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Abstract

We define block sequences (xn) in every block subspace of a variant of the space of Gowers and
Maurey so that the map x2n−1 7→ x2n extends to an isomorphism. This implies the existence of
a subsequentially minimal HI space, which solves a question in [11].

1. Introduction

We start this article by motivating our result with a presentation of W.T. Gowers’s program
of classification of Banach spaces, and its recent developments along the lines of [11, 12] and
[10].

1.1. Gowers’ classification program

W.T. Gowers’ fundamental results in geometry of Banach spaces [15, 16] opened the way to
a loose classification of Banach spaces up to subspaces, known as Gowers’ program. The aim
of this program is to produce a list of classes of infinite dimensional Banach spaces such that:

(a) the classes are hereditary, i.e., stable under taking subspaces (or block subspaces),
(b) the classes are inevitable, i.e., every infinite dimensional Banach space contains a subspace

in one of the classes,
(c) the classes are mutually disjoint,
(d) belonging to one class gives some information about the operators that may be defined

on the space or on its subspaces.
We shall refer to such a list as a list of inevitable classes of Gowers. The reader interested in

more details about Gowers’ program may consult [16] and [11]. Let us just say that the class
of spaces c0 and `p is seen as the most regular class, and so, the objective of this program really
is the classification of those spaces which do not contain a copy of c0 or `p. We shall first give
a summary of the classification obtained in [11] and of the results of Gowers that led to it.
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The first classification result of Gowers was motivated by his construction with B. Maurey
of a hereditarily indecomposable (or HI) space GM , i.e., a space such that no subspace may be
written as the direct sum of infinite dimensional subspaces [17]. The space GM was the first
known example of a space without an unconditional sequence. Gowers then proved his first
dichotomy.

Theorem 1.1 First dichotomy [15]. Every Banach space contains either an HI subspace
or a subspace with an unconditional basis.

These were the first two examples of inevitable classes.
After GM was defined, Gowers was able to apply a criterion of P.G. Casazza to prove that

an unconditional variant of Gowers-Maurey’s space Gu is isomorphic to no proper subspace,
solving Banach’s hyperplane problem [13]. Later on Gowers and Maurey proved that GM also
solves Banach’s hyperplane problem, but as a consequence of general properties of HI spaces,
based on Fredholm theory, rather than by applying the criterion. Let us note in passing that
our main result will suggest that Casazza’s criterion is indeed not satisfied in Gowers-Maurey’s
space.

Gowers then refined the list by proving a second dichotomy as a consequence of his general
Ramsey theorem for block sequences [16]. A space is said to be quasi-minimal if any two
subspaces have further subspaces which are isomorphic.

Theorem 1.2 Second dichotomy [16]. Every Banach space contains a quasi-minimal
subspace or a subspace with a basis such that no two disjointly supported block subspaces
are isomorphic.

Finally, H. Rosenthal had defined a space to be minimal if it embeds into any of its subspaces.
A quasi minimal space which does not contain a minimal subspace is called strictly quasi
minimal, so Gowers again divided the class of quasi minimal spaces into the class of strictly
quasi minimal spaces and the class of minimal spaces.

Gowers deduced from these dichotomies a list of four inevitable classes of Banach spaces:
HI spaces, such as GM ; spaces with bases such that no disjointly supported subspaces are
isomorphic, such as Gu; strictly quasi minimal spaces with an unconditional basis, such
as Tsirelson’s space T [25]; and finally, minimal spaces, such as c0 or `p, but also T ∗,
Schlumprecht’s space S [2], or its dual S∗ [5] (see also [19]).

In [11] several other dichotomies for Banach spaces were obtained. The first one, called the
third dichotomy, refines the distinction between the minimality of Rosenthal and strict quasi-
minimality. Given a Banach space X with a basis (en), a space Y is tight in X if there is a
sequence of successive subsets I0 < I1 < I2 < . . . of N, such that the support on (en) of any
isomorphic copy of Y intersects all but finitely many of the Ij . In other words, for any infinite
subset J of N,

Y 6v
[
ei : i ∈ N \

⋃
j∈J

Ij

]
,

where v means ”embeds into”.
The space X itself is tight if all subspaces Y of X are tight in X.
As observed in [10], the tightness of a space Y in X allows the following characterization:

Y is tight in X if and only if {
u ∈ 2ω : Y v [en : n ∈ u]

}
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is a meager subset of the Cantor space 2ω. Here we identify the set to subsets of ω with the
Cantor space 2ω, equipped with its usual topology.

After observing that the tightness property is hereditary and incompatible with minimality,
the authors of [11] prove:

Theorem 1.3 Third dichotomy [11]. Every Banach space contains a minimal subspace or
a tight subspace.

Special types of tightness may be defined according to the way the In may be chosen in
function of Y . It is observed in [11] that the actual known examples of tight spaces satisfy
one of two stronger forms of tightness, called by range, and with constants. Thus e.g. Gowers
unconditional space Gu is tight by range, and Tsirelson’s space T is tight with constants, see
also [12] for other examples.

We shall be mainly interested in tightness by range, which we define in the next subsection.
We refer to the end of the paper for definitions and comments about tightness with constants.

1.2. Ranges and supports

The following distinction is essential. If X is a space with a basis (ei)i, then the definition
of the support supp x of a vector x is well-known: it is the set {i ∈ N : xi 6= 0}, where x =∑
i∈N xiei. On the other hand the range, ran x, of x is the smallest interval of integers containing

its support. So of course, having finite range and having finite support are the same, but the
range is always an interval of integers, while the support may be an arbitrary subset of N.

If Y = [yn : n ∈ N] is a block subspace of X, then the support of Y is ∪n∈Nsupp yn, and the
range of Y is ∪n∈Nran yn.

Let us now recall the criterion of Casazza, which appears in [13]. Two basic sequences
(xn)n∈N and (yn)n∈N are said to be equivalent if the map xn 7→ yn extends to an isomorphism
of [xn, n ∈ N] onto [yn, n ∈ N].

Proposition 1.4 [4]. Let X be a Banach space with a basis. Assume that for any block
sequence (xn) in X, (x2n) is not equivalent to (x2n+1). Then X is isomorphic to no proper
subspace.

The criterion of Casazza leads to studying the possible isomorphisms between disjointly
supported or disjointly ranged subspaces. As proved in [11], this turns out to have an essential
connection with the notion of tightness. In what follows we shall say that two spaces are
comparable if one embeds into the other.

If no two disjointly supported block-subspaces are isomorphic, then equivalently no two
such subspaces are comparable. This is also equivalent to saying that for every block subspace
Y , spanned by a block sequence (yn), the sequence of successive subsets I0 < I1 < . . . of N
witnessing the tightness of Y in (en) may be defined by Ik = supp yk for each k. When this
happens it is said that X is tight by support [11]. So Gowers’ second dichotomy may be
interpreted as a dichotomy between a form of tightness and a form of minimality, and Gu is
tight by support.

If now for every block subspace Y = [yn], the sequence of successive subsets I0 < I1 < . . . of
N witnessing the tightness of Y in (en) may be defined by Ik = ran yk for each k, then X is said
to be tight by range. This is equivalent to no two block subspaces with disjoint ranges being
comparable, a property which is formally weaker than tightness by support. Note that the
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criterion of Casazza applies to prove that a space which is tight by range cannot be isomorphic
to its proper subspaces.

The distinction between range and support is relevant here. While it is easy to check that
a basis which is tight by support must be unconditional, it is proved in [12] that HI spaces
may be tight by range; this is the case of an asymptotically unconditional and HI variant of
Gowers-Maurey’s space, due to Gowers [14], which we denote by G.

In [11] it was proved that there also exists a dichotomy relative to tightness by range. The
authors define a space X with a basis (xn) to be subsequentially minimal if every subspace of
X contains an isomorphic copy of a subsequence of (xn). Tsirelson’s space T is the classical
example of subsequentially minimal, non-minimal space.

Theorem 1.5 Fourth dichotomy [11]. Any Banach space contains a subspace with a basis
which is either tight by range or subsequentially minimal.

The second case in Theorem 1.5 may be improved to the following hereditary property of a
basis (xn), that is called sequential minimality: (xn) is quasi minimal and every block sequence
of [xn] has a subsequentially minimal block sequence.

1.3. The list of 6 inevitable classes

The first four dichotomies and the interdependence of the properties involved can be
visualized in the following diagram.

Unconditional basis ∗ ∗ 1st dichotomy ∗ ∗ Hereditarily indecomposable
⇑ ⇓

Tight by support ∗ ∗ 2nd dichotomy ∗ ∗ Quasi minimal
⇓ ⇑

Tight by range ∗ ∗ 4th dichotomy ∗ ∗ Sequentially minimal
⇓ ⇑

Tight ∗ ∗ 3rd dichotomy ∗ ∗ Minimal

The easy observation that HI spaces are quasi-minimal is due to Gowers (see subsection 1.5).
On the other hand it was shown in [17, Corollary 19] and [17, Theorem 21] that an HI space
cannot be isomorphic to any proper subspace. This implies that an HI space cannot contain a
minimal subspace.

Therefore by the third dichotomy, every HI space must contain a tight subspace, but it is
unknown whether every HI space with a basis must itself be tight.

Combining the four dichotomies and the relations between them, the following list of 6 classes
of Banach spaces contained in any Banach space is obtained in [11]:

Theorem 1.6 [11]. Any infinite dimensional Banach space contains a subspace of one of
the types listed in the following chart:
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Type Properties Examples

(1) HI, tight by range G,G∗

(2) HI, tight, sequentially minimal XGM

(3) tight by support Gu, G
∗
u, Xu, X∗u, Xabr

(4) unconditional basis, tight by range,
quasi minimal ?

(5) unconditional basis, tight, T , T (p)

sequentially minimal

(6) unconditional basis, minimal S, S∗, T ∗, c0, `p

For information about the examples appearing in type (1) and (3)–(6) we refer to [12]. Two
major open problems of [11] were whether spaces of type (2) or (4) existed. The only known
proofs of sequential minimality used properties which implied unconditionality, so presumably
the construction of a type (2) space would require new methods.

The main result of this paper is the existence of an example XGM of type (2), similar to
Gowers-Maurey’s space, which is reported on the chart above.

1.4. The main result

Theorem 1.7. There exists a version GM of Gowers-Maurey’s space such that

(a) GM does not contain an unconditional basic sequence.
(b) Any block subspace of GM contains a block sequence (yn)n such that (y2n) is equivalent

to (y2n+1).

The proof of Theorem will be accomplished in Section 6, Theorem 6.2. The modification
leading to GM is essentially technical. Note that by (a) and the first dichotomy, GM contains
an HI subspace. So this subspace is not isomorphic to its proper subspaces, although by
Theorem 1.7 (b), it does not satisfy Casazza’s criterion. Using also the third and fourth
dichotomy, we deduce that some subspace of GM satisfies:

Theorem 1.8. There exists a tight, HI, sequentially minimal space XGM .

It may be surprising to see that the answer to the existence of type (2) spaces is given by
a modification of the first known example of HI space. We actually believe that GM itself
satisfies Theorem 1.7 (b), and therefore fails to satisfy the criterion of Casazza.

We shall also observe that the space GM is locally minimal, which means that all finite
dimensional subspaces of GM embed into all its infinite dimensional subspaces, with uniform
constant. Problem 5.2 from [12] asked whether a sequentially and locally minimal should be
minimal or at least contain a minimal subspace. We therefore answer this by the negative.

Theorem 1.9. There exists a locally minimal, sequentially minimal, tight space.
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To conclude this subsection let us mention that our results hold both in the real and in the
complex setting.

1.5. Some comments on our construction

Let us first recall why HI spaces are quasi-minimal. Let X be an HI space with a basis. If
ε > 0, and two block-subspaces U and V of X are given, then one can use the HI property
to obtain two normalized block-sequences (un)n and (vn)n in U and V respectively, so that
‖un − vn‖ ≤ ε2−n for all n ∈ N. So there is a compact perturbation of the canonical injection
mapping [un, n ∈ N] onto [vn, n ∈ N], which are therefore isomorphic. Note that if U and V are
disjointly supported, or even disjointly ranged, then each un is disjointly supported from vn.

If now we want to obtain a canonical isomorphism between [un, n ∈ N] and [vn, n ∈ N], so
that (un) and (vn) are disjointly ranged and seminormalized block sequences, then such a
crude approach does not work. Let us explain this when (un) and (vn) are intertwined, i.e.
u1 < v1 < u2 < v2 < u3 < · · · . By using the projection on the range of un, we see that the
norm ‖un − vn‖ is bounded below by a constant depending on the constant of the basis, and
so the map un 7→ un − vn can never be compact. We may however hope to pick un and vn so
that this map is strictly singular. Actually in the case when X is, say, complex HI, we must do
so. Indeed, we know in this case [9] that there must exist λ ∈ C and a strictly singular operator
S : [uj : j∈N]→ X, such that vn − λun = S(un); so by projecting on ran vn we get that S(un)
is bounded below, and that S is strictly singular non compact from [un, n ∈ N] into X.

So our result of existence of two intertwined and equivalent block sequences in any subspace
of GM will be related to the techniques of the construction of strictly singular non-compact
operators on subspaces of Schlumprecht’s space S and of GM type spaces, as appears in [1]
and [23]. We shall replace the condition that ‖un − vn‖ ≤ ε2−n by the requirement that the
sequence un − vn generates a spreading model which is ”largely” dominated by the spreading
models of un, vn and un + vn. From some techniques of [23], this will imply that the map
taking un to un − vn extends to a bounded (actually strictly singular) map, and the same for
the map taking vn to un − vn. Therefore (un) and (vn) will be equivalent.

Note that our estimates will imply that ‖
∑k
i=1(uni − vni)‖ ≤ ε‖

∑k
i=1(uni + vni)‖ whenever

k < n1 < · · · < nk and k is large enough with respect to ε. Thus we recover the result of
saturation of GM with finite block-sequence (yi)

2k
i=1 such that ‖

∑2k
i=1(−1)iyi‖ ≤ ε‖

∑2k
i=1 yi‖,

for some k = k(ε) large enough, but of course our result is much stronger, since we can choose
(yi) to be any finite subsequence (un1

, vn1
, . . . , unk , vnk) as above. This estimate implies that

GM does not contain a subspace with an asymptotically unconditional basis, which means by
Gowers’ dichotomy that GM has a subspace which is HI (and even, by [26], satisfies the HI
property in a ”uniform” way).

1.6. Some preliminary definitions

We use the usual definitions and notation for c00, (ei), E(x), supp(x), ran(x), E < F and
x < y for E,F ⊂ N, and x, y ∈ c00. The closed linear span of a basic sequence (xn)n∈N is
denoted [xn, n ∈ N].

