There is no largest proper operator ideal

Valentin Ferenczi, Universidade de São Paulo

IWOTA, August 16, 2021

Supported by Fapesp 2016/25574-8 and CNPq 303731/2019-2

Valentin Ferenczi, Universidade de São Paulo There is no largest proper ideal

Background

A new class of proper ideals

æ

∃ ► < ∃ ►</p>

All notions from the 1979 Pietsch's book "Operator ideals" An operator ideal U is a collection of subspaces U(X, Y) of L(X, Y) for all X, Y Banach spaces, such that

- U(X, Y) contains $F(X, Y) = \{$ finite rank operators $\}$
- (for all spaces Z, W and all appropriate operators T, V) $S \in U(X, Y) \Rightarrow TSV \in U(Z, W)$

In particular the class $\mathrm{U}(X):=\mathrm{U}(X,X)$ is a two-sided ideal of $\mathrm{L}(X)$ in the usual sense.

Some classical operator ideals

- F=ideal of finite rank operators
- K=ideal of compact operators
- S=ideal of strictly singular
- In=ideal of inessential operators

$$\mathbf{F} \subsetneq \mathbf{F}^{\mathrm{closure}} \subsetneq \mathbf{K} \subsetneq \mathbf{S} \subsetneq \mathrm{In}$$

Inessential operators were defined by Kleinecke (63) when X = Y, by Pietsch (78) in general.

Definition

 $S: X \to Y$ is inessential iff $\forall T: Y \to X$, $Id_X - TS$ is Fredholm

When there exist Fredholm operators between X and Y, then more intuitively, S is inessential iff $\forall T : X \rightarrow Y$ T Fredholm $\Leftrightarrow T + S$ Fredholm.

Definition (Pietsch)

A class U is proper if for any Banach space X, Id_X belongs to U \Leftrightarrow X is finite dimensional

Therefore an ideal U is proper iff for any infinite-dimensional space X, U(X) is a proper ideal of L(X).

Fact

The ideals F, K, S, In are proper.

Two questions of Pietsch (79)

Question 1

Is In the largest proper operador ideal?

Question 2

Does there exist a largest proper operador ideal?

Theorem

The answer is no to both. Actually:

- In is not even a maximal proper ideal, i.e. there exists V proper ideal such that In ⊊ V
- moreover, there exist two proper ideals $\text{In} \subsetneq V_1, V_{-1}$ with $V_1 + V_{-1}$ not proper.

We rely heavily on previous work by Aiena-González (00) and Gowers-Maurey (97) + notes by Maurey (96), and thank M. González and A. Martínez-Abejón for useful conversations.

Definition (Tarafdar 72)

An operator $T : X \to Y$ is projective if it induces an isomorphism between infinite dimensional complemented subspaces of X and Y respectively; and improjective otherwise.

Facts

- Fredholm operators between ∞ -dim spaces are projective.
- Imp *is proper*.
- We have the inclusion In ⊆ Imp; actually for an ideal U, U is proper ⇔ U ⊆ Imp.

Aiena-González (00) investigated whether In = Imp or at least whether Imp is an ideal. In which case Imp would be the largest proper ideal.

Aiena-González's results: In \subsetneq Imp

• If X is an HI space then

 $\mathrm{L}(\mathrm{X}){=}\mathsf{Fredholm}(\mathsf{X}) \,\cup\, \mathrm{S}(\mathrm{X})$

So S(X) = In(X) = Imp(X) is the largest proper ideal of L(X). This is useless for their purpose.

• Aiena-González note that if X is an indecomposable space, then

 $L(X) = Fredholm(X) \cup Imp(X)$

So Aiena-González need an indecomposable, non HI space.

Theorem (Gowers-Maurey 97)

There exists a Banach space X such that for any ∞ -dim subspace Y of X, the following are equivalent

- Y is finite codimensional
- Y is complemented in \mathbb{X}
- Y is isomorphic to $\mathbb X$

The space X is indecomposable and the isomorphism between X and its hyperplanes is provided by the Right Shift operator R on the basis (e_n) of X.

