorname{In} \subsetneq V_1$ and V_1 is a proper ideal.

But one can actually deduce more...

Indeed Aiena-González observe the same as above holds for $Id_{\mathbb{X}} - \lambda R$, $|\lambda| = 1$ (and not only for $\lambda = 1$) and associated compact perturbation T_{λ} . I.e. T_{λ} is improjective $\forall \lambda$. However $T_1 + T_{-1} = 2Id_{\mathbb{X}} + compact$ which is projective. This is how they deduce that $\mathrm{Imp}(\mathbb{X})$ is not a subspace of $\mathrm{L}(\mathbb{X})$. The case of T_{-1} is "the same as" T_1 so summing up:

Proposition

There exist two proper ideals U_1 and U_{-1} such that $T_i \in U_i$, for i = -1, 1.

Therefore $Id_{\mathbb{X}} \in \mathrm{U}_1(\mathbb{X}) + \mathrm{U}_{-1}(\mathbb{X})$ and it follows

Theorem

There exist two proper ideals whose sum is not proper. In particular there is no largest proper ideal.

A new kind of proper ideal

Summing up everything boils down to proving:

Proposition

For i = -1, 1, there exist a proper ideal U_i such that $T_i \in U_i$.

Definition

If X is an $(\infty$ -dim) Banach space, $\operatorname{Op}(X)$ is the class of operators factorizing through X.

This is an ideal as soon as, e.g., $X \simeq X^2$.

(if
$$T = AB$$
 and $T' = A'B'$ then $T + T' = \begin{pmatrix} A & A' \end{pmatrix} \begin{pmatrix} B \\ B' \end{pmatrix}$)

However this is never proper if X is infinite dimensional...

Lemma

The class $\operatorname{Op}(X) \cap \operatorname{Op}(X')$ is proper iff no ∞ -dimensional complemented subspace of X is isomorphic to a complemented subspace of X'

(proof: $Id_Z \in \operatorname{Op}(X)$ if and only if $Id_Z = AB$ where $A \in \operatorname{L}(X,Z), B \in \operatorname{L}(Z,X)$; this is equivalent to saying that Z embeds (by B) as a subspace of X which is complemented (by the projection BA). So $Id_Z \in \operatorname{Op}(X) \cap \operatorname{Op}(X')$ iff Z embeds complementably into both X and X'.)

Lemma

The class $\mathrm{Op}(X) \cap \mathrm{Op}(X')$ is proper iff no ∞ -dimensional complemented subspace of X is isomorphic to a complemented subspace of X'

(proof: $Id_Z \in \operatorname{Op}(X)$ if and only if $Id_Z = AB$ where $A \in \operatorname{L}(X,Z), B \in \operatorname{L}(Z,X)$; this is equivalent to saying that Z embeds (by B) as a subspace of X which is complemented (by the projection BA). So $Id_Z \in \operatorname{Op}(X) \cap \operatorname{Op}(X')$ iff Z embeds complementably into both X and X'.)

So the properties of Gowers-Maurey's \mathbb{X} mean that:

Proposition

The class $Op(X) \cap Op(Y_i)$ is proper.

Furthermore recall that T_i is defined on \mathbb{X} and takes values in ∞ -codimensional Y_i ; so $T_i \in \operatorname{Op}(\mathbb{X}) \cap \operatorname{Op}(Y_i)$.

The problem is....

The problem is.... that $\mathbb{X} \not\simeq \mathbb{X}^2$ so we do not know whether $\mathrm{Op}(\mathbb{X})$ and $\mathrm{Op}(Y_i)$ are ideals!

The problem is.... that $\mathbb{X} \not\simeq \mathbb{X}^2$ so we do not know whether $\operatorname{Op}(\mathbb{X})$ and $\operatorname{Op}(Y_i)$ are ideals! So we enlarge $\operatorname{Op}(X)$ to:

Definition

 $\operatorname{Op}^{<\omega}(X) := \bigcup_{n \in \mathbb{N}} \operatorname{Op}(X^n)$ is the ideal of operators factorizing through some power of X,

and we enlarge $\operatorname{Op}(\mathbb{X}) \cap \operatorname{Op}(Y)$ to $\operatorname{Op}^{<\omega}(\mathbb{X}) \cap \operatorname{Op}^{<\omega}(Y)$ hoping it is still proper. And indeed:

Proposition

If Y is infinite codimensional in $\mathbb X$ then the ideal $\operatorname{Op}^{<\omega}(\mathbb X)\cap\operatorname{Op}^{<\omega}(Y)$ is proper.