We say that two vectors x and y in c00 have the same distribution and write x =dist y if
there there are natural numbers l , m1 < m2 < . . .ml, and n1 < n2 < . . . nl, and a sequence
(ai : i = 1, 2 . . . l) ⊂ R, so that

x =

l∑
i=1

aiemi and y =

l∑
i=1

aieni .

We say x is the distribution of y if x and y have the same distribution and if the support of x
is an initial interval of N.
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Note that a vector x ∈ c00 is uniquely defined by its distribution and its support.

Definition 1.10. Let X be a Banach space with a basis (ei). We call a vector x in X an
`+n1 -average, if x = 1

n

∑n
i=1 xi, where (xi)

n
i=1 is a block sequence (of (ei)) in BX . For c ∈ (0, 1]

an `+n1 -average x is called `+n1 -average of constant c, if ‖x‖ ≥ c.
If moreover (xi)

n
i=1 is 1

c -isomorphic to the `n1 unit vector basis, we say that x is an `n1 -average
of constant c. In particular it follows in that case that ‖

∑n
i=1±xi‖ ≥ c.

Remark 1. For a minor technical reason, we are not assuming in Definition 1.10 that the
sequence (xi) is normalized. But of course if x is supposed to be an `+n1 - or an `n1 -average, of
a constant c close to 1, then the norm of most of the xi has to be close to 1 too.

2. The space S

We recall the space introduced in [22]. We define

f(x) = log2(x+ 1), for x ≥ 1. (2.1)

The space S is the completion of c00 under the norm ‖ · ‖S which satisfies the following
implicit equation.

‖x‖S = max
(
‖x‖∞, max

l∈N
E1<E2<...El

1

f(l)

l∑
j=1

‖Ei(x)‖S
)

for x ∈ c00. (2.2)

As observed in [22], there is a norm ‖ · ‖S on c00, which satisfies Equation (2.2), the
completion S of (c00, ‖ · ‖S) is reflexive, and (ei : i ∈ N) is a 1-subsymmetric (i.e 1-spreading
and 1-unconditional) basis of S.

For l = 2, 3 . . . and x ∈ S we define

‖x‖l =
1

f(l)
max

E1<E2<...El

l∑
j=1

‖Ei(x)‖S .

Then ‖ · ‖l is an equivalent norm on S and for x ∈ S,

1

f(l)
‖x‖ ≤ ‖x‖l ≤ ‖x‖ and (2.3)

‖x‖ = max
(
‖x‖∞, sup

l∈N
‖x||l

)
. (2.4)

2.1. Upper bounds of ‖ · ‖S
We will need to show some upper estimates for ‖ · ‖S and for basic sequences which have

spreading models equivalent to the unit basis in S.

Definition 2.1. For a bounded sequence (ξi) in R we denote the decreasing rearrangement
of (|ξ|i|) by (ξ#

i ).
Assume that g : [1,∞)→ [1,∞) is an increasing function with g(1) = 1. We define the

following two norms on c00. For x = (xi) ∈ c00 we define

‖x‖g = max
n1<n2<...nl,l∈N

1

g(l)

l∑
i=1

|xni | and |||x|||g =

∞∑
i=1

1

g(i)
x#
i .
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It is clear that ‖ · ‖g ≤ ||| · |||g. The following Lemma describes a situation in which we can
bound ||| · |||gp , 0 < p < q by a multiple of ‖ · ‖gq .

Lemma 2.2. For 0 < p < q there is a constant C(p, q) so that

|||x|||fq ≤ C(p, q)‖x‖fp , for all x∈c00.

Here f : [0,∞)→ [0,∞) is defined as in (2.1) by f(x) = log2(x+ 1), for x ≥ 1.

Proof. We first observe that

C(p, q) =

∞∑
n=1

fp(n)− fp(n− 1)

fq(n)
<∞.

Indeed, by the Mean Value Theorem, there is for every n∈N an ηn∈(n, n+1), so that

fp(n)− fp(n− 1) =
(

log2(e)
)p ∂ lnp(x)

∂x

∣∣∣
x=ηn

=
(

log2(e)
)p
p

lnp−1(ηn)

ηn
,

and thus(
log2(e)

)q−p ∞∑
n=2

fp(n)− fp(n− 1)

fq(n)
=
∞∑
n=2

1

ηn

1

ln1−p(ηn) lnq(n+ 1)
<
∞∑
n=2

1

n

1

ln1+q−p(n)
,

which is finite by the integral test.
Secondly we claim that for L ∈ N

ML = max{|||x|||fq : ran(x) ⊂ [1, L], and ‖x‖fp ≤ 1},

is achieved for the vector

x(L) =

L∑
j=1

(fp(j)− fp(j − 1))ej with f(0) = 0,

which would imply that ML ≤ C(p, q). Indeed, ‖x(L)‖fp = 1, and if z = (zi)
L
i=1 ∈ RL, ‖z‖fp =

1, and

|||z|||fq =

L∑
j=1

z#
j

fq(j)
= ML,

we can assume without loss of generality that z1 ≥ z2 ≥ . . . zL ≥ 0. Note that actually zL > 0.
Otherwise let l0 = min{j : zi = 0 for all i ≥ j}, and note for l ≥ l0 that

1

fp(l)

l∑
j=1

zj =
1

fp(l)

l0−1∑
j=1

zj <
1

fp(l0 − 1)

l0∑
j=1

zj ≤ 1.

Thus we could increase the value of zl0 , and thus increase the value of |||z|||fq , without increasing
the value of ‖z‖fp , which contradicts the maximality of z.

We want to show now that z = x(L), which would imply our claim. If this were not true we
put

lo = min
{
j∈{1, 2, . . . , L} : zj 6= fp(j)− fp(j − 1)

}
.

First we note that zl0 < fp(j)− fp(j − 1), because otherwise zl0 > fp(j)− fp(j − 1) and thus
1

fp(l0)

∑l0
j=1 zj >

1
fp(l0)

∑l0
j=1 f

p(j)− fp(j − 1) = 1,

Note that l0 6= L otherwise we could increase zL to fp(L)− fp(L− 1), which would not
increase ‖z‖fp , but certainly increase |||z|||fq . If l0 < L we could increase zl0 by min(fp(l0)−
fp(l0 − 1), zl0) > 0 and decrease zl0+1 by the same amount. This would not increase the ‖ ·
‖fq -norm but it would increase the ||| · |||fp -norm of z.
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The proof of the next Lemma could be shown using [23, Theorem 1.1] and its proof.
Nevertheless, since the arguments in this case are much simpler we prefer to present a self
contained argument.

Recall that a seminormalized basic sequence (xn) generates the spreading model E with
basis (x̃n) if for any ε > 0 and every k ∈ N, there exists N ∈ N such that for any N ≤ n1 <
n2 < · · · < nk, the sequence (xni)1≤i≤k is 1 + ε-equivalent to (x̃i)1≤i≤k. From this it follows
that (x̃n) is necessarily a 1-spreading basis of E. We also recall [3] that any seminormalized
basic sequence contains a subsequence which generates a spreading model.

Lemma 2.3. Let (xn) and (yn) be two basic seminormalized weakly null sequences in a
Banach space X, having spreading models E and F with bases (x̃n) and (ỹn), respectively.
Assume that for some 0 < p < q and some 0 < c,C <∞ it follows that∥∥∥ ∞∑

i=1

anx̃n

∥∥∥
E
≥ c
∥∥∥ ∞∑
i=1

anen

∥∥∥
fp

and
∥∥∥ ∞∑
i=1

anỹn

∥∥∥
F
≤ C

∣∣∣∣∣∣∣∣∣ ∞∑
i=1

anen

∣∣∣∣∣∣∣∣∣
fq
. (2.5)

Then there is a subsequence (nk) of N so that the map xnk 7→ ynk extends to a linear bounded
operator.

Remark 2. Using the arguments in [23] one can actually show that under the assumption
of Lemma 2.3 there is a subsequence (nk) of N so that the map xnk 7→ ynk extends to a linear
bounded and strictly singular operator.

Before proving Lemma 2.3 we will need the following

Lemma 2.4. Assume 0 < p < q and define for ε > 0

∆(p,q)(ε) = sup

{∥∥∥ ∞∑
i=1

aiei

∥∥∥
fq

: |ai| ≤ ε, i = 1, 2 . . . , and
∥∥∥ ∞∑
i=1

aiei

∥∥∥
fp
≤ 1

}
. (2.6)

Then

lim
ε↘0

∆(p,q)(ε) = 0. (2.7)

Proof. Let η > 0 be arbitrary and choose nη ∈ N so that 1
fq−p(n) ≤ η, for all n ≥ nη, and

then choose

ε = η min
n≤nη

fq(n)

n
.

For any (ai) ∈ c00, with |ai| ≤ ε, for i∈N, and ‖
∑∞
i=1 aiei‖fp ≤ 1 it follows therefore that, for

some choice of n ∈ N and i1 < i2 < . . . in in N, we have∥∥∥ ∞∑
i=1

aiei

∥∥∥
fq

=
1

fq(n)

n∑
s=1

|ais | ≤

{
ε n
fq(n) ≤ η if n ≤ nη

1
fq−p(n)‖

∑∞
i=1 aiei‖fp ≤ η if n > nη,

which verifies our claim.

Proof of Lemma 2.3. We can assume that (ỹn) is not equivalent to the c0 unit vector basis.
Otherwise we may replace the norm on [yn : n ∈ N] by∣∣∣∣∣∣∣∣∣∑ aiyi

∣∣∣∣∣∣∣∣∣ =
∥∥∥∑ aiyi

∥∥∥+
∥∥∥∑ aiei

∥∥∥
fq

if (ai) ∈ c00.
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We can therefore assume that for every ε > 0 the number

l(ε) = max

{
l :

there are (ai)
l
i=1, |ai| ≥ ε, i = 1, 2 . . . l, and

n1 < n2 < . . . nl, so that
∥∥∥∑l

i=1 aiyni

∥∥∥ ≤ 1

}
exists.

Let r = (p+ q)/2. By Lemma 2.4 we can choose a sequence (εn) ⊂ (0, 1) so that

∑
n∈N

∆(p,r)(cεn/6) ≤ 1 and

∞∑
n=1

nεn ≤ 1. (2.8)

Using the Schreier unconditionality of basic sequences [20] (see also [6] for a more general
statement), the fact that (x̃n) is the spreading model of (xn), and our assumption (2.5), we
can assume, after passing to simultaneous subsequences of (xn) and (yn), if necessary, that for
all (ai) ∈ c00 and all finite F ⊂ N, with n ≤ minF and #F ≤ l(εn+1) we have∥∥∥∑

i∈F
aiei

∥∥∥
fp
≤ 1

c

∥∥∥∑
i∈F

aix̃i

∥∥∥ ≤ 2

c

∥∥∥∑
i∈F

aixi

∥∥∥ ≤ 6

c

∥∥∥ ∞∑
i=1

aixi

∥∥∥, (2.9)

and by using the fact that (ỹn) is the spreading model of (yn), our assumption (2.5), and
Lemma 2.2, we can assume that for some constant C3 and for all finite F ⊂ N, with n ≤ minF
and #F ≤ l(εn+1), and all (ai)i∈F we have∥∥∥∑

i∈F
aiyi

∥∥∥ ≤ 2
∥∥∥∑
i∈F

aiỹi

∥∥∥ ≤ 2C
∣∣∣∣∣∣∣∣∣∑
i∈F

ai

∣∣∣∣∣∣∣∣∣
fq
≤ C3

∥∥∥∑
i∈F

aiei

∥∥∥
fr
. (2.10)

By Elton’s near unconditionality [7] (see also [6, Theorem 6]) and the fact that l(ε1) is finite
we can assume, after passing to subsequences, if necessary, that there are constants C1 and C2

so that for every (ai) ∈ c00, with
∥∥∑ aixi

∥∥ ≤ 1, it follows that∥∥∥ ∞∑
j=1,|aj |>ε1

ajyj

∥∥∥ ≤ C1

∥∥∥ ∞∑
j=1,|aj |>ε1

ajxj

∥∥∥ ≤ C2

∥∥∥ ∞∑
j=1

ajxj

∥∥∥ ≤ C2. (2.11)

Now let (aj) ∈ c00 and assume that
∥∥∑n

i=1 aixi‖ = 1. Then, by (2.11),∥∥∥ ∞∑
j=1

ajyj

∥∥∥ ≤ ∥∥∥ ∑
|aj |≤ε1

ajyj

∥∥∥+
∥∥∥ ∑
|aj |>ε1

ajyj

∥∥∥ ≤ ∥∥∥ ∞∑
|aj |≤ε1

ajyj

∥∥∥+ C2

∥∥∥ ∞∑
j=1

ajxj

∥∥∥
and ∥∥∥ ∞∑

j=1,|aj |≤ε1

ajyj

∥∥∥ ≤ ∞∑
n=1

∥∥∥ ∑
εn+1<|aj |≤εn

ajyj

∥∥∥
≤
∞∑
n=1

[
nεn +

∥∥∥ ∑
n<j,εn+1<|aj |≤εn

ajyj

∥∥∥]

≤ 1 + C3

∞∑
n=1

∥∥∥ ∑
n<j,εn+1<|aj |≤εn

ajej

∥∥∥
fr

(by (2.8) and (2.10))

= 1 +
6C3

c

∞∑
n=1

∥∥∥ ∑
n<j,εn+1<|aj |≤εn

c

6
ajej

∥∥∥
fr
.
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Now it follows from (2.9) that ∥∥∥ ∑
n<j,εn+1<|aj |≤εn

c

6
ajej

∥∥∥
fp
≤ 1

and thus (2.8) and the definition of ∆p,r yield that∥∥∥ ∞∑
j=1,|aj |≤ε1

ajyj

∥∥∥ ≤ 1 +
6C3

c
.

We proved therefore that if
∥∥∑∞

i=1 aixi
∥∥ ≤ 1 then∥∥∥ ∞∑

i=1

aiyi

∥∥∥ ≤ C2 + 1 +
6C3

c
,

which finishes the proof of our claim.

We finally want to compare the norms ||| · |||f and ‖ · ‖S and first prove the following Lemma.

Lemma 2.5. For every x∗ = (ξj) ∈ BS∗ and n ∈ N, we have that

ξ#
n ≤

1

f(n)
. (2.12)

Proof. By the 1-unconditionality of both norms in S and S∗ we need to prove (2.12) only
for non negative sequences x∗ = (ξj) in c00. Let E = {j1, j2, . . . , jn} ⊂ N have n elements, so
that

ξj1 ≥ ξj2 ≥ . . . ξjn = ξ#
n ,

and put

y∗ = ξ#
n

n∑
s=1

e∗js .