Theorem (Aiena-González, last line of p. 477)

We have $In(\mathbb{X}) \subsetneq Imp(\mathbb{X})$

Proof.

1 is in the essential spectrum of R, therefore $S_1:=\textit{Id}_{\mathbb{X}}-R$ is not Fredholm. Therefore

(a) it is improjective

(b) but it is essential. Indeed $2Id_{\mathbb{X}} - S_1 = Id_{\mathbb{X}} + R$ is not Fredholm, since -1 is also in the essential spectrum of R

Note: for future use and wlog, replace S_1 by some compact perturbation T_1 taking value in some Y with dim $\mathbb{X}/Y = \infty$.

Theorem (Aiena-González, last line of p. 477)

We have $In(\mathbb{X}) \subsetneq Imp(\mathbb{X})$

Proof.

1 is in the essential spectrum of R, therefore $S_1:=\textit{Id}_{\mathbb{X}}-R$ is not Fredholm. Therefore

(a) it is improjective

(b) but it is essential. Indeed $2Id_{\mathbb{X}} - S_1 = Id_{\mathbb{X}} + R$ is not Fredholm, since -1 is also in the essential spectrum of R*Note*: for future use and wlog, replace S_1 by some compact

perturbation T_1 taking value in some Y with dim $\mathbb{X}/Y = \infty$.

If ${\rm Imp}$ were an ideal, then it would be the largest proper ideal. But:

伺 ト イヨ ト イヨト

Proposition (Aiena-González, second line of p. 478)

Imp is not an ideal!

Proposition (Aiena-González)

Imp is not an ideal (actually Imp(X) is not a linear subspace of L(X)).

But we can use their work by shrinking ${\rm Imp}$ to an ideal:

Proposition

There exist a proper ideal $U_1 \subseteq Imp$ such that $T_1 \in U_1$.

Since $T_1 \notin In$, let us denote $V_1 := In + U_1$:

Theorem

The ideal \ln is not the largest proper ideal. More precisely, $\ln \subsetneq V_1$ and V_1 is a proper ideal.

But one can actually deduce more...

Indeed Aiena-González observe the same as above holds for $Id_{\mathbb{X}} - \lambda R$, $|\lambda| = 1$ (and not only for $\lambda = 1$) and associated compact perturbation T_{λ} . I.e. T_{λ} is improjective $\forall \lambda$. However $T_1 + T_{-1} = 2Id_{\mathbb{X}} + compact$ which is projective. This is how they deduce that $Imp(\mathbb{X})$ is not a subspace of $L(\mathbb{X})$. The case of T_{-1} is "the same as" T_1 so summing up:

Proposition

There exist two proper ideals U_1 and U_{-1} such that $T_i \in U_i$, for i = -1, 1.

Therefore $\mathit{Id}_{\mathbb{X}} \in \mathrm{U}_1(\mathbb{X}) + \mathrm{U}_{-1}(\mathbb{X})$ and it follows

Theorem

There exist two proper ideals whose sum is not proper. In particular there is no largest proper ideal.

A B M A B M

Summing up everything boils down to proving:

Proposition

For i = -1, 1, there exist a proper ideal U_i such that $T_i \in U_i$.

Definition

If X is an $(\infty$ -dim) Banach space, Op(X) is the class of operators factorizing through X.

This is an ideal as soon as, e.g., $X \simeq X^2$. (if T = AB and T' = A'B' then $T + T' = \begin{pmatrix} A & A' \end{pmatrix} \begin{pmatrix} B \\ B' \end{pmatrix}$)

However this is never proper if X is infinite dimensional...

Lemma

The class $Op(X) \cap Op(X')$ is proper iff no ∞ -dimensional complemented subspace of X is isomorphic to a complemented subspace of X'

(proof: $Id_Z \in Op(X)$ if and only if $Id_Z = AB$ where $A \in L(X, Z), B \in L(Z, X)$; this is equivalent to saying that Z embeds (by B) as a subspace of X which is complemented (by the projection BA). So $Id_Z \in Op(X) \cap Op(X')$ iff Z embeds complementably into both X and X'.)