This is enough: let $U_i := \operatorname{Op}^{<\omega}(\mathbb{X}) \cap \operatorname{Op}^{<\omega}(\overline{\operatorname{Im}T_i})...$ then $T_i \in U_i$.

So our main result follows from the technical result:

Theorem

If Y is infinite codimensional in \mathbb{X} , and $m, n \in \mathbb{N}$, then no infinite dimensional complemented subspace Z of \mathbb{X}^m embeds complementably into Y^n .

(which involves extending the techniques of Gowers-Maurey to the multidimensional setting, as is presented at the end of this talk)

A question

An abstract space ideal \mathbb{A} (Pietsch) is a class of Banach spaces such that

- $F \subseteq A$
- $E_1, E_2 \in \mathbb{A} \Rightarrow E_1 \oplus E_2 \in \mathbb{A}$
- $F \in \mathbb{A}$ and E embeds complementably in $F \Rightarrow E \in \mathbb{A}$.

Examples:

- \mathbb{F} , HILB := {hilbertian spaces}, REFL, SEP,
- $\operatorname{Space}(U) := \{X : \operatorname{Id}_X \in U\}$, for any ideal U

Pietsch proves that a space ideal $\mathbb A$ is always $\operatorname{Space}(U)$ for some ideal U, and asks (Problem 2.2.8) whether there is always a largest U such that $\mathbb A=\operatorname{Space}(U)$. We just proved that the answer is no for $\mathbb A=\mathbb F$ but we can also deal with other cases...

A question

Indeed by considering ideal of operators of the form $\mathbb{A} = \operatorname{Op}^{<\omega}(\mathbb{X} \oplus \ell_2) \cap \operatorname{Op}^{<\omega}(Y \oplus \ell_2)$, and proving that $\operatorname{Space}(\mathbb{A}) = \operatorname{HILB}$, we obtain:

Proposition

There is no largest ideal U such that Space(U) = HILB.

This extends to space ideals whose elements are "different" enough from \mathbb{X} .

So the cases REFL, SEP remain open.

Details on the proof of the main technical result

Theorem

If Y is infinite codimensional in \mathbb{X} , and m, $n \in \mathbb{N}$, then no infinite dimensional complemented subspace of \mathbb{X}^m embeds into Y^n .

The proof (in the complex case) admits the following steps

- (1) Any ∞ -dimensional complemented subspace of \mathbb{X}^m is isomorphic to \mathbb{X}^p (for some $p \leq m$)
- (2) "Any" embedding of \mathbb{X} into \mathbb{X}^n is complemented...
- (3) Use (2) to show X does not embed into Y^n (*)
- (*): if it did, then $(Id_X + s)\mathbb{X} \subseteq Y$

- By Gowers-Maurey, \exists projection and algebra homomorphism λ of $L(\mathbb{X})$ onto some subalgebra \mathcal{A} of operators (generated by R and the left shift L), such that
 - $\forall T$, $\lambda(T) T$ is strictly singular
 - \exists an isomorphism Ψ of \mathcal{A} onto the Wiener algebra $A(\mathbb{T}) \subseteq C(\mathbb{T})$ of continuous functions with absolutely summable Fourier series.

- By Gowers-Maurey, \exists projection and algebra homomorphism λ of $L(\mathbb{X})$ onto some subalgebra \mathcal{A} of operators (generated by R and the left shift L), such that
 - $\forall T$, $\lambda(T) T$ is strictly singular
 - \exists an isomorphism Ψ of \mathcal{A} onto the Wiener algebra $A(\mathbb{T}) \subseteq C(\mathbb{T})$ of continuous functions with absolutely summable Fourier series.
- "Wlog" let $P \in M_m(\mathcal{A})$ be a projection on \mathbb{X}^m . So $\Psi(P)$ is an idempotent of $M_m(A(\mathbb{T})) \subseteq M_m(C(\mathbb{T}))$. Therefore for each θ , $\Psi(P)(e^{i\theta})$ is an idempotent of $M_m(\mathbb{C})$, with rank $k(\theta)$, which is constant = k by continuity.