Since the basis of S∗ is suppression 1-unconditional, it follows that ‖y∗‖ ≤ 1, and since

y =
f(n)

n

n∑
s=1

ejs ∈ SS ,

(see [22]) it follows that

1 ≥ 〈y∗, y〉 = f(n)ξ#
n ,

which proves our claim.

Corollary 2.6. For x ∈ c00 we have

‖x‖S ≤ |||x|||f . (2.13)

2.2. Yardstick vectors

The following type of vectors were introduced by D. Kutzarova and P.-K. Lin in [18].

Definition 2.7 Yardstick Vectors. We call a finite or infinite sequence of natural number
m1,m2,m3, . . . admissible, if for any i, for which mi exists, mi is even and is a multiple
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of the product
∏
A⊂{1,2,...i−1}

(∑
j∈Amj

)
(as usual

∏
∅ = 1). Note that any subsequence of

admissible sequences is also admissible.
By induction we define the vector y(m1,m2, . . .mk) for each k and each admissible

finite sequence (m1,m2, . . . ,mk) ⊂ N; the support of y(m1,m2, . . .mk) will be the interval
[1,
∑k
i=1mi].

If k = 1 we put for m ∈ N

y(m) =
f(m)

m

m∑
i=1

ei.

Assume that y(m1,m2, . . .mk′) has been defined for each k′ < k and each admissible sequence
(m1,m2, . . . ,mk′) ⊂ N.

From our induction hypothesis the support of y(m1,m2, . . . ,mk−1) is [1,m1 +m2 + . . .+
mk−1] and we write y(m1,m2, . . . ,mk−1) as

y(m1,m2, . . . ,mk−1) =

m1+m2+...+mk−1∑
i=1

aiei.

Now we define ỹ to be the vector, which has the same distribution as y(m1,m2, . . . , ,mk−1),
and whose support is

supp(ỹ) =

1 + (i− 1)
mk

m1 +m2 + . . .mk−1
: i = 1, 2 . . . ,

k−1∑
j=1

mj


(i.e we spread out the coordinates of y(m1,m2,mk−1), so that between any two successive non
zero coordinates there are mk

m1+m2+...mk−1
zeros).

Then we define

y(m1,m2, . . . ,mk) = ỹ +
f(mk)

mk

∑
i∈[1,m1+m2++...mk]\supp(ỹ)

ei

(i.e. we are replacing the zeros on the interval [1,m1 +m2 + . . .mk] by the value f(mk)/mk)).
So, for example, y(m1) and y(m1,m2) are the following vectors:

y(m1) =
(f(m1)

m1
,
f(m1)

m1
, . . . ,

f(m1)

m1

)
︸ ︷︷ ︸

m1 times

y(m1,m2) =
( f(m1)

m1
,
f(m2)

m2
, . . . ,

f(m2)

m2︸ ︷︷ ︸
m2/m1 times

, . . . ,
f(m1)

m1
,
f(m2)

m2
, . . . ,

f(m2)

m2︸ ︷︷ ︸
m2/m1 times︸ ︷︷ ︸

m1times

)
.

If x = (xn)n∈N is a block sequence in c00, and if (m1, . . .mk) ⊂ N is admissible, we define
yx(m1,m2, . . . ,mk) to be a linear combination of the xn’ s with the same distribution as
y(m1,m2, . . . ,mk) has on the en, i.e.

yx(m1,m2, . . . ,mk) =
∑

i∈supp(y(m1,m2,...,mk))

aixi,

where the ai are such that

y(m1,m2, . . . ,mk) =
∑

i∈supp(y(m1,m2,...,mk))

aiei.



SUBSEQUENTIAL MINIMALITY IN GOWERS AND MAUREY SPACES Page 13 of 40

It follows from the arguments in [18] that for k ∈ N and ε > 0 one can find m1 < m2 < . . .mk

in N so that ‖y(m1,m2, . . .mk)‖S ≤ 1 + ε. Since y(m1,m2, . . .mk) is the sum of disjointly

supported vectors z1, z2, . . . zk, with zi having the same distribution as f(mi)
mi

∑mi
j=1 ej , for

i = 1, 2 . . . k, (and thus ‖zj‖ = 1, by [22]), it follows that `k∞, k ∈ N are uniformly represented in
S. Something stronger is true. Using similar arguments as in [18] it is actually possible to prove
under appropriate growth conditions on (mi) that the sequence

(
y(m1,m2, . . .mk) : k∈N

)
is

uniformly bounded in S. For completeness we will present a self contained proof of this fact.
First we prove the following lemma, which will serve as the induction step for choosing the
sequence (mi).

Lemma 2.8. Assume we are given k,m ∈ N, with k < m, C ≥ 1 and some ε ∈ (0, f(2)−
1)/f(2)) satisfying the following conditions:

m is divisible by k (2.14)

f(m) ≥ C max

(
50

ε2
,
f(l0)f(l0 − 1)

f(l0)− f(l0 − 1)

)
(2.15)

where l0 = min{l ∈ N : f(l) ≥ 6}

f(m)

f(m/k)
≤ 1 +

ε

6
. (2.16)

Assume further (js)
m
s=1 ⊂ N and (xs)

m
s=1 ⊂ S have the property that

ej1 < x1 < ej2 < x2 . . . ejm−1 < xm−1 < ejm < xm, and (2.17)

‖xs‖ ≤
C

m
, for s = 1, 2 . . .m. (2.18)

Then it follows that∥∥∥ m∑
s=1

f(m)

m
ejs + xs

∥∥∥
S
≤ C(1 + ε) and (2.19)

∥∥∥ im/k∑
s=(i−1)(m/k)+1

f(m)

m
ejs + xs

∥∥∥
S
≤ C(1 + ε)

k
for i = 1, 2, 3, . . . , k. (2.20)

In particular the vectors

yi =
k

C(1 + ε)

im/k∑
s=(i−1)(m/k)+1

f(m)

m
ejs + xs, for i = 1, 2, . . . , k

are in BS and (yi) is C(1 + ε) -equivalent to the unit vector basis in `k1 .

Proof. We note that for any scalars (ai)
k
i=1, we have

∥∥ k∑
i=1

aiyi
∥∥ ≥ f(m)−1

( m∑
s=1

e∗js
)( k∑

i=1

aiyi
)

= f(m)−1
k∑
i=1

ai

( im/k∑
s=(i−1)(m/k)+1

e∗js(yi)
)
.

It follows easily, assuming (2.20) and using the 1-unconditionality of the basis, that (yi) is
C(1 + ε) -equivalent to the unit vector basis in `k1 .

To prove (2.19) and (2.20) we put

x =

m∑
s=1

f(m)

m
ejs + xs.
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We will prove by induction for each n∈{1, 2, . . .m}, that whenever 0≤s0 < s1≤m, with s1 −
s0 = n, and I ⊂ N is an interval with js0 < I < js1+1 (where we let j0 = 0 and jm+1 =∞),
then

‖I(x)‖ ≤ f(m)

m

n

f(n)
C
(

1 +
ε

3

)
+
n

m
C
ε

3
. (2.21)

From that we deduce (2.19) by letting I=N and n =m. Moreover, if we put I=
[j(i−1)(m/k)+1, ji(m/k)+1−1], for i = 1, 2 . . . k, we deduce from (2.21) and (2.16) that∥∥∥ im/k∑

s=(i−1)(m/k)+1

f(m)

m
ejs + xs

∥∥∥ = ‖I(x)‖

≤ f(m)

m

m/k

f(m/k)
C
(

1 +
ε

3

)
+
m/k

m
C
ε

3

=
1

k

f(m)

f(m/k)
C
(

1 +
ε

3

)
+

1

k
C
ε

3
≤ 1

k
C(1 + ε)

which implies (2.20).
First let n ∈ N, so that f(n) ≤ 6

ε , and let I ⊂ N be an interval with js0 < I < js1+1 for some
choice of s0, s1 ∈ {1, 2 . . . ,m}, and s1 − s0 = n, l ≥ 2. Then

‖I(x)‖l ≤
∥∥∥ s1∑
s=s0+1

f(m)

m
ejs

∥∥∥+
∥∥∥ s1∑
s=s0

xs‖

≤ f(m)

m

n

f(n)
+ C

n+ 1

m

=
f(m)

m

n

f(n)

[
1 + C

n+ 1

n

f(n)

f(m)

]
≤ f(m)

m

n

f(n)
C
[
1 +

12

εf(m)

]
≤ f(m)

m

n

f(n)
C
[
1 +

ε

3

]
(by (2.15) )

which implies our claim for n ∈ N, for which f(n) ≤ 6
ε .

Fix now n∈N, with f(n) > 6/ε, and assume that our induction hypothesis is true for all
n′ < n, that is, that (2.21) holds with n′ instead of n for all intervals I ⊂ N for which there are
js0 < I < js1+1 with 0 ≤ s0 < s1 ≤ m and s1 − s0 = n′.

Let l ∈ N, l ≥ 2, such that ‖x‖ = ‖x‖l (since n ≥ 2 it follows that ‖I(x)‖∞ < ‖I(x)‖2, and
thus l ≥ 2).

We choose numbers l1 and l2 in N ∪ {0}, with l = l1 + l2, and intervals E
(1)
1 < E

(1)
2 , . . . E

(1)
l1

and E
(2)
1 < E

(2)
2 , . . . E

(2)
l1

, so that

l1⋃
t=1

E
(1)
t ∩

l1⋃
t=1

E
(2)
t = ∅ and

l1⋃
t=1

E
(1)
t ∪

l1⋃
t=1

E
(2)
t = I,

and so that each of the E
(1)
t contains at least one of the js, s0 < s ≤ s1 and none of the E

(2)
t

intersects with {js0+1, js0+2, . . . js1}, and so that

‖I(x)‖l =
1

f(l)

(
l1∑
t=1

‖E(1)
t (x)‖+

l2∑
t=1

‖E(2)
t (x)‖

)
. (2.22)

We note that l1 ≥ 2, otherwise it would follow that l1 = 1 and for all t = 1, 2 . . . l2 either
js0 < E

(2)
t < js0+1 or js1 < E

(2)
t < js1+1, and thus, by (2.18)

‖I(x)‖ = ‖I(x)‖l ≤
2C

m
+

1

f(l)
‖E(1)

1 (x)‖ ≤ 2C

m
+

1

f(2)
‖I(x)‖,
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and thus
f(m)

m

(
1− 1

f(l)

)
≤ 2C

m
,

which contradicts (2.15) and the restrictions on ε.
We can therefore apply our induction hypothesis and deduce that there are numbers s0 =

s̃0 < s̃1 < . . . s̃l1 = s1 so that for t = 1, 2, . . . l1

‖E(1)
t (x)‖ ≤ f(m)

m

s̃t − s̃t−1

f(s̃t − s̃t−1)
C
(

1 +
ε

3

)
+
s̃t − s̃t−1

m
C
ε

3
. (2.23)

Moreover it follows that

1

f(l)

l2∑
t=1

‖E(2)
t (x)‖ ≤

∥∥∥ s1∑
s=s0

xs

∥∥∥ ≤ Cn+ 1

m
. (2.24)

Case 1. If 6 ≤ f(l), then we deduce that

‖I(x)‖l =
1

f(l)

(
l1∑
t=1

‖E(1)
t (x)‖+

l2∑
t=1

‖E(2)
t (x)‖

)

≤ Cn+ 1

m
+

1

f(l)
C

l1∑
t=1

[f(m)

m

s̃t − s̃t−1

f(s̃t − s̃t−1)

(
1 +

ε

3

)
+
s̃t − s̃t−1

m

ε

3

]
≤ Cn+ 1

m
+

1

f(l)
C

[
f(m)

m

n

f(n/l1)

(
1 +

ε

3

)
+
n

m

ε

3

]
(by the concavity of the map ξ 7→ ξ/f(ξ))

=
f(m)

m
C

n

f(l)f(n/l1)

(
1 +

ε

3

)
+ C

n

m

[
1 +

1

n
+

ε

3f(l)

]
≤ f(m)

m
C

n

f(n)

(
1 +

ε

3

)
+ C

n

m

(
1 +

ε

3

)
where the last inequality follows from the fact that f(a/b)f(b) ≥ f(a) for a, b ≥ 2 (see [22])
and (2.15). This finishes the proof of our induction step in this case.
Case 2. If f(l) < 6 we claim that l2 = 0. Indeed, otherwise l = l1 + l2 ≥ 3 (we already observed
that l1 ≥ 2) and

‖I(x)‖l−1 ≥
1

f(l − 1)

[
l1∑
t=1

‖E(1)
t ‖+

l2∑
t=2

‖E(2)
t (x)‖

]

≥ 1

f(l)

[
l1∑
t=1

‖E(1)
t ‖+

l2∑
t=2

‖E(2)
t (x)‖

]
+

(
1

f(l − 1)
− 1

f(l)

)
f(m)

m

>
1

f(l)

[
l1∑
t=1

‖E(1)
t ‖+

l2∑
t=2

‖E(2)
t (x)‖

]
+

1

f(l)
‖E(2)

1 (x)‖ (by (2.15))

= ‖I(x)‖l,

which contradicts the assumption that ‖I(x)‖ = ‖I(x)‖l. So it follows that l = l1 and from
(2.23) and the concavity of the map ξ 7→ f(ξ)/ξ, ξ ≥ 1 it follows therefore that

‖I(x)‖l ≤
1

f(l1)

l1∑
t=1

[f(m)

m

s̃t − s̃t−1

f(s̃t − s̃t−1)
C
(

1 +
ε

3

)
+
s̃t − s̃t−1

m
C
ε

3

]
≤ f(m)

m

n

f(l)f(n/l)
C
(

1 +
ε

3

)
+
n

m
C
ε

3
≤ f(m)

m

n

f(n)
C
(

1 +
ε

3

)
+
n

m
C
ε

3
,
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which finishes the proof of the induction step and the proof of our lemma.

