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Abstract. Continuing with the study of approximately ultrahomogeneous
and Fräıssé Banach spaces introduced by V. Ferenczi, J. López-Abad, B.

Mbombo and S. Todorcevic, we define formally weaker and in some aspects
more natural properties of Banach spaces which we call Almost ultrahomo-

geneity and the Almost Fräıssé Property. We obtain relations between these

different homogeneity properties of a space E and relate them to certain pseu-
dometrics on the class Age(E) of finite dimensional subspaces of E. We prove

that ultrapowers of an almost Fräıssé Banach space are ultrahomogeneous. We

also study two properties called finitely isometrically extensible and almost
finitely isometrically extensible, respectively, and prove that approximately

ultrahomogeneous reflexive Banach spaces are finitely isometrically extensible.

Finally, we study oligomorphy in Banach spaces, and give a proof that
a Banach space is Fräıssé if and only if it is approximately ultrahomogeneous

and oligomorphic.
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4. Almost Fräıssé Banach spaces 7
5. Oligomorphy and the Fräıssé property 19
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1. Introduction

The standard terminology and notation of Banach space theory used in this
paper may be found in [2]. Recall that a Banach space is called transitive if for
any two points on the unit sphere, there is an onto isometry defined on the whole
space that sends one onto the other. In 1932, S. Mazur conjectured that separable
transitive Banach spaces are Hilbert [3, p. 151]. This is the Mazur rotation prob-
lem (two surveys on this problem and related topics are [8] and [10]). Of course
Hilbert spaces are transitive, and it is known that there exist non-separable and
non-hilbertian transitive Banach spaces. This paper outgrowths from the study of
multidimensional aspects of the Mazur rotation problem, as initiated in [15] and
pursued in [10, 14].

The notation we shall use for Fräıssé theory in Banach spaces is from [15] and
is recalled here. We denote by Age(E) and Agek(E) the set of all finite-dimensional
subspaces of a Banach space E and the set of all k-dimensional subspaces of E,
respectively. Given two Banach spaces X and E, and δ ≥ 0, a δ-isometry from X to
E is a linear map T : X → E such that 1

1+δ∥x∥ ≤ ∥Tx∥ ≤ (1 + δ)∥x∥ for all x ∈ X;

Emb(X,E) (Embδ(X,E)) is the (possibly empty) set of isometries (δ-isometries,
resp.) from X into E. Also, Isom(E) (Isomε(E)) denotes the set of all surjective
isometries (ε-isometries) on E.

1.1. Ultrahomogeneity, Approximately ultrahomogeneity, FIE-ness
and almost FIE-ness. An approach to the Mazur rotation problem involves
studying properties stronger than transitivity, satisfied by Hilbert spaces, and in-
cluding non-separable non-Hilbertian examples: if we can prove that the only sep-
arable space with such a property is the Hilbert space, then arguably this is a first
step towards a positive answer to Mazur problem in which the separability hypothe-
sis was used. A fundamental example is the multidimensional version of transitivity,
which is called ultrahomogeneity, [15, Definition 2.2]. A Banach space E is ultra-
homogeneous (UH) when for every X ∈ Age(E) every element of Emb(X,E) can
be extended to an element of Isom(E), or equivalently the group Isom(E) acts
transitively on the metric space Emb(X,E) for all X ∈ Age(E). Of course, Hilbert
spaces are ultrahomogeneous. Also ultrapowers of the Gurarij space or of the spaces
Lp[0, 1] for p ̸∈ 2N+ 4 are non-separable examples of ultrahomogeneous spaces , [1,
Proposition 4.13] and [15, Corollary 2.16].