- By Gowers-Maurey, \exists projection and algebra homomorphism λ of $L(\mathbb{X})$ onto some subalgebra \mathcal{A} of operators (generated by R and the left shift L), such that
 - $\forall T$, $\lambda(T) T$ is strictly singular
 - \exists an isomorphism Ψ of \mathcal{A} onto the Wiener algebra $A(\mathbb{T}) \subseteq C(\mathbb{T})$ of continuous functions with absolutely summable Fourier series.
- "Wlog" let $P \in M_m(\mathcal{A})$ be a projection on \mathbb{X}^m . So $\Psi(P)$ is an idempotent of $M_m(A(\mathbb{T})) \subseteq M_m(C(\mathbb{T}))$. Therefore for each θ , $\Psi(P)(e^{i\theta})$ is an idempotent of $M_m(\mathbb{C})$, with rank $k(\theta)$, which is constant = k by continuity.
- If m=1 we are done (GM), because then $\Psi(P)=0$ or 1, and P=0 or $Id_{\mathbb{X}}$. But if say m=2 and k=1, the rank 1 (2,2)-matrix $\Psi(P)(e^{i\theta})$ may and will vary with θ .

- By Gowers-Maurey, \exists projection and algebra homomorphism λ of $L(\mathbb{X})$ onto some algebra \mathcal{A} of operators (generated by R and the left shift L), such that
 - $\forall T$, $\lambda(T) T$ is strictly singular
 - \exists an isomorphism Ψ of \mathcal{A} onto the Wiener algebra $A(\mathbb{T}) \subseteq C(\mathbb{T})$ of continuous functions with absolutely summable Fourier series.
- "Wlog" let $P \in M_m(\mathcal{A})$ be a projection on \mathbb{X}^m . So $\Psi(P)$ is an idempotent of $M_m(A(\mathbb{T})) \subseteq M_m(C(\mathbb{T}))$. Therefore for each θ , $\Psi(P)e^{i\theta}$ is an idempotent of $M_m(\mathbb{C})$, with rank $k(\theta)$, which is constant = k by continuity.
- K-theory $(K_1(\mathbb{C}) = \{0\})$ tells us that this rank k is the unique similarity invariant $(a \sim b \Leftrightarrow \exists c : b = cac^{-1})$ for idempotents of $M_{\infty}(C(\mathbb{T}))$. So $\Psi(P) \sim$ the canonical "rank k" idempotent of $M_m(C(\mathbb{T}))$, i.e. $I_k = \begin{pmatrix} Id_k & 0 \\ 0 & 0 \end{pmatrix}$, acting on $C(\mathbb{T})^m$

- A multidimensional version of Wiener's Lemma tells us that this similarity occurs inside $M_m(A(\mathbb{T}))$. So we can lift this similarity back to $M_m(\mathcal{A}) \subseteq L(\mathbb{X}^m)$. (that working with $A(\mathbb{T})$ instead of $C(\mathbb{T})$ does not affect the use of K-theory took me some time to get convinced of, although this is probably obvious to K-theory specialists through the notion of "local Banach algebra")
- This means that P is similar to the natural projection P_k of \mathbb{X}^m onto \mathbb{X}^k , which implies $P\mathbb{X}^m \simeq \mathbb{X}^k$.

- P. Aiena, M. González, *Examples of improjective operators*, Math. Z. 233 (2000), 471–479.
- B. Blackadar, *K-theory for operator algebras*, MSRI Publications 5, Springer Verlag 1986.
- V. Ferenczi, *There is no largest proper operator ideal*, arXiv:2005.07672 or my webpage.
- W.T. Gowers, B. Maurey, *Banach spaces with small spaces of operators*. Math Ann. (307) (1997), 543–568.
- B. Maurey, *Operator theory and exotic Banach spaces*. 1996. Notes available on the author's webpage.