Lemma 2.9. Assume that (εi) ⊂ (0, (f(2)− 1)/f(2)) is summable, and put Ci =
∏
j≥i(1 +

εj), for i ∈ N ∩ {0}.
Assume that the sequence (mi : i ∈ N ∪ {0}) ⊂ N is an admissible sequence and satisfies the

following growth conditions. For all i ∈ N we assume that

f(mi) ≥ Ci max

(
50

ε2
i

,
f(l0)f(l0 − 1)

f(l0)− f(l0 − 1)

)
, (2.25)

where l0 = min{l ∈ N : f(l) ≥ 6}, and

f(mi)

f(mi/mi−1)
≤ 1 +

εi
6
. (2.26)

Then it follows for all i ≤ j in N that

‖y(mi,mi+1, . . .mj)‖ ≤ Ci, and (2.27)

1

Ci
y(mi,mi+1, . . .mj) is an `

mi−1

1 -average of constant 1/Ci. (2.28)

Remark 3. For the sequence (mi) as chosen in Lemma 2.9 we deduce therefore that, if
k∈N and ε>0 and if i0∈N is chosen so that k≤mi0 and

∏∞
i=i0

(1 + εi)≤1 + ε, then for all
sequences i0 < i1 < i1 < · · · < il, l ∈ N, it follows that

‖y(mi1 ,mi2 , . . . ,mil)‖S ≤ 1 + ε and (2.29)

1

1 + ε
y(mi1 ,mi2 , . . . ,mil) is an `

mi0
1 -average of constant

1

1 + ε
. (2.30)

Proof of Lemma 2.9. Let the sequence (mj : j∈N ∪ {0}) be chosen as required. Let j∈N.
By induction on i = 0, 1, 2 . . . , j − 1 we will show that

‖y(mj−i,mj−i+1, . . . ,mj)‖ ≤ Cj−i, and (2.31)

1

Cj−i
y(mj−i,mj−i+1, . . .mj) is an `mj−i−1-average of constant 1/Cj−i. (2.32)

More precisely, we can write y = y(mj−i,m2, . . .mj) as

y =
Cj−i
mj−i−1

mj−i−1∑
s=1

ys where y1 < y2 < . . . ymj−i−1
are in BS ,

equally distributed and Cj−i-equivalent to the basis of `
mj−i−1

1 .

For i = 0 it follows that y(mj) =
f(mj)
mj

∑mj
s=1 es ∈ SS , and the conditions of Lemma 2.8 are

satisfied with m = mj , ε = εj , and C = 1 ≤ Cj+1, k = mj−1, and xs = 0, for s = 0, 1, . . .mj .
Since Cj = (1 + εj)Cj+1, this implies our claim for i = 0.

Assuming (2.31) and (2.32) are true for i− 1 with 1 ≤ i < j − 1. Using the recursive
definition of y(mj−i,mj−i+1, . . .mj) one can write it as

y(mj−i,mj−i+1, . . . ,mj) =

mj−i∑
s=1

f(mj−i)

mj−i
ejs + xs,

so that the xs, s ≤ mj−i, are equally distributed vectors, and
∑mj−i
s=1 xs has the same

distribution as y(mj−i+1, . . .mj). It follows therefore from the induction hypothesis (2.32) (for
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i− 1) that ‖xs‖ ≤ Cj−i+1/mj−i, for s = 1, 2 . . .mj−1. Thus Lemma 2.8 is satisfied with m =
mj−i, k = mj−i−1, ε = εj−i and C = Cj−i+1, and we deduce that ‖y(mj−i,mj−i+1, . . . ,mj) ≤
(1 + εj−i)Cj−i+1 = Cj−i, which implies (2.31). Moreover, the second part of the conclusion of
Lemma 2.8 yields that if we write y(mj−i,mj−i+1, . . . ,mj) as sum of a block of mj−i−1 equally
distributed vectors ỹ1 < ỹ2 < . . . ỹmj−i−1 , we deduce that ‖ỹt‖ ≤ (1 + εj−i)Cj−i+1/mj−i−1 =
Cj−i/mj−i−1, t = 1, 2, . . . ,mj−i−1. Since the unit vector basis in S is 1-unconditional this
implies that (yt : 1 ≤ t ≤ mj−i−1), with yt = mj−i−1ỹt/Cj−i, for t = 1, 2, . . . ,mj−i−1, is Cj−i-
equivalent to the `

mj−i−1

1 basis. Thus y(mj−i,mj−i+1, . . . ,mj)/Cj−i, is an `
mj−i−1

1 -average up
to the constant 1/Cj−i, in the way it is described by (2.32).

3. Construction of a version of Gowers Maurey space

To define the space GM, which will be a version of the space GM introduced in [17], we
need to choose several objects.

First, assume that ε = (εn)n≥0 ⊂ (0, 1) satisfies the following standard conditions

ε0 <
f(2)− 1

2
, εn ≤ 2−n and

∑
i>n

i2εi ≤
1

10
εn, for n∈N. (3.1)

Secondly, let Q be a countable set of elements of c00, so that{ l∑
i=1

aiei : l ∈ N, ai ∈ Q, for i = 1, 2, . . . , l
}
∩ [−1, 1]N ⊂ Q ⊂ c00 ∩ [−1, 1]N, (3.2)

if x ∈ Q and E ⊂ N is finite, then E(x) ∈ Q, (3.3)

if (xi)
l
i=1∈Ql is a finite block sequence, then

1

f(l)

l∑
i=1

xi and
1√
f(l)

l∑
i=1

xi (3.4)

are in Q.

Next we introduce a lacunary set J ⊂ N. We write J as an increasing sequence {j1, j2, . . .},
and require the following four growth conditions∑

i>n

2

ji
<

1

f(jn)
, for all n ∈ N, (3.5)

(ji)
∞
i=1 is admissible, and satisfies the conditions (2.25) and (2.26) imposed (3.6)

on (mi)
∞
i=1 in Lemma 2.9 (relative to the sequence (εn) as chosen above).

In order to formulate the last condition on J , we first need to state an observation which is
an easy consequence of James’ blocking argument.

Lemma 3.1. For all n ∈ N and all ε > 0 there is an N = N(n, ε) so that the following holds:
Assume that (E, ‖ · ‖E) is a Banach space with a normalized and subsymmetric basis (ei),

and there is a c∈(0, 1] so that for all k∈N∥∥∥ k∑
j=1

ei

∥∥∥
E
≥ c k

f(k)
.

Then, for all ε > 0 and n ∈ N, there is an m ∈ [n,N(n, ε)] which is divisible by n, and there are
n subsets A1 < A2 < . . . An of {1, 2, . . . ,m}, all of cardinality m/n, so that (xi : i = 1, 2, . . . , n)
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is c1/n(1− ε)-equivalent to the `n1 -unit vector basis, where

xi =

∑
j∈Ai ei∥∥∥∑j∈Ai ej

∥∥∥ for i = 1, 2 . . . , n.

Our fourth condition on J = {j1, j2, . . .} can now be stated as follows (the first inequality
being trivial):

js ≤ N(js, εs) ≤
1

2
εs+1f(js+1). (3.7)

Finally we will need an injective function σ from the collection of all finite sequences of elements
of Q to the set {j2, j4, . . .} such that if l ∈ N, z∗1 , z

∗
2 , . . . z

∗
l ∈ Q and N = max

(
∪is=1 supp(z∗s )

)
,

then

εNf(σ(z∗1 , . . . , z
∗
i )) ≥ N. (3.8)

Depending on our choice of ε, Q, J and σ we can now define recursively subsets GM∗m in
c00 ∩ [−1, 1]N, for each m ∈ N0, which will serve as a set of normalizing functionals of GM.

Let

GM∗0 = {λe∗n : n ∈ N, |λ| ≤ 1}.

Assume that GM∗m has been defined for some m ∈ N0. Then GM∗m+1 is the set of all
functionals of the form E(z∗) where E ⊆ N is an interval and z∗ has one of the following
three forms (3.9) , (3.10) or (3.11):

z∗ =

l∑
i=1

αiz
∗
i (3.9)

where
∑l
i=1 |αi| ≤ 1 and z∗i ∈ GM

∗
m for i = 1, . . . , k.

z∗ =
1

f(l)

l∑
i=1

z∗i , (3.10)

where z∗i ∈ GM
∗
m for i = 1, . . . , l, and z∗1 < · · · < z∗l .

z∗ =
1√
f(k)

k∑
i=1

z∗i and z∗i =
1

f(ni)

ni∑
j=1

z∗i,j (3.11)

where
a) z∗1,1 < · · · < z∗1,n1

< z∗2,1 < · · · < z∗l,nl ,
b) z∗i,j ∈ GM

∗
m ∩Q, for 1 ≤ i ≤ k and 1 ≤ j ≤ ni (and thus z∗i ∈ Q, for i = 1, 2 . . . k), and

c) n1 = j2k′ , for some k′ ≥ k, and ni+1 = σ(z∗1 , . . . , z
∗
i ), for i = 1, . . . , k − 1.

Finally, the norm of GM is defined by

‖x‖GM = sup{z∗(x) : z∗ ∈ ∪∞m=0GM
∗
m}.

Remark 4. There are two main technical differences between the original space GM
defined in [17] and the space GM defined here:

(i) we allow in (3.11) k to take any value in N, while in [17] k had to be chosen out of the
very lacunary set {j2s+1, s ∈ N} and σ in [17] could only take values in {j2s : s ∈ N}.

(ii) in (3.11) we allow that n1 is of the form n1 = j2k′ , with k′ ≥ k, while in [17], it is required
that k′ = k.

The point is that it is not enough to use the coding procedure of [17] to obtain as they do,
given ε > 0, some k and two intertwined finite sequences u1 < v1 < · · · < uk < vk such that



SUBSEQUENTIAL MINIMALITY IN GOWERS AND MAUREY SPACES Page 19 of 40

‖
∑k
i=1(ui − vi)‖ ≤ ε‖

∑k
i=1(ui + vi)‖. To deduce estimates about spreading models, we need

this to be valid for any k large enough and for any initial vector u1 far enough along the basis.
The proof that our construction still does not contain an unconditional basis becomes

therefore a bit harder. Nevertheless the main ideas of the proof stay the same.

Notation. For m ∈ N, and if X is a Banach space with a normalized basis (ei) (we will use
this notation for S as well as for GM).

A∗m(X) =
{ 1

f(l)

l∑
i=1

x∗i : x∗1 < x∗2 < . . . x∗l in BX∗ ∩ c00

}
.

Note that A∗m(GM) ⊂ BGM∗ and A∗m(S) ⊂ BS∗ .
We define for x ∈ X and m∈N

‖x‖m = sup
x∗∈A∗m

|x∗(x)| = max
E1<E2<...Em

1

f(m)

m∑
i=1

‖Ei(x)‖.

and observe that
1

f(m)
‖x‖S ≤ ‖x‖m ≤ ‖x‖S ≤ ‖x‖GM.

For k ∈ N we also define

Γ∗k =

 1√
f(k)

k∑
i=1

x∗i :
x∗1 < x∗2 < . . . x∗k in BGM∗ ∩Q

x∗i ∈ A∗mi(GM) with m1,m2, . . .mk ∈M
m1 = j2k′ , k

′ ≥ k, and mi+1 = σ(x∗1, . . . x
∗
i ) if i < k

 ,

and put for x ∈ GM
‖x‖G∗m = sup

x∗∈Γ∗m

|x∗(x)|.

4. Some technical observations concerning the space GM

In this section we prove several properties of the space GM, as defined in the previous section.
In particular we will conclude that also this version does not contain any unconditional basic
sequences. In this section we will abbreviate ‖ · ‖GM by || · ‖.

The following observation follows from James’ blocking argument (See Lemma 3.1).

Lemma 4.1. The space `1 is finitely block represented in every infinite dimensional block
subspace of GM.

The next Lemma is easy to show (c.f. [22] or [17])

Lemma 4.2 Action of ‖ · ‖l on `+1 averages. Assume that x ∈ BGM is an `n1 -average and
l∈N. Then

‖x‖l ≤
1

f(l)

(
1 +

l

n

)
. (4.1)

Definition 4.3 (Rapidly Increasing Sequences). We call a block sequence (xn) ⊂ BGM
rapidly increasing sequence of constant c or c-RIS, with c ∈ (0, 1] if the following two conditions
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(4.2) and (4.3) are satisfied (recall that the sequence εn is given by (3.1)):

For n ∈ N, xn is an `kn1 -average of constant c, if c < 1, or of constant (4.2)

1/(1 + εn), if c = 1, and the following two inequalities are satisfied:

max
( 2n

f(kn)
,
f(kn)

kn

)
< ε2

n and f
(
εn
√
kn
)
≥ 1

ε2
n

max supp(xn−1), if n ≥ 2,

(xn) has a spreading model E with a 1-unconditional and seminormalized (4.3)

basis (ei) and for l ∈ N and (ai)
l
i=1⊂R and l≤n1<n2 < . . . nl in N

1

1 + εl

∥∥∥ l∑
i=1

aiei

∥∥∥
E
≤
∥∥∥ l∑
i=1

aixni

∥∥∥ ≤ (1 + εl)
∥∥∥ l∑
i=1

aiei

∥∥∥
E
.

We say that a sequence (xn) is an RIS, if it is an c-RIS for some constant c. If c = 1, we say
that (xn) is an asymptotically isometric RIS.

We note that from Lemma 4.1 it follows immediately that any infinite dimensional block
subspace Y of GM contains an asymptotically isometric RIS.

Remark 5. Let (xn) be a c-RIS, and (E, ‖ · ‖) be the spreading model of (xn). Define for
l ∈ N

g(l) =
l∥∥∥∑l

i=1 ei

∥∥∥
E

= lim
n1<n2<...nl

l∥∥∥∑l
i=1 xni

∥∥∥ . (4.4)

From the construction of GM it follows that

g(l) ≤ f(l)/c for all l∈N, (4.5)

in particular the spreading model E of (xn) satisfies the conditions of Lemma 3.1.
It follows therefore that for n ∈ N and ε > 0 we can choose an appropriate m ∈ [n,N(n, ε)]

and m elements from (xj) so that their sum is up to a scalar multiple, which is as close to
g(m)
m , as we wish, an `n1 average of constant c− ε.

Thus it is justified to introduce the following notion of Special Rapidly Increasing Sequences.