To go on, let us recall a weaker form of the notion of transitivity: namely the
property of almost-transitivity. A Banach space is called almost transitive if the
orbits of the isometry group of the space are dense in the unit sphere. A. Pe lczyński
and S. Rolewicz proved that the Banach space Lp(0, 1) is almost transitive [20]
when 1 ≤ p < +∞. W. Lusky gave a multidimensional version of this result by
showing that the group Isom(Lp(0, 1)) acts almost transitively on each metric space
Emb(X,Lp(0, 1)) whenever X is a finite dimensional subspace of Lp(0, 1) and p = 2
or p ̸∈ 2N [18]. In the language introduced in [15], Lusky’s result says that for
those values of p, Lp(0, 1) is approximately UH: a Banach space E is approximately
ultrahomogeneous (in short approximately UH) if for each X ∈ Age(E), the group
Isom(E) acts almost transitively on Emb(X,E), that is, if for each ε > 0 and
ϕ, ψ ∈ Emb(X,E), there exists T ∈ Isom(E) such that ∥Tϕ − ψ∥ < ε. In Lusky’s
paper only a formally weaker extension property of those Lp spaces is stated, which
we call here almost ultrahomogeneity : a Banach space E is almost ultrahomogeneous
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(almost UH) if for each ε > 0, each X ∈ Age(E) and each ϕ ∈ Emb(X,E),
there exists T ∈ Isomε(E) such that T |X = ϕ. Therefore almost UH is a natural
multidimensional counterpart of almost transitivity. So, we have the following
relationships:

Ultrahomogeneous ⇒ Approx. Ultrahomogeneous ⇒ Almost Ultrahomogeneous
⇓ ⇓

Transitive ⇒ Almost transitive

Motivated by the three aforementioned properties, we start by introducing two
properties which we call finitely isometrically extensible (FIE) and almost finitely
isometrically extensible (aFIE). A Banach space E is FIE if any isometry defined
on a finite dimensional subspace of E can be extended to a norm-one operator
defined on the whole space. The aFIE-property is an ε-version of the FIE-property:
a Banach space E is aFIE if for any ε > 0, any isometry defined on a finite
dimensional subspace of E can be extended to an operator defined on the whole
space with norm at most 1 + ε. Contrarily to the transitivity property, the FIE is
preserved by taking 1-complemented subspaces, and in particular the 1-dimensional
part of the FIE-property always holds: any isometry defined on a 1-dimensional
subspace of E can always be extended to a one-norm operator defined on E. It is
clear that ultrahomogeneous spaces are FIE, but also other spaces, such as c0(Γ)
for any non-empty set Γ, are FIE. Also, we prove that almost ultrahomogeneous
reflexive spaces are FIE. We do not know if aFIE Banach spaces are in fact FIE,
but we note that the two notions coincide in the case of reflexive Banach spaces.

1.2. Fräısséness, Almost Fräısséness and oligomorphic Banach spaces.
V. Ferenczi, J. López-Abad, B. Mbombo and S. Todorcevic defined and studied
Fräıssé Banach spaces (the reader can find nutritious information about this topic
in [15, 10]). A Banach space E is Fräıssé if for every ε > 0 and every dimension k,
there exists δ > 0 such that if X is a k-dimensional subspace of E then the action
of Isom(E) on Embδ(X,E) has ε-dense orbits. Examples of Fräıssé Banach spaces
are Lp(0, 1) when p ̸∈ 2N + 4 and the Gurarij space G. The existence of separable
Fräıssé Banach spaces other than G or some Lp(0, 1) is a main open problem.

Weaker forms of the Fräıssé property appear in recent works by several authors.
M. Cuth, N. de Rancourt and M. Doucha investigate such properties in relation to
genericity of separable Banach spaces [13]. W. Kubís [17] considers “approximate
Fräıssé” limits for “metric-enriched” categories, including Banach spaces. See also
Chapter 6 of F. Cabello Sánchez and J. M. F. Castillo’s book [9], regarding Fräıssé
classes, including in the p-Banach space context.

Fräıssé Banach spaces are extremely important in relation to certain Ramsey
properties of the classes Emb(X,E) and to the extreme amenability of the topolog-
ical group Isom(E). Here we focus on the following isometric properties of Fräıssé
spaces:

(1) In Fräıssé spaces E, the Banach-Mazur and a restricted version of the
Kadets pseudometrics are uniformly equivalent on the class of finite di-
mensional subspaces of E;

(2) Separable Fräıssé spaces are isometrically determined, among separable
Fräıssé spaces, by their local structure;

(3) Separable spaces who are finitely representable in a Fräıssé space E can
be isometrically embedded into E;
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(4) For every non-free ultrafilter U on N, the ultrapower EU of a Fräıssé space
E is UH.