• • = • • = •

Lemma

The class $Op(X) \cap Op(X')$ is proper iff no ∞ -dimensional complemented subspace of X is isomorphic to a complemented subspace of X'

(proof: $Id_Z \in Op(X)$ if and only if $Id_Z = AB$ where $A \in L(X, Z), B \in L(Z, X)$; this is equivalent to saying that Z embeds (by B) as a subspace of X which is complemented (by the projection BA). So $Id_Z \in Op(X) \cap Op(X')$ iff Z embeds complementably into both X and X'.)

So the properties of Gowers-Maurey's $\ensuremath{\mathbb{X}}$ mean that:

Proposition

The class $Op(\mathbb{X}) \cap Op(Y_i)$ is proper.

Furthermore recall that T_i is defined on \mathbb{X} and takes values in ∞ -codimensional Y_i ; so $T_i \in Op(\mathbb{X}) \cap Op(Y_i)$.

伺 と く ヨ と く ヨ と …

The problem is....

æ

The problem is.... that $\mathbb{X} \not\simeq \mathbb{X}^2$ so we do not know whether $Op(\mathbb{X})$ and $Op(Y_i)$ are ideals!

• • = • • = •

э

The problem is.... that $\mathbb{X} \not\simeq \mathbb{X}^2$ so we do not know whether $Op(\mathbb{X})$ and $Op(Y_i)$ are ideals! So we enlarge Op(X) to:

Definition

 $\operatorname{Op}^{<\omega}(X) := \bigcup_{n \in \mathbb{N}} \operatorname{Op}(X^n)$ is the ideal of operators factorizing through some power of X,

and we enlarge $\operatorname{Op}(\mathbb{X}) \cap \operatorname{Op}(Y)$ to $\operatorname{Op}^{<\omega}(\mathbb{X}) \cap \operatorname{Op}^{<\omega}(Y)$ hoping it is still proper. And indeed:

Proposition

If Y is infinite codimensional in \mathbb{X} then the ideal $\operatorname{Op}^{<\omega}(\mathbb{X}) \cap \operatorname{Op}^{<\omega}(Y)$ is proper.

This is enough: let $U_i := \operatorname{Op}^{<\omega}(\mathbb{X}) \cap \operatorname{Op}^{<\omega}(\overline{\operatorname{Im}T_i})...$ then $T_i \in U_i$.

A B M A B M

So our main result follows from the technical result:

Theorem

If Y is infinite codimensional in \mathbb{X} , and $m, n \in \mathbb{N}$, then no infinite dimensional complemented subspace Z of \mathbb{X}^m embeds complementably into Y^n .

(which involves extending the techniques of Gowers-Maurey to the multidimensional setting)

An abstract space ideal \mathbbm{A} (Pietsch) is a class of Banach spaces such that

- $\bullet \ F \subseteq \mathbb{A}$
- $E_1, E_2 \in \mathbb{A} \Rightarrow E_1 \oplus E_2 \in \mathbb{A}$

• $F \in \mathbb{A}$ and E embeds complementably in $F \Rightarrow E \in \mathbb{A}$. Examples:

- \mathbb{F} , {separable spaces}, {hilbertian spaces},
- $Space(U) := \{X : Id_X \in U\}$, for any ideal U

Pietsch proves that a space ideal $\mathbb A$ is always $\operatorname{Space}(U)$ for some ideal U, and asks (Problem 2.2.8) whether there is always a largest U such that $\mathbb A=\operatorname{Space}(U)$. We just proved that the answer is no for $\mathbb A=\mathbb F$ but seems open for other cases...

- P. Aiena, M. González, Examples of improjective operators, Math. Z. 233 (2000), 471–479.
- B. Blackadar, *K-theory for operator algebras*, MSRI Publications 5, Springer Verlag 1986.
- V. Ferenczi, *There is no largest proper operator ideal*, arXiv:2005.07672 or my webpage.
- W.T. Gowers, B. Maurey, *Banach spaces with small spaces of operators*. Math Ann. (307) (1997), 543–568.
- B. Maurey, *Operator theory and exotic Banach spaces*. 1996. Notes available on the author's webpage.