Definition 4.4 Special Rapidly Increasing Sequences. A block sequence (xn) in BGM
is called a Special Rapidly Increasing Sequence of constant c, with c∈(0, 1], or c-SRIS, if
there is a c-RIS (x̃n) ⊂ BGM, so that for each n∈N there is p̃ = p̃(n) ∈ P , p̃ ≥ n, m̃(n) ∈
[jp̃(n), N(jp̃(n), εp̃(n))] (here N(·, ·) is chosen as in Lemma 3.1) and natural numbers m̃(n) ≤
s̃(n, 1) < s̃(n, 2) < . . . s̃(n, m̃(n)), so that

xn =
g̃(m̃(n))

m̃(n)

m̃(n)∑
r=1

x̃s̃(n,r), (4.6)



SUBSEQUENTIAL MINIMALITY IN GOWERS AND MAUREY SPACES Page 21 of 40

where

g̃(l) =
l∥∥∥∑l

i=1 ẽi

∥∥∥
Ẽ

= lim
n1<n2<...nl

l∥∥∥∑l
i=1 x̃ni

∥∥∥
Ẽ

and Ẽ is the spreading model of (x̃n) with semi normalized 1-unconditional basis (ẽn),

xn is an `
jp̃(n)

1 -average of constant c, if c < 1, or 1/(1 + εp̃(n)), if c = 1, (4.7)

(xn) is an RIS of constant c, with kn = jp̃(n) in condition (4.2). (4.8)

Remark 6. From the remark before Definition 4.4 it follows that every block subspace
contains special rapidly increasing sequences. The point of Definition 4.4 is that we may regard
the xn at the same time as `kn1 -averages for fast increasing kn, but also, up to some factor, sums
of elements of an RIS. We shall use this to prove that SRIS generate spreading models equivalent
to the unit vector basis of S. Note that every normalized block basis of GM dominates the
unit basis of S.

Lemma 4.5 Action of A∗l on sums of elements of an RIS. Assume that (xn) is a c-RIS,
c ∈ (0, 1]. Let m ≤ n1 < n2 < . . . nm be in N and (ai)

m
i=1 ∈ Rm. Put y =

∑m
i=1 aixni .

a) If f(l) ≤ 2m/εn1 then there are numbers l1 and l2 in N, with l1 + l2 ≤ min(2l,m), inter-
vals I1 < I2 < . . . < Il1 in {1, 2 . . .m}, so that l2 = #I0, with I0 = {1, 2 . . .} \

⋃l1
j=1 Ij

and

‖y‖l ≤
1

f(l)

 l1∑
j=1

∥∥∥∑
s∈Ij

asxns

∥∥∥+
∑
s∈I0

|as|
1 + 2εns

c
‖xns‖

 , (4.9)

b) If f(l) > 2m/ε, for some ε ∈ [εn1 , 1), then

‖y‖l ≤ max
i≤m
|ai|
[
2ε+ max

i=1,2...m
‖xni‖l

]
≤ max

i≤m
|ai|
[
2ε+ 1]. (4.10)

Proof. We put zs = xns for s = 1, 2 . . .m. In order to prove (a) we choose finite intervals
E1 < E2 < . . . El of N, so that

‖y‖l =
1

f(l)

l∑
t=1

‖Et(y)‖.

Without loss of generality we can assume that

l⋃
t=1

Et = ran(y) = [min supp(z1),max supp(zm)].

For t = 1, 2 . . . l we divide Et in three intervals E
(1)
t , E

(2)
t , E

(3)
t (some of them possibly empty)

as follows: we let, if it exists, m(t) be the unique number in {1, 2, . . .m} so that min ran(zm(t)) <
minEt ≤ max ran(z(m(t)) and put

E
(1)
t = Et ∩ [1,max ran(zm(t))].

If m(t) does not exists we let E
(1)
t = ∅. Then we let m′(t) be the unique number m′(t), if it

exists, so that min ran(zm′(t)) < maxEt ≤ max ran(z(m(t)) , and put

E
(3)
t =

(
Et ∩ [min ran(zm′(t)),∞)

)
\ E(1)

t .

If m′(t) does not exists we let E
(1)
t = ∅. Finally we let E

(2)
t \ (E

(1)
t ∪ E

(3)
t ). Let Ẽ be the non

empty elements of {E(1)
t , E

(2)
t , E

(3)
t : t ≤ l} and l̃ the cardinality of Ẽ .
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We note that Ẽ consists of pairwise disjoint intervals which can be ordered into Ẽ1 < Ẽ2 <
. . . Ẽl̃, and that for any i ≤ m and any j ≤ l̃, either Ẽj contains ran(zi), or is contained in
ran(zi), or Ẽj and ran(zi) are disjoint.

For s ∈ {1, 2, . . . ,m} we deduce from our condition on f(l) and (4.2) that

l

kns
≤ f(l)

f(kns)
≤ 2m

εn1f(kns)
≤ 2ns
εn1f(kns)

≤
ε2
ns

εn1

≤ εns .

We let

I0 =
{
s = 1, 2 . . . ,m : #{t : Ẽt ⊂ ran(xs)} ≥ 2

}
,

Lemma 4.2 yields that for every s ∈ I0∑
t,Ẽt⊂ran(zs)

‖Ẽt(zs)‖ ≤ 1 +
l

kns
≤ 1 + εns ≤

‖zs‖+ 2εns
c

.

We reorder the set Ẽ ′ of all sets Ẽt, t ∈ {1, 2 . . . l̃}, which contain the range of at least one xns ,
into E′1 < . . . E′l1 and we define t = 1, . . . l1

It =
{
s ∈ {1, 2 . . .m} : ran(xs) ⊂ Ẽt

}
,

and conclude that l1 + l2 ≤ min(m, 2l), where l2 = #I0, and

1

f(l)

l∑
t=1

‖Ei(y)‖ ≤ 1

f(l)

l̃∑
t=1

‖Ẽt(y)‖

=
1

f(l)

∑
t=1

∥∥∥∑
s∈It

aszs

∥∥∥+
∑
s∈I0

|as|
l̃∑
t=1

‖Ẽt(zs)‖


≤ 1

f(l)

[∑
t=1

∥∥∥∑
s∈It

aszs

∥∥∥+
∑
s∈I0

|as|
‖zs‖+ εns

c

]
which implies (a).

In order to prove our claim (b) let ε ∈ [εn1
, 1] and define

i0 = max
{
i = 1, 2 . . . k : max(supp(zi−1)) < f(l)ε

}
(with max(supp(z0)) := 0).

Then by (4.2) it follows for i ∈ {i0 + 1, i0 + 2, . . . ,m} that

f(kni) >
1

εni
max supp(zi−1) ≥ 1

ε
max supp(zi0) ≥ f(l)

and thus, ∥∥∥ m∑
i=1

aizi

∥∥∥
l
≤
i0−1∑
i=1

|ai|‖zi‖l + |ai0 |‖zi0‖l +

m∑
i=i0+1

|ai|‖zi‖l

≤ max
i≤m
|ai|

[
max supp(zi0−1)

f(l)
+ ‖zi0‖l +

1

f(l)

m∑
i=i0+1

(
1 +

l

kni

)]
(by Lemma 4.2)

≤ max
i≤m
|ai|
[
ε+ ‖zi0‖l +

2m

f(l)

]
< max

i≤m
|ai|
[
2ε+ ‖zi0‖l

]
which proves part (b).
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Lemma 4.6 Action of Γ∗k on sums of elements of an RIS. Assume that (xn) is a block-
sequence in GM, c ∈ (0, 1], and let z∗ ∈ Γ∗k. Let m ≤ n1 < n2 < . . . nm be in N and (ai)

m
i=1 ∈

Rm. Put y =
∑m
i=1 aixni .

a) If (xn) is a c-RIS, then

|z∗(y)| ≤
|z∗t0(y)|√
f(k)

+
maxs≤m |as|√

f(k)

[
2mεn1

+
∑
t∈T0

max
s∈St
‖xns‖lt

]
(4.11)

+ max
s≤m
|as|+

1√
f(k)

m∑
s=s0+1

|as|
∣∣∣ ∑
t∈Ts

z∗t (xns)
∣∣∣,

where z∗t , t = 1, . . . , k, s0 ∈ {1, . . . ,m}, t0 ∈ {1, 2 . . . k}, Ts ⊂ {t0 + 1, t0 + 2 . . . k}, s =
0, 1, 2 . . .m, and St ⊂ {1, 2 . . .m}, t ∈ T0 are defined as follows:

z∗ =
1√
f(k)

k∑
t=1

z∗t ∈ Γ∗k,with z∗1 ∈ A∗l1 where l1 = j2k′ for some k′ ≥ k, and z∗i ∈ A∗li ,

with li = σ(z∗1 , z
∗
2 , . . . , z

∗
i−1), for i = 2, . . . k,

s0 = min
{
s = 1, 2 . . .m : max supp(xns−1

) > εn1

√
f(k)

}
(with the usual convention that max supp(xn0

) = 0),

t0 = min{t = 1, . . . k : z∗t (y) 6= 0}
(we assume that t0 exists, otherwise z∗(y) = 0),

Ts =
{
t= t0+1, . . . k : supp(z∗t )⊂ [min ran(xns),min ran(xns+1))

}
, if s=1, . . .m

(with min ran(xnm+1) :=∞)

T0 = {t0 + 1, . . . k} \
k⋃
s=1

Ts

St =
{
s ∈ {1, 2 . . .m} : ran(z∗t ) ∩ ran(zs) 6= ∅

}
, for t ∈ T0.

b) If (xn) s a c-SRIS, then

|z∗(y)| ≤
|z∗t0(y)|√
f(k)

+
maxs≤m |as|√

f(k)
min(m, k) max

s≤m,t0<t≤k
‖xs‖lt + 3 max

s≤m
|as|. (4.12)

Proof. We first assume that (xn) is only a c-RIS . For m ≤ n1 < n2 < . . . ns in N and
(as)

m
s=1 ⊂ R \ {0} we put

y =

m∑
s=1

asxns .

Secondly since

z∗ =
1√
f(k)

k∑
t=1

z∗t ∈ Γ∗k,

we note that for t0 as defined in the statement it follows that

max(supp(z∗t0)) ≥ min(supp(xn1
)).

We abbreviate zs = asxns , for s = 1, 2 . . .m. Since for t∈T0,

St =
{
s ∈ {1, 2 . . .m} : ran(z∗t ) ∩ ran(zs) 6= ∅

}
,
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St is an interval in {1, 2, . . .m} and each s ∈ {1, 2 . . . ,m} may be element in at most two of
the sets St, t∈T0. Using these notations, we can now write z∗(y) as

z∗(y) =
1√
f(k)

z∗t0(y) +
1√
f(k)

∑
t∈T0

∑
s∈St

z∗t (zs) +
1√
f(k)

m∑
s=1

∑
t∈Ts

z∗t (zs). (4.13)

In order to estimate the second term in (4.13) we first deduce from (3.8) and the trivial estimate
min supp(z1) > 2n1, that for t∈T0

f(lt) ≥
max supp(z∗t0)

εmax supp(z∗t0
)
≥ min supp(z1)

εn1

>
2n1

εn1

≥ 2m

εn1

,

and Lemma 4.5 (b) yields therefore that∣∣∣z∗t ( ∑
s∈St

zs

)∣∣∣ ≤ max
s∈St
|as|
[
2εn1 + max

s∈St
‖xns‖lt

]
, whenever t ∈ T0. (4.14)

In order to estimate the third term in (4.13) we recall that

s0 = min
{
s = 1, 2 . . .m : max supp(zs−1) > εn1

√
f(k)

}
. (4.15)

We first note that if s0 ≥ 2

1√
f(k)

s0−1∑
s=1

∑
t∈Ts

|z∗t (zs)| ≤
1√
f(k)

max supp(zs0−1) max
s≤m
|as| ≤ εn1

max
s≤m
|as|. (4.16)

Secondly, if Ts0 6= ∅ we let

I =
[

min
⋃
t∈Ts0

ran(z∗t ),max
⋃
t∈Ts0

ran(z∗t )
]
,

and deduce that

1√
f(k)

∣∣∣ ∑
t∈Ts0

z∗t (zs0)
∣∣∣ = |I(z∗)(zs0)| ≤ |as0 | · ‖xns0‖ ≤ max

s≤m
|as|. (4.17)

Adding up the estimates obtained in (4.16) and (4.17) and inserting them into (4.13), we obtain

|z∗(y)| ≤
|z∗t0(y)|√
f(k)

+
1√
f(k)

∑
t∈T0

max
s∈St
|as|
[

max
s∈St
‖xns‖lt + 2εn1

]
(4.18)

+ max
s≤m
|as|+

1√
f(k)

m∑
s=s0+1

|as|
∣∣∣ ∑
t∈Ts

z∗t (xns)
∣∣∣

≤
|z∗t0(y)|√
f(k)

+
maxs≤m |as|√

f(k)

[
2mεn1

+
∑
t∈T0

max
s∈St
‖xns‖lt

]

+ max
s≤m
|as|+

1√
f(k)

m∑
s=s0+1

|as|
∣∣∣ ∑
t∈Ts

z∗t (xns)
∣∣∣,

which proves (4.11).
In order to prove part (b) we now assume that (xn) is an SRIS of constant c, and want for

s = s0 + 1, . . .m, with Ts 6= ∅, to find an upper estimate for

1√
f(k)

∣∣∣ ∑
t∈Ts

z∗t (xns)
∣∣∣.

Thus, we assume that there is an RIS (x̃n) ⊂ BGM of constant c, and for each n ∈ N numbers
p̃(n) ∈ N, p̃(n) ≥ n, m̃(n) ∈ [jp̃(n), N(jp̃(n), εp̃(n)] and m̃(n) ≤ s̃1(n) < s2(n) < . . . s̃m̃(n)(n) so
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that

xn =
g̃(m̃(n))

m̃(n)

m̃(n)∑
r=1

x̃s̃r(n),

where g̃ : [1,∞)→ [1,∞) is an increasing function with g̃(ξ) ≤ f(ξ)/c, ξ ≥ 1 and so that kn =

jp̃(n) (thus xn is an `
p̃(n)
1 -average of constant c).

We fix s = s0 + 1, s0 + 2, . . .m, with Ts 6= ∅, and apply now our estimate (4.18) to xns =
g̃(m̃(ns))
m̃(ns)

∑m̃(ns)
r=1 x̃s̃r(ns) instead of y and to z̃∗ = 1√

f(k)

∑
t∈Ts z

∗
t , instead of z∗. Strictly speaking

z̃∗ is not in Γ∗k, but it is of the form I(z∗), where I ⊂ N is an interval, and it is easy to see that
it satisfies the same estimates (4.18). From the definition of s0 and by the second condition on
kns in (4.3) we deduce that√

f(k) <
1

εn1

supp(zs−1) <

√
f(εnsk

1/2
ns ),

and thus

k ≤ εnsk1/2
ns = εnsj

1/2
p̃(ns)

≤ εnsm̃1/2
s (ns),

which yields

kg̃(m̃(ns))

m̃(ns)
≤ εns

g̃(m̃(ns))

m̃1/2(ns)
≤ εns .

Put ts = minTs (which takes the role of t0). If we apply (4.18) to xns , the sets T0 and Ts will
be replaced by sets T̃0 and T̃s̃, s̃ ≤ m̃(ns), for which we know (and only will need to know)
that

#T̃0 ≤ k and

m̃(ns)∑
s̃=1

#T̃s̃ ≤ k.