See [15, Theorems 2.12 and 2.19, Propositions 2.13 and 2.15]. It is natural to ask
whether the full strength of the Fräıssé property is needed for these results. Finding
weaker conditions could possibly lead to interesting new properties as well as shed
some new light on the Fräıssé property. With this aim in mind, we introduce in this
paper the almost Fräıssé Banach spaces (AF in short). A Banach space E is AF if
for every ε > 0 and every dimension k ∈ N, there is δ > 0 such that if X ∈ Agek(E)
and ϕ ∈ Embδ(X,E), there is T ∈ Isomε(E) which extends ϕ. We also study
a weakening of this property which we call here weak almost Fräıssé (weak AF
shortly). A Banach space is weak AF if whenever X ∈ Age(E) and ε > 0, there
exists δ > 0 such that if ϕ ∈ Embδ(X,E), then there exists T ∈ Isomε(E) which
extends ϕ. This variation imitates the notion of weak Fräıssé space from [15]. As
it is expected, every Fräıssé space is AF, every weak Fräıssé space is weak AF
and AF spaces are weak AF. When Agek(E) is compact for each k (with respect
to the Banach-Mazur distance), the two above introduced classes coincide, as we
prove below. This is similar to [15, Theorem 2.12] regarding the Fräıssé and weak
Fräıssé properties. The almost and weak almost Fräıssé properties only involve ε-
isometries, and in this sense, may seem more natural than their Fräıssé counterparts,
where the definition involves a mixture of isometries with ε-isometries. We highlight
the following facts about these classes of spaces (see Subsections 4.1 and 4.2).

(1) We introduce some analogous versions of the Kadets pseudometric on the
closure of Age(E) with respect to the topology induced by the Banach-
Mazur distance, and we prove that they are indeed pseudometrics when
E is AF.

(2) We prove that for every non-free ultrafilter U on N, the ultrapower of an
AF space E is AF and UH.

Answering one of our questions relative to the properties of Fräıssé spaces listed
above, Item (2) indicates that a formally weaker property than Fräısséness is suf-
ficient to obtain ultrahomogeneous ultrapowers. Also, an interesting aspect of the
weak Fräıssé property is that it is characterized by properties of the compact spaces

Agek(E)
BM

, instead of the possibly non closed Agek(E).
We end the paper by giving a proof of a characterization of Fräıssé spaces

through oligomorphy in Banach spaces. To fix ideas, let n ∈ N and E be a Banach

space. Consider the natural action of Isom(E) on Sn
E := SE×

n· · · ×SE , where SE

denotes the unit sphere of E, that is,

(T, (x1, . . . , xn)) 7→ (Tx1, . . . , Txn).(1.1)

We are interested in the case when for each n ∈ N, the quotient (classically denoted
Sn
E//Isom(E)) of Sn

E by the orbit relation of the action of Isom(E) is compact; see
the very general study of I. Ben-Yaacov et al in [5] about this property and its
reformulation as ω-categoricity (in the separable case), or also [7, 21], where the
word approximately oligomorphic is used. In the present paper we shall simply say
that E is an oligomorphic Banach space in this case. All Lp(0, 1)-spaces, 1 ≤ p <
+∞, and the Gurarij space G are oligomorphic in this sense [5, Section 17] and [6,
Section 2], respectively.

In the last section, we establish the following result, which was claimed but not
explicitly proved by I. Ben Yaacov [4]: a Banach space is Fräıssé if and only if it is
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approximately ultrahomogeneous and oligomorphic. As observed by him, this gives
a model theoretic proof of the result from [15] that the spaces Lp(0, 1) are Fräıssé
when p = 2 or p ̸∈ 2N.

2. Finitely isometrically extensible Banach spaces

Even though the ultrahomogeneity properties such as UH, approximately UH,
or the Fräıssé property are very powerful, these are not preserved under norm one
projections. Such a regularity might be desirable for abstract results about spaces
satisfying some kind of ultrahomogeneity. For this reason we consider the following:

Definition 2.1. A Banach space E is finitely isometrically extensible (FIE)
if for all X ∈ Age(E) and all ϕ ∈ Emb(X,E), there is an operator T : E → E with
∥T∥ = 1 which extends ϕ.

Note that the FIE-property is equivalent to the following: any isometry be-
tween finite dimensional subspaces of E can be extended to a one-norm operator
from E to E.

Example 2.2. Clearly, UH Banach spaces enjoy the FIE-property. In partic-
ular Hilbert spaces are FIE.

Example 2.3. Any 1-universally separably injective is FIE. So for instance
C(K), where K is an extremely disconnected compact Hausdorff space, is FIE, by
[1, Proposition 1.19].

The previous example is a particular case of the upcoming general statement
whose proof we leave to the reader (see [9, proof of Lemma 8.0.1]). Recall that for
a non-empty set Γ, c0(Γ, X) denotes the Banach space of all maps f : Γ → X with
the property that for each ε > 0, the set {γ ∈ Γ : ∥f(γ)∥ ≥ ε} is finite, endowed
with the supremum norm. When X is the scalar field, we just write c0(Γ).

Fact 2.4. If Λ and Γ are non-empty sets, then ℓ∞(Λ, c0(Γ, X)) is FIE whenever
X is 1-universally separably injective.

Proposition 2.5. Let E be a FIE Banach space. If F is a 1-complemented
subspace of E, then F is FIE.

Proof. Let W ∈ Age(F ) and T ∈ Emb(W,F ) be given. By the FIE-ness of

E, there is a one-norm operator T̂ : E → E which extends T . Let PF : E → F be
a 1-projection. We set T̃ = PF ◦ T̂ ◦ iF : F → F , where iF : F → E is the natural
inclusion. Clearly, T̃ extends T and ∥T̃∥ = 1. □

We conclude with a characteristic feature of FIE spaces.

Proposition 2.6. Let E be a FIE Banach space, and X,Y ∈ Age(E). If X
is C-complemented in E and Y is isometric to X, then Y is also C-complemented
in E.

Proof. If ϕ : Y → X is an isometry, T is a norm one extension of ϕ to E, and
P is a projection onto X, then the map ϕ−1PT defines a projection onto Y with
the same norm as P . □
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3. Almost ultrahomogeneous and almost finitely isometrically
extensible Banach spaces

In order to state the next results, we introduce the weakening of ultrahomo-
geneity that is one of our main focus in this paper, and is closer to the original
definition of the Gurarij space as well to the way the results of Lusky [18] regard-
ing Lp(0, 1)-spaces were originally formulated.

Definition 3.1. A Banach space is called almost ultrahomogeneous (almost
UH), if for all ε > 0 and all X ∈ Age(E) and all ϕ ∈ Emb(X,E), there exists
T ∈ Isomε(E) such that T |E = ϕ.

Remark 3.2. Every approximately UH Banach space is almost UH. Indeed,
assume that E is approximately UH and let ε > 0, X ∈ Age(E) and ϕ ∈ Emb(X,E)
be given. Since E is approximately UH, there is U ∈ Isom(E) such that ∥U |X −
ϕ∥ < ε/(2 dimX). If PX : E → X is a projection with ∥PX∥ ≤ dimX, we set
T = U − (U − ϕ) ◦ PX . It is not difficult to check that T ∈ Isomε(E) and T |X = ϕ.

To relate the almost UH property to the FIE-property, we need the following
approximate version of this property.

Definition 3.3. A Banach space E has the almost finitely isometrically exten-
sible (aFIE) if it satisfies the following condition: for all ε > 0 and all X ∈ Age(E)
and all ϕ ∈ Emb(X,E), there exists T : E → E such that T |E = ϕ and ∥T∥ ≤ 1+ε.

Note that every FIE Banach space is aFIE. This notion easily relates to ul-
trahomogeneity properties as follows:

Fact 3.4. Any almost UH space is aFIE.