Using also the estimate 2mεn1
+ ‖x̃s̃r(ns)‖ ≤ 2, we obtain from (4.18), applied to z̃∗(xns), that

|z̃∗(xns)| ≤
|z∗ts(xns |√

f(k)
+
g̃(m̃(ns))

m̃(ns)

2k√
f(k)

+
g̃(m̃(ns))

m̃(ns)
+
g̃(m̃(ns))

m̃(ns)

k√
f(k)

≤
|z∗ts(xns)|√

f(k)
+ 4εns .

Inserting this estimate back into (4.18) for |z∗(y)| we get

|z̃∗(y)| ≤
|z∗t0(y)|√
f(k)

+
maxs≤m |as|√

f(k)

[
2mεn1 +

∑
t∈T0

max
s∈St
‖xns‖lt

]
(4.19)

+ max
s≤m
|as|+

1√
f(k)

m∑
s=1,Ts 6=∅

|as|
[
|z∗ts(xns)|+ 4εns

]
≤
|z∗t0(y)|√
f(k)

+
maxs≤m |as|√

f(k)

∑
t∈T0

max
s∈St
‖xns‖lt +

m∑
s=1,Ts 6=∅

‖xns‖lts + 2

+ max
s≤m
|as|

≤
|z∗t0(y)|√
f(k)

+
maxs≤m |as|√

f(k)
min(m, k) max

s≤m,t0<t≤k
‖xs‖lt + 3 max

s≤m
|as|,

which proves our claim (b).

Lemma 4.7. Assume that (xn) is an SRIS of constant c, c > 0 and assume z∗ ∈ Γ∗. As
before write z∗ as

z∗ =
1√
f(k)

k∑
t=1

z∗t ∈ Γ∗k,
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with z∗1 ∈ A∗l1 , and l1 = j2k′ , for some k′ ≥ k, and z∗i ∈ A∗li , with li = σ(z∗1 , z
∗
2 , . . . , z

∗
i−1), for

i = 2, . . . k and assume that

t0 = min{t = 1, . . . k : z∗t (y) 6= 0},

exists (otherwise z∗(y) = 0). Let m and m ≤ n1 < n2 < . . . nm be in N, (as)
m
s=1 ⊂ R and assume

that the numbers jp̃(ns) (as chosen in Definition 4.4) are all different from the numbers lt0+1,
lt0+2, ....lk.

Then it follows that

|z∗t (xns)| ≤ εn1 , for t = t0 + 1, t0 + 2, . . . k and s = 1, 2 . . .m, and (4.20)

|z∗(y)| ≤
|z∗t0(y)|√
f(k)

+ 4 max
s≤m
|as|, where y =

m∑
s=1

asxns . (4.21)

Remark 7. The assumption of Lemma 4.7 are for example satisfied if in Definition 4.4
the numbers p̃(n), n∈N, are chosen to be odd numbers (since the image of σ is a subset of
{j2i : i∈N}).

Proof of Lemma 4.7. We need to estimate ‖xns‖lt for s ∈ {1, 2 . . .} and t = t0 + 1, t0 +
2, . . . k and then apply (4.12). Recall that

xns =
g̃(m̃(ns))

m̃(ns)

m̃(ns)∑
r=1

x̃s̃r(ns), (4.22)

where g̃ : [1,∞)→ [1,∞) is an increasing function with g̃(ξ) ≤ f(ξ)/c, ξ ≥ 1 and so that kns =
jp̃(ns), (x̃n) is an RIS of constant c, and m̃ ∈ [jp̃(ns), N(jp̃(ns), εp̃(ns))], and m̃(ns) ≤ s̃1(ns) <
. . . < s̃m̃(ns).

We note that either lt < kns = jp̃(ns), then, since zs is an `
jp̃(ns)
1 -average, we deduce from

Lemma 4.2, and (3.8) that

‖xns‖lt ≤
2

f(lt)
≤ 2

f(σ(z∗1 , z
∗
2 , . . . z

∗
t−1))

≤ εn1
. (4.23)

Or we have that lt > kns = jp̃(ns). This implies by (3.7) that

f(lt) ≥ f(jp̃(ns)+1) ≥ 2

εp̃(ns)+1
N(jp̃(ns), εp̃(ns)) ≥

2m̃(ns)

εp̃(ns)+1
≥ 2m̃(ns)

εn1

.

But then it follows from (4.22), Lemma 4.5 (b), and (4.2) that

‖xns‖lt ≤ 2
g̃(m̃(ns))

m̃(ns)
≤ 2

f(m̃(ns))

m̃(ns)
≤ 2

f(kns)

kns
≤ εn1 . (4.24)

Thus, (4.12) yields

|z∗(y)| ≤
|z∗t0(y)|√
f(k)

+
maxs≤m |as|√

f(k)
min(m, k)εn1

+ 3 max
s≤m
|as| ≤

|z∗t0(y)|√
f(k)

+ 4 max
s≤m
|as|,

which proves our claim.

We now can formulate and prove our Key Lemma.

Lemma 4.8. For each c ∈ (0, 1] there is a constant C = Cc > 0 so that the following holds.
Let (xn) be a c-SRIS, and assume that the p̃(n), n ∈ N, as in Definition 4.4 are chosen to be

odd numbers. Let m ≤ n1 < n2 < . . . nm be in N and put y =
∑m
s=1 xns . Then



SUBSEQUENTIAL MINIMALITY IN GOWERS AND MAUREY SPACES Page 27 of 40

a) c m
f(m) ≤ ‖y‖ ≤ C

m
f(m) , if c < 1 and (1− εn1

) m
f(m) ≤ ‖y‖ ≤ C

m
f(m) , if c = 1.

b) For l ∈ N, l ≥ 2

‖y‖l ≤

{
C
f(l)

m
f(m/min(2l,m)) if f(l) ≤ m/εn1

,

2C if f(l) ≥ m/εn1
.

Remark 8. Of course we can (and will later) replace 2C in the second case of (b) in Lemma
4.8 by an another constant. Nevertheless the “2C” is needed so that the induction argument
in the proof will work out.

Proof. The first inequality in (a) follows from the fact that

‖y‖ ≥ ‖y‖m ≥
1

f(m)

m∑
i=1

‖xns‖ ≥ c
m

f(m)
,

if c < 1. A similar argument works for c = 1.
Using the first condition in (3.1) it is easy to see that one can choose m0 ∈ N so that

f(m) ≤ f(l)f(m/2l)

1 + ε0
, 2mεm < cεm−1 and

f(m)

f(m/4)
≤ 2, (4.25)

whenever m ≥ m0 and 2 ≤ l ≤ m/4

(note that the second inequality is satisfied as long as c ≥ 1/m, by the third condition in (3.1)).
Put C = 4m0.

We will prove the second inequality in (a) and (b) by induction for each m ∈ N. If m ≤ m0

(a) and (b) are trivial.
So assume (a) and (b) are true for all m′ < m, for some m ≥ m0. Let m ≤ n1 < n2 < . . . <

nm be in N and put

y =

m∑
s=1

xns .

For l ∈ N, l ≥ 2, we first estimate ‖y‖l.
If f(l) ≥ m/εn1

then Lemma 4.5 (b) implies that ‖y‖l ≤ 2 ≤ C.
If f(l) ≤ m/εn1 it follows from the second part of (4.25) and Lemma 4.5 (a) that there are

natural numbers 0 = s0 < s1 < . . . sl′ = m, with l′ = min(2l,m) so that

‖y‖l ≤
εn1−1

f(l)
+

1

f(l)

l′∑
j=1

∥∥∥ sj∑
s=sj−1+1

xns

∥∥∥.

If l ≥ m/4 then by the third part of (4.25)

‖y‖l ≤
εn1−1

f(l)
+

m

f(l)
≤ εn1−1

f(l)
+

m

f(m/4)
≤ εn1−1

f(l)
+ 2

m

f(m)
≤ C m

f(m)
.
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If l ≤ m/4 we are using the induction hypothesis and the fact that the map [1,∞) 3 x 7→ x/f(x)
is concave to obtain

‖y‖l ≤
εn1−1

f(l)
+

1

f(l)

l′∑
j=1

∥∥∥ sj∑
s=sj−1+1

xns

∥∥∥
≤ εn1−1

f(l)
+

C

f(l)

l′∑
j=1

sj − sj−1

f(sj − sj−1)

≤ εn1−1

f(l)
+

C

f(l)
l′

m/l′

f(m/l′)

≤ ε0

f(2)
+

C

1 + ε0

m

f(m)
(by first condition in (4.25))

≤ C m

f(m)
,

for the last inequality note that

ε0

f(2)
≤ C ε0

1 + ε0

2

f(2)
= C

[
1− 1

1 + ε0

] 2

f(2)
≤ C

[
1− 1

1 + ε0

] m

f(m)
.

This proves that ‖y‖l ≤ Cm/f(m), for every l ≥ 2. Together with Lemma 4.7 (which
estimates ‖y‖Γ∗k for k ∈ N) this yields that ‖y‖ ≤ Cm/f(m). That finishes the induction step
and the proof of (a).

Part (b) follows if f(l) ≥ m/εn1
directly from Lemma 4.5 (b). If f(l) ≤ m/εn1

we apply
Lemma 4.5 (a), the concavity of the map [1,∞) 3 x 7→ x/f(x) and part (a) of this lemma, to
obtain for some choice of natural numbers 0 = s0 < s1 < . . . sl′ = m, with l′ = min(2l,m) so
that

‖y‖l ≤
εn1−1

f(l)
+

1

f(l)

l′∑
j=1

∥∥∥ sj∑
s=sj−1+1

xns

∥∥∥
≤ εn1−1

f(l)
+

C

f(l)

l′∑
j=1

sj − sj−1

f(sj − sj−1)

≤ εn1−1

f(l)
+

C

f(l)

m

f(m/l′)
≤ 2C

f(l)

m

f(m/l′)
,

which proves our claim.

Remark 9. Following now the proof in [17] (from [17, Lemma 7] on) one deduces that
GM, as defined here has also no unconditional basis sequence. In Section 6 (see Theorem 6.1)
we will prove that in every block subspace of GM there are two seminormalized block sequence
(un) and (vn), which are intertwined, i.e. u1 < v1 < u2 < v2 < . . ., with the property that for
some constants 0 < c,C <∞∥∥∥ l∑

s=1

uns + vns

∥∥∥ ≥ c l√
f(l)

and
∥∥∥ l∑
s=1

uns − vns
∥∥∥ ≤ C l

f(l)
.

for all l ∈ N and all choices of l ≤ n1 < n2 < . . . nl in N. This certainly implies that GM has
no unconditional block sequence.

We do not know whether or not GM is HI, but we suspect it is. The point is that to use
spreading models and other refinements, we needed to pass to subsequences of the Rapidly
Increasing Sequences as defined in GM . Therefore we lost the freedom to pick the vectors of
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an RIS-sequence in arbitrary subspaces, as would be needed to repeat Gowers-Maurey’s proof
that GM is HI.

Nevertheless, Gowers’ first dichotomy yields that GM contains at least an infinite
dimensional block subspace which is HI.

5. Yardstick Vectors in GM

We will prove that every block basis in GM has a further block basis whose spreading
model is equivalent to the unit vector basis of S. Thus, we can define in GM the yardsticks as
introduced in Section 2. The following observation follows from Lemmas 4.5 and 4.8, and an
argument in [2].

Proposition 5.1. Assume that (xn) is a c-RIS in GM, for which the following condition
is satisfied:

There exists a constant C ′ ≥ 1, so that for all m, k ∈ N, m≤n1<n2<. . . nm (5.1)

in N, all (ai)
m
i=1 and all z∗ ∈ Γ∗k, it follows that∣∣∣z∗( m∑

s=1

asxns

)∣∣∣ ≤ 1√
f(k)

max
j∈J

∥∥∥ m∑
s=1

asxns

∥∥∥
j

+ C ′max
s≤m
|as|.

Then the spreading model of (xn) is equivalent to the unit vector basis of S. More precisely
there is a constant C so that for every c-SRIS (xn) in GM

c′
∥∥∥ m∑
s=1

ases

∥∥∥
S
≤
∥∥∥ m∑
s=1

asxns

∥∥∥
GM
≤ C

∥∥∥ m∑
s=1

ases

∥∥∥
S
, (5.2)

whenever m ≤ n1 < n2 < . . . nm are in N and (as)
m
s=1 ⊂ R, where c′ = c if c < 1 and c′ =

1− εn1 if c = 1.

Remark 10. Note that Lemma 4.7 and the remark thereafter establishes a case in which
the assumption (5.1) is satisfied.

Proof of Proposition 5.1. Consider the norm 〈〈·〉〉 on c00 given by the implicit equation

〈〈x〉〉 = max
(
‖x‖∞, max

l∈N,l≥3

E1<E2<...El

1

f(l/2)

l∑
j=1

〈〈Ei(x)〉〉
)
, x ∈ c00

and recall [2, Lemma 3.3] which states that 〈〈·〉〉 is an equivalent norm on S.
We put

C ′′ = C ′
√
f(2)√

f(2)− 1
.

By induction we will show for each m ∈ N and all choices of (as)
m
s=1 ⊂ R and m ≤ n1 < n2 <

. . . nm in N, that

c′
∥∥∥ m∑
s=1

ases

∥∥∥
S
≤
∥∥∥ m∑
s=1

asxns

∥∥∥
GM
≤ C ′′

〈〈 m∑
s=1

ases

〉〉(
1 +

2

c

m∑
s=1

εns

)
. (5.3)

This will, together with the above cited result from [2], prove our claim. The first inequality
in (5.3) is clear, and it is also clear that (5.3) holds for m = 1. So assume that (5.3) holds for
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all m′ < m, m ≥ 2, m′ ≤ n1 < n2 < . . . nm′ in N, and (as)
m′

s=1 ⊂ R. Let m ≤ n1 < n2 < . . . nm,
(as)

m
s=1 ⊂ R and put y =

∑m
s=1 asxns . We distinguish between two cases: If

C ′′max
s≤m
|as| ≥ max

l∈N,l≥2
‖y‖l,

then we note that for all l ∈ N, l ≥ 2,

‖y‖l ≤ C ′′max |as| ≤ C ′′
〈〈 m∑
s=1

ases

〉〉
,

and, thus, for any k ∈ N, k ≥ 2, and z∗ ∈ Γ∗k, it follows from our assumption (5.1) that

|z∗(y)| ≤ 1√
f(2)

max
j∈J
‖y‖j + C ′max

s≤m
|as| ≤

[ C ′′√
f(2)

+ C ′
]

max
s≤m
|as| = C ′′max

s≤m
|as|.

If

C ′′max
s≤m
|as| < max

l∈N,l≥2
‖y‖l,

we proceed as follows.
If l ∈ N, with f(l) ≥ 2m/εn1

, then Lemma 4.5 (b) implies that

‖y‖l ≤ 2 max
i≤m
|as| ≤ 2

〈〈 m∑
i=1

aiei

〉〉
≤ C ′′

〈〈 m∑
i=1

aiei

〉〉
.

If l ≥ 2 and f(l) ≤ 2m/εn1
, then Lemma 4.5 (a) yields for some choice of 0 = s0 < s1 < s2 <

. . . sl′ with l′ = min(m, 2l), that

‖y‖l ≤
1

f(l)

[
l′∑
t=1

∥∥∥ st∑
s=st−1+1

asxns

∥∥∥
GM

+
2

c

∑
t≤l′,st=1+st−1

εnst |ast |

]
(5.4)

≤ C ′′

f(l)

[
l′∑
t=1

〈〈 st∑
s=st−1+1

ases

〉〉(
1 +

2

c

m∑
s=1

εns

)]
(By applying the induction hypothesis in cases that st ≥ 2 + st−1)

≤ C ′′
〈〈 m∑
s=1

ases

〉〉(
1 +

2

c

m∑
s=1

εns

)
.

Our assumption (5.1) yields for k ∈ N, k ≥ 2 and z∗ ∈ Γ∗k, that

|z∗(y)| ≤ 1√
f(k)

max
j∈N
‖y‖j + C ′max

s≤m
|as| ≤

[
1√
f(2)

+
C ′

C ′′

]
max
j∈N
‖y‖j = max

j∈N
‖y‖j ,

which together with (5.4), finishes the proof of our induction step.

Lemma 3.1 and Proposition 5.1 imply therefore

Corollary 5.2. There is a constant D, so that for every asymptotically isometric SRIS
x = (xn) in GM, for which p̃(n) is odd for all n ∈ N, and every l ∈ N and any s1 < s2 < . . . sl
in N we have

1

2
≤ ‖yx′(js1 , js2 , . . . jsl)‖jsi ≤ ‖yx′(js1 , js2 , . . . jsl)‖GM ≤

D

2
, for all i = 1, 2, . . . l (5.5)

where x′ is a far enough out starting tail subsequence of x.
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6. Construction of two equivalent intertwined sequences

We now want to construct in a given block subspace Y of GM two seminormalized block
sequences (un) and (vn), which are equivalent and so that u1 < v1 < u2 < . . ..

Let x = (xi) be any asymptotically isometric SRIS in Y , so that p̃(n) is odd for n ∈ N. Using
Proposition 5.1 and the remark thereafter, it follows that the spreading model of x is equivalent
to the unit vector basis of S, and, since Corollary 5.2 applies we let D <∞ be chosen so that
(5.5) holds true.

By induction we choose a block sequence (zn) of x. The vectors un and vn will then be
chosen so that un < vn and zn = un + vn.

For n = 1 we first choose k′1, so that f(k′1)/k′1 < ε2
1 (which means that k′1 satisfies condition

(4.2) for n = 1), and then let

z1 =
1

D
yx(1)(j2q1(1)) =

1

D

f(j2q1(1))

j2q1(1)

j2q1(1)∑
t=1

x
(1)
t ,

where q1(1) ∈ N is chosen large enough so that y(j2q1(1)) is an `k11 -average of constant 1− ε1,

with k1 ≥ k′1 (using Lemma 2.9), x(1) is a tail subsequence of x, which starts far enough out
so that ‖z1‖ ≤ 1 and so that z1 is an `k11 -average of constant 1

D (using Proposition 5.1 and
Corollary 5.2). Finally we choose

u1 =
1

D

f(j2q1(1))

j2q1(1)

j2q1(1)/2∑
t=1

x
(1)
t and v1 =

1

D

f(j2q1(1))

j2q1(1)

j2q1(1)∑
t=1+(j2q1(1)/2)

x
(1)
t ,

(recall that the elements of J are even).
Assume now that for some n ≥ 2, we have chosen z1 < z2 < . . . zn−1 in BGM, and assume

that the following conditions are satisfied:
- for each i < n, zi is an `ki1 -average of constant 1/D, so that

f(ki)/ki < ε2
i and f(εi

√
ki) >

1

ε2
i

max supp(zi−1), if i ≥ 2 (6.1)

(in other words z1 < z2 < . . . zn−1 satisfies the condition (4.2) of the first n− 1 elements of
an RIS).

- secondly zi is of the form

zi = ui + vi =
1

D
yx(i)

(
j2qi(1), j2qi(2), . . . j2qi(li)

)
, (6.2)

where li, and qi(1) < qi(2) < . . . < qi(li) are in N and x(i) is a tail subsequence of x, starting
far enough out to ensure that (zi)

n−1
i=1 is a block sequence and is in BGM (using Corollary 5.2).

By Definition 2.7 of the yardstick vectors in Section 2 we can write zi as zi =
∑li
r=1 z(i, r)

where the z(i, r), r = 1, 2 . . . li, have pairwise disjoint support and so that for each r ≤ li the
vector z(i, r) is of the form

z(i, r) =
1

D

f(j2qi(r))

j2qi(r)

j2qi(r)∑
s=1

x(i, r, s), (6.3)
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where x(i, r, s), s = 1, 2, . . . j2qi(r) are elements of the sequence x(i), and we have

ui =
1

D

li∑
r=1

f(j2qi(r))

j2qi(r)

j2qi(r)/2∑
s=1

x(i, r, s) and (6.4)

vi =
1

D

li∑
r=1

f(j2qi(r))

j2qi(r)

j2qi(r)∑
s=1+(j2qi(r)/2)

x(i, r, s). (6.5)

- moreover we assume that so far the following condition is satisfied:
For each sequence ι = (it : t = 1, 2 . . . , l) ⊂ {1, 2, . . . , n− 1}, with 1 ≤ i1 < i2 < . . . il ≤ n−

1, and for each ρ = (ρt : t = 1, 2 . . . , l) ∈ {−1, 1}l there is a sequence of functionals z∗(ι, ρ) =
(z∗t : t = 1, 2, . . . l) = (z∗(ι,ρ)(t) : t = 1, 2 . . . , l) in BGM∗ so that for all t = 1, 2 . . . , l − 1:

(a) supp(z∗t ) ⊂
⋃j2qi(rt))
s=1 ran(x(it, rt, s)), for some rt∈{1, 2 . . . lit}, (6.6)

(b) z∗t ∈A∗j2qi(rt) ∩Q,

(c) z∗t (z(it, rt))ρt ≥ 1
2D , z

∗
t (u(it)) = z∗t (v(it)) = 1

2z
∗
t (z(it, rt)), and,

(d) if t≥2, then 2j2qi(rt) =σ
(
ρ1z
∗
1 , ρ2z

∗
2 , . . . , ρt−1z

∗
t−1

)
.

In order to choose zn we proceed as follows. We first choose k′n ∈ J so that f(k′n)/k′n < ε2
n

and f(εn
√
k′n) ≥ 1

ε2n
max supp(zn−1). Assume that qn ∈ N satisfies the following properties:

jqn ≥ k′n and
√
f(jqnεn) >

max supp(zn−1)

εn
. (6.7)

For each increasing sequence ι = (it : t = 1, 2 . . . , l) ⊂ {1, 2, . . . n− 1}, and each ρ = (ρt : t =
1, 2 . . . , l) ⊂ {±1} we can assume that

σ
(
z∗(ι,ρ)(1), z∗(ι,ρ)(2), . . . , z∗(ι,ρ)(l)

)
≥ jqn+1, (6.8)

for any ι = (it : t = 1, 2 . . . , l) ⊂ {1, 2, . . . n− 1}, with 1 ≤ i1 < i2 < . . . il ≤ n− 1, and for each
ρ = (ρt : t = 1, 2 . . . , l) ⊂ {±1}. Note that this can be accomplished by only perturbing the last
element z∗(ι,ρ)(l), and thus still satisfying condition (6.6) (c) (and all the other conditions of
(6.6)). Then we consider the set

Σn =

{
σ
(
z∗(ι,ρ)(1), z∗(ι,ρ)(2), . . . , z∗(ι,ρ)(l)

)
:
ι = (it : t≤ l) ⊂ {1, . . . n− 1} increasing

ρ = (ρt : t = 1, 2 . . . , l) ⊂ {±1}

}
and order it into

j2qn(1) < j2qn(2) < . . . < j2qn(ln). (6.9)

We then choose a tail subsequence x(n) of x whose first element starts after zn−1 and so that
its first

∑ln
r=1 j2qn(r) elements are (1 + εn)C (C as in Proposition 5.1) equivalent to the first∑ln

r=1 j2qn(2) elements of S, and then put

zn =
1

D
yx(j2qn(1), j2qn(2), . . . , j2qn(ln)). (6.10)

Then zn > zn−1 and ‖zn‖GM ≤ 1 by Proposition 5.1. Lemma 2.9, Proposition 5.1 and
Corollary 5.2 yield that zn is an `kn1 average of constant 1

D , with kn ≥ k′n.
As before we can, by the definition of the yardstick vectors, write zn as

zn =

ln∑
r=1

z(n, r), (6.11)
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where the z(n, r) have pairwise disjoint support and z(n, r) is for each r ≤ ln of the form

z(n, r) =
1

D

f(j2qn(r))

j2qn(r)

j2qn(r)∑
s=1

x(n, r, s),

where x(n, r, s), s = 1, 2, . . . j2qn(r)) are elements of the sequence x(n), and we let

un =
1

D

ln∑
r=1

f(j2qn(r))

j2qn(r)

j2qn(r)/2∑
s=1

x(n, r, s) and (6.12)

vn =
1

D

ln∑
r=1

f(j2qn(r))

j2qn(r)

j2qn(r)∑
t=s+(j2qn(r)/2)

x(n, r, s).

It is now easy to find for every ι = (it : t = 1, 2 . . . , l) ⊂ {1, 2, . . . , n}, with 1 ≤ i1 < i2 < . . . il ≤
n, and for each ρ = (ρt : t = 1, 2 . . . , l) ∈ {−1, 1}l a sequence of functionals z∗(ι, ρ) = (z∗t : t =
1, 2, . . . l) = (z∗(ι,ρ)(t) : t = 1, 2 . . . , l) ∈ BGM∗ so that (6.6) holds. Indeed, if the last element il <

n, then we already have chosen z∗(ι, ρ). So let us assume il = n. Let ι′ = (it : t = 1, 2 . . . , l − 1)
and ρ′ = (ρt : t = 1, 2 . . . , l − 1). If ι′ and ρ′ are empty we choose r = 1. Otherwise we choose
r = r(ι, ρ) ∈ {1, 2 . . . , ln} so that

j2qn(r) = σ
(
z∗(ι′,ρ′)(1), z∗(ι′,ρ′)(2), . . . , z∗(ι′,ρ′)(l − 1)

)
(by choice of qn(i), i = 1, 2 . . . ln, this is possible). Then choose for every s = 1, 2, . . . , j2qn(r),
a functional x∗s = x∗(n, s, ι, ρ) ∈ BGM∗ ∩Q, so that

x∗s(x(r, n, s)) = x∗s′(x(r, n, s′)) ≥ 1− 2εn, for s 6= s′ in {1, 2 . . . j2qn(r)}
and supp(x∗q) ⊂ ran(x(r, n, q)).

Let

z∗(ι,ρ)(l) = ρl
1

f(j2qn(r))

j2qn(r))∑
q=1

x∗q ,

and

z∗(ι,ρ) =
(
z∗(ι′,ρ′), z

∗(ι, ρ)(l)
)
.

It follows therefore that (6.6) is satisfied, which finishes our recursive definition of zn, un and
vn.

Note that the construction of the zn accomplishes the following:
If m ∈ N and m ≤ n1 < n2 < . . . < nm are in N and (as)

m
s=1 ⊂ R, we can choose ι = (ns)

m
s1

and ρ = (sign(as))
m
s=1, and conclude that

z∗ =
1√
f(k)

m∑
t=1

z∗(ι,ρ)(t) ∈ Γ∗m,

and ∥∥∥ m∑
s=1

aszns

∥∥∥ ≥ z∗( m∑
s=1

aszns

)
≥ 1√

f(k)

1

D

m∑
s=1

|as|. (6.13)

After passing to a subsequence we can assume that (zn) has a spreading model and that it is
a 1
D -RIS. We define wn = un − vn. Then (wn) also satisfies (4.2) of the definition of 1

D -RIS, and
passing to a subsequence, we may also assume that (wn) has a spreading model satisfying (4.3)
and is therefore also a 1

D -RIS. We claim that (wn) satisfies the condition (5.1) of Proposition
5.1 and it follows therefore that (wn) has a spreading model which is equivalent to the unit
vector basis in S.
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We first estimate ‖zn‖l for n ∈ N and l ∈ J . Let

r0 = max{r = 1, 2 . . . ln : j2qn(r−1) ≤ l} with j2qn(0) := 0.

Then by the definition of zn and the z(n, r), by condition (3.6) on the sequence (ji), and by
Lemma 2.9, it follows that

∑ln
r=r0

z(n, r) is an `k1 average for some k ≥ j2qn(r0)−1 > l. It follows
therefore from Lemma 4.2 that

∥∥∥ ln∑
r=r0

z(n, r)
∥∥∥
l
≤ 2

f(l)
. (6.14)

If r = 1, 2 . . . r0 − 1, and thus j2qn(r) < l, we deduce from (3.7) that

f(l) ≥ f(j2qn(r)+1) ≥ 2

ε2qn(r)+1
j2qn(r)

and thus, by Lemma 4.5 (b)

‖z(n, r)‖l ≤
2f(j2qn(r))

j2qn(r)
. (6.15)

It follows therefore from (6.14), (6.15) and (3.5) that for l ∈ J \ {qn(1), qn(2), . . . qn(ln)}

‖zn‖l ≤
ln∑
r=1

2f(j2qn(r))

j2qn(r)
+

2

f(l)
≤ 1

f(j2qn(1)−1)
+

2

f(l)
≤ 1

jqn
+

2

f(l)
. (6.16)

Using the same argument we observe similar inequalities for un, vn, wn :

‖un‖l ≤
1

jqn
+

2

f(l)
, ‖vn‖l ≤

1

jqn
+

2

f(l)
and ‖wn‖l ≤

1

jqn
+

2

f(l)
. (6.17)

In order to verify condition (5.1) of Proposition 5.1 let m ≤ n1 < n2 < . . . ns be in N and
(as)

m
s=1 ⊂ R \ {0} we put y =

∑m
s=1 aswns . Secondly let k ∈ N and z∗ ∈ Γ∗k. As before we write

z∗ as

z∗ =
1√
f(k)

k∑
t=1

z∗t ∈ Γ∗k,

with z∗1 ∈ A∗l1 , and l1 = j2k′ , for some k′ ≥ k, and z∗i ∈ A∗li , with li = σ(z∗1 , z
∗
2 , . . . , z

∗
i−1), for

i = 2, . . . k and assume that

t0 = min{t = 1, . . . k : z∗t (y) 6= 0},

exists (otherwise z∗(y) = 0). Note that the equalities in condition (6.6)(c) imply that
z∗(ι, ρ)(t)(wj) = 0 for every j ∈ N, every increasing sequence ι = (it : t = 1, 2 . . . , l) ⊂
{1, 2, . . . , }, for each ρ = (ρt : t = 1, 2 . . . , l) ∈ {−1, 1}l, and for every t = 1, 2 . . . l. So it follows
that the sequence (z∗1 , z

∗
2 , . . . z

∗
t0) cannot be one of the sequences z∗(ι, ρ)(t), where ι =

(it : t = 1, 2 . . . , l) ⊂ {1, 2, . . . , }, is increasing and ρ = (ρt : t = 1, 2 . . . , l) ∈ {−1, 1}l. From the
injectivity of σ it follows therefore that the sets {lt : t > t0} and the set {j2qn(r) : n ∈ N, r ≤ ln}
are disjoint.
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We can now apply (4.11) and (6.17) to deduce that

|z∗(y)| ≤
|z∗t0(y)|√
f(k)

+
maxs≤m |as|√

f(k)

[∑
t∈T0

max
s∈St
‖wns‖lt + 2mεn1

]

+ max
s≤m
|as|+

1√
f(k)

m∑
s=s0+1

|as|
∣∣∣ ∑
t∈Ts

z∗t (wns)
∣∣∣

≤
|z∗t0(y)|√
f(k)

+
maxs≤m |as|√

f(k)

[
1 +

k∑
t=t0+1

2

f(lt)
+

m∑
s=1

1

jqns

]
+ max

s≤m
|as|+

maxs≤m |as|√
f(k)

[ m∑
s=s0+1

∑
t∈Ts

( 1

jqns
+

2

f(lt)

)]
≤
|z∗t0(y)|√
f(k)

+ max
s≤m
|as|+

maxs≤m |as|√
f(k)

[
1 +

k∑
t=t0+1

4

f(lt)
+

m∑
s=1

1

jqns
+

m∑
s=s0+1

k

jqns

]
where by (4.15) s0 = min

{
s = 1, 2 . . .max supp(ws−1) < εn1

√
f(k)

}
. It follows for s > s0 from

(6.7) that √
f(k) <

max supp(zs0)

εn1

≤
√
f(εnsjqns )

and thus, that k/jqns < ε
ns
≤ εn1

which yields,

|z∗(y)| ≤
|z∗t0(y)|√
f(k)

+ 8 max
s≤m
|as|

and allows us to conclude from Proposition 5.1 that the spreading model of (wn) is equivalent
to the unit vector basis in S.

Together with (6.13) we therefore proved the following result.

Theorem 6.1. There is a constant c > 1 so that in every block subspace of GM we can find
block sequences un and vn, with u1 < v1 < u2 < v2 < . . ., so that (un − vn) has a spreading
model which is c-equivalent to the unit vector basis of S, and the sequences (un), (vn) (un +
vn) have spreading models which c−1-dominate the norm ‖ · ‖f1/2 which was introduced in
Section 2. I.e. if we put xn = un, vn or un + vn, for n ∈ N, and we denote by (E, ‖ · ‖E) the
spreading model of (xn) and its basis by (ej) then

c
∥∥∥ ∞∑
s=1

ases

∥∥∥
E
≥ ‖(as)‖f1/2 = max

m∈N,s1<s2,...sm

1√
f(m)

m∑
i=1

|asi | for (as) ∈ c00. (6.18)

Thus, Corollary 2.6 and Lemma 2.5 yield our final result:

Theorem 6.2. Let (un) and (vn) be as in Theorem 6.1. Then there is a subsequence (nk)
of N so that (unk) and (vnk) are equivalent.

Proof. Using Corollary 2.6 and Lemma 2.3 twice, we may assume that

S1 : [un : n∈N]→ [un − vn : n∈N], defined by un 7→ un − vn, and

S2 : [vn : n∈N]→ [un − vn : n∈N], defined by vn 7→ un − vn, for n∈N
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are bounded. So the bounded map Id|[un] − S1 defines un 7→ vn, while Id|[vn] + S2 defines vn 7→
un, proving the claim.

Remark 11. It is worth noting that while (un) and (vn) are intertwined and equivalent
in GM, the sequences (vn) and (un+1) are not, in general, equivalent. Otherwise the shift on
[un : n∈N] would be an isomorphism and we would obtain an isomorphism of a subspace of
GM with its hyperplanes. But this is impossible if (un) was picked inside an HI subspace of
GM.

7. Consequences of the main result

7.1. Asymptotic unconditionality

Recall that a seminormalized basis (en) is said to be asymptotically unconditional if there
exists a constant C ≥ 1 such that for any k ∈ N and any successive blocks k < x1 < · · · < xk on
the basis, the sequence (x1, . . . , xk) is C-unconditional. The following is an easy consequence
of Theorem 6.1.

Proposition 7.1. The space GM does not contain any asymptotically unconditional block
sequence.

We recall that the asymptotically unconditional HI space G of Gowers is tight by range [12]
and therefore contains no intertwined and equivalent block sequences.

The sequences (un) and (vn) are chosen in an arbitrary, but fixed subspace Y of GM, and
this is why our techniques do not seem to imply that GM is HI (although we suspect it is).
This restriction is essentially technical, however, since as we shall now see, by using Gowers’
Ramsey theorem, it disappears when passing to an appropriate subspace of GM.

7.2. Applications of Gowers’ Theorem

Recall that Gowers’ game GX in a space X with a basis is a game between two players, where
Player 1 plays block subspaces Yn of X and Player 2 successive blocks yn ∈ Yn, the outcome
of the game being the block-sequence (yn).

The set b(X) of block-sequences of X is seen as a subset of Xω equipped with the product
of the norm topology on X. Also for ∆ = (δn)n a sequence of positive numbers, and A ⊂ b(X),
the set A∆ is defined as

A∆ = {(xn) ∈ b(X)
∣∣ ∃(yn) ∈ A, ‖yn − xn‖ ≤ δn∀n}.

Theorem 7.2 Gowers’ Ramsey Theorem, [16]. Let X be a space with a basis, and A
an analytic subset of b(X). Let ∆ > 0. Then there exists a block-subspace Y of X such that
A ∩ b(Y ) = ∅, or such that Player 2 has a winning strategy in Gowers’ game GY to produce an
outcome in A∆.

Given ρ ≥ 1, consider the set Aρ of block sequences (xn)n in GM such that for all k ∈ N and
all k ≤ n1 < n2 < . . . nk in N (x2ni − x2ni+1)ki=1 is ρ-equivalent to the unit vector basis of S,
and the sequences (x2ni)

k
i=1, (x2ni+1)ki=1 (x2ni + x2ni+1)ki=1 ρ

−1 dominate the norm ‖ · ‖f1/2 (as
introduced in Definition 2.1). It is easily checked that Aρ is closed (with respect to the product
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of the discrete topology on GM). Theorem 6.1 implies that for ρ < c, every block subspace of
GM contains a block sequence in Aρ. So up to modifying the constant c to take into account
a small enough perturbation ∆, we may apply Gowers’ Theorem to find a block-subspace Y of
so that the vectors un and vn of Theorem 6.1 may be chosen in arbitrary block-subspaces of
Y prescribed by Player 1.

Proposition 7.3. There exists c ≥ 1 and a block subspace of GM in which Player 2 has a
winning strategy to produce u1 < v1 < u2 < v2 < . . ., so that (un − vn) has a spreading model
which is c-equivalent to the unit vector basis of S, and the sequences (un), (vn) (un + vn) have
spreading models which c−1 dominate the norm ‖ · ‖f1/2 .

Note that ‖
∑m
i=1 ei‖f1/2 = mf(m)−1/2 while ‖

∑m
i=1 ei‖S = mf(m)−1. So for any ε > 0, one

can findm ∈ N with following property: for any U, V block subspaces of Y , there exist u1 < v1 <
· · · < um < vm, with ui ∈ U, vi ∈ V for each i, such that ‖

∑m
i=1 ui − vi‖ < ε‖

∑m
i=1 ui + vi‖,

which of course implies the HI property. This property is actually the uniform version of the
HI property which appears as the counterpart of asymptotic unconditionality in the dichotomy
proved by Wagner [26].

The third dichotomy implies that we may assume that the space of Proposition 7.3 is tight,
and the fourth dichotomy that it is subsequentially minimal. Actually slightly more may be
observed.

Theorem 7.4. There exists a tight HI block-subspace XGM of GM with a normalized
basis which is subsequentially minimal. More precisely, there exists c ≥ 1, such that for any
block-subspace Y of XGM , there exists a block-sequence (yk) of Y and a subsequence (fk) of
the basis of XGM such that

(a) y1 < f1 < y2 < f2 < · · ·
(b) (yk), (fk), (yk + fk) have spreading models which c−1 dominate the norm ‖ · ‖f1/2 ,
(c) (yk − fk) has a spreading model which is c-equivalent to the unit vector basis of S,
(d) consequently, (fk) is equivalent to (yk).

This is a variation on [11, Proposition 6.5]. Since the proof is much shorter than the
demonstration of the fourth dichotomy, we give a sketch of it.

Proof. Let Aρ ⊂ b(GM), for small enough ρ, be defined as after Theorem 7.2. Using Gowers’
first dichotomy (see Theorem 1.1), the fact that no HI space has a minimal subspace, and the
third dichotomy proven in [11] (see Theorem 1.3) we may pass to an HI tight subspace. By
Theorem 6.2 and Gowers’ Ramsey Theorem (Theorem 7.2) we can, after choosing ρ small
enough, assume that Player 2 has a winning strategy in Gowers’ game to play inside Aρ on
some further infinite dimensional subspace; also we may and shall only use blocks with rational
coordinates in this proof (and assume Gowers’ game is played with such blocks). Then the finite
block-sequences of initial moves prescribed by the winning strategy of Player 2 form a non-
empty tree T which does not have any maximal elements. We denote by [T ] the infinite block
sequences (xj) for which all the initial segments (xj)

n
j=1, n ∈ N, lie in T . Since Aρ is closed it

follows that [T ] ⊆ Aρ and for all (y1, . . . , ym) ∈ T and all block sequences (zn), there is a block
ym+1 of (zn) such that (y1, . . . , ym, ym+1) ∈ T , [11, Lemma 6.4]. Since T is countable, we can
construct inductively a block sequence (vn) such that for all (u1, . . . , um) ∈ T there is some
n∈N with (u1, . . . , um, vn) ∈ T .
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We claim that XGM := [vn, n ∈ N] works. Indeed, if (zn) is any block sequence of (vn), we
may construct inductively a block-sequence (yi) of (zn) and a subsequence (fi) of (vn) such that
(y1, f1, · · · , yn, fn) belongs to T for all n. Therefore, since Aρ is closed (y1, f1, y2, f2, · · · ) belongs
to Aρ. Finally the normalized basis (vn/‖vn‖) of XGM satisfies the conclusion of Theorem 7.4.

Since this construction can be done in any block-subspace of GM, we may assume that XGM
is actually sequentially minimal.

7.3. Local minimality

We briefly expose the fifth dichotomy obtained in [11], which is related to the second general
kind of tightness called tightness with constants. A space X = [en] is tight with constants when
for for every infinite dimensional space Y , the sequence of successive subsets I0 < I1 < . . . of N
witnessing the tightness of Y in X may be chosen so that Y 6vK [en

∣∣ n ∈ N \ IK ] for each K.
Equivalent no infinite dimensional space embeds uniformly into the tail subspaces of X [11,
Proposition 4.1]. This is the case for Tsirelson’s space T or its p-convexified version T (p).

On the other hand we already mentioned that a space X is said to be locally minimal if
there exists a constant K ≥ 1 such that every finite dimensional subspace of X K-embeds into
every infinite dimensional subspace of X.

Theorem 7.5 Fifth dichotomy [11]. Any Banach space contains a subspace with a basis
which is either tight with constants or locally minimal.

Since S contains `n∞,n∈N, uniformly and since GM is saturated with sequences with
spreading model c-equivalent to the basis of S, GM also contains `n∞, n ∈ N, uniformly in
every subspace. So by the universal properties of these spaces, GM is locally minimal.

Theorem 7.6. There exists a locally and sequentially minimal HI Banach space.

Since an HI space does not contain a minimal subspace, this answers [12, Problem 5.2], that
is, the space GM demonstrates that there are other forms of tightness than tightness by range
or with constants.

The fifth dichotomy and a dichotomy due to A. Tcaciuc [24] are used in [11] to refine the
types (1)–(6) into subclasses. In their terminology, XGM is of type (2b).

7.4. Open problems

The most important problem which remains open in Gowers’ classification program is
whether there exist spaces of type (4). Note that such a space would satisfy the criterion
of Casazza, and therefore would not be isomorphic to its proper subspaces.

Problem 7.7. Find a space with an unconditional basis, tight by range and quasi-minimal.

The nature of the tightness of XGM remains to be understood. This property is a consequence
of the non-minimality of HI spaces and of the third dichotomy, with no information on how
the sequence (In) of subsets of N depends on the subspace Y .
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Problem 7.8. Find information on the sequences (In) in the definition of the tightness of
XGM . Is GM or GM itself tight?

C. Rosendal [21] defined notions of α-minimality and α-tightness, where α < ω1 is an ordinal.
Local minimality implies that XGM is ω2-minimal and not ω-tight. On the other hand, being
tight, it must be α-tight for some α < ω1, [21, Theorem 3].

Problem 7.9. Find min{α ∈ ω1

∣∣ XGM is α−tight}.

It is unknown whether an HI space may be tight with constants. With the exception of the
uniformly convex HI space of [8], examples of the Gowers-Maurey family usually contain `n∞,
n∈N, uniformly - and therefore are locally minimal.

Problem 7.10. Find an HI space which is tight with constants.
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