Example 3.5. For p ∈ 2N and p ≥ 4, Lp(0, 1) is not aFIE. Actually, for any
C > 1, by [15, Proposition 2.10], there is a finite dimensional subspace such that

if T : X → Lp(0, 1) is an isometry and if T̃ extends T , then ∥T̃∥ ≥ C.

The upcoming result is the corresponding version of Proposition 2.5 for aFIE
Banach spaces.

Proposition 3.6. Let E be a Banach space and F be a subspace of E.

(1) If E is aFIE and F is 1-complemented in E, then F is aFIE.
(2) If E is aFIE and F is 1-complemented in E∗∗, then F is FIE. In par-

ticular, reflexive aFIE spaces are FIE.

Proof. (1) If ε > 0, Y ∈ Age(F ) and T ∈ Emb(Y, F ) are given, by

the aFIE-ness of E, there is an operator T̂ : E → E such that T̂ |Y = T

and ∥T̂∥ ≤ 1 + ε. Let PF : E → F be a 1-projection. We set T̃ =

PF ◦ T̂ ◦ iF : F → F , where iF : F → E is the natural inclusion. Clearly,
T̃ extends T and ∥T̃∥ ≤ 1 + ε.

(2) Let Y ∈ Age(F ) and T ∈ Emb(Y, F ) be given. For each Z ∈ Age(F ) with
Y ⊂ Z, there exists TZ : Z → E extending T such that ∥TZ∥ ≤ 1 + 1

dimZ .
Let U be an ultrafilter on the set of finite dimensional subspaces of F
containing Y and refining the Fréchet filter and define ψ : F → E∗∗ by
ψ(y) = w∗− lim

U
TZ(y), y ∈ F . The Banach-Alaoglu theorem ensures that

ψ is well-defined. If P : E∗∗ → F is a 1-projection, the operator T̃ : F → F
given by T̃ = P ◦ ψ satisfies the requirements. □
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Remark 3.7. Since Lp(0, 1) is approximately UH (and therefore aFIE) for
p ̸∈ 2N + 4 [18], Proposition 3.6 implies that Lp(0, 1) is FIE for p ̸∈ 2N + 4.
More generally Proposition 3.6(2) implies that all separable Lp(µ) are FIE when
p ̸∈ 2N + 4.

Other examples of FIE spaces are the so called 1-uniformly finitely extensible
spaces (1-UFO). If λ ≥ 1, a Banach space E is called λ-uniformly finitely extensible
(λ-UFO) if for all finite dimensional subspace X of E, each operator τ : X → E can
be extended to an operator T : E → E with ∥T∥ ≤ λ∥τ∥. λ-UFO were introduced
by Y. Moreno and A. Plichko in [19] and systematically studied in [11] and [12],
see also Chapter 7 of [9]. It is worth mentioning that λ-UFO spaces satisfy the
following dichotomy: every λ-UFO space is either an L∞-space or a weak type 2
near-Hilbert space with the Maurey projection property [12, Theorem 5.1].

Note however that not every FIE-space is 1-UFO. Indeed, since ℓp is 1-
complemented in Lp(0, 1) [2, Proposition 6.4.1], Proposition 2.5 entails that ℓp
is FIE when p ̸∈ 2N + 4. On the other hand, when p ̸= 2, ℓp is not UFO by [12,
Corollary 3.6].

The following diagram displays the basic implications between the multidimen-
sional properties considered so far:

Ultrahomogeneous ⇒ Approx. Ultrahomogeneous ⇒ Almost Ultrahomogeneous
⇓ ⇓

FIE ⇒ aFIE

While FIE and aFIE are equivalent for reflexive spaces, we do not know
whether there are aFIE-spaces which are not FIE. We also do not know whether
the Approximate and the Almost Ultrahomogeneities are equivalent properties. All
other implications in this diagram are strict.

4. Almost Fräıssé Banach spaces

The property introduced in this section is inspired by the recent notion of
Fräısséness studied in [15]. We start by recalling the Fräıssé and the weak Fräıssé
properties for Banach spaces.

Definition 4.1. [15, Definition 2.2] Let E be Banach space.

(1) E is weak Fräıssé if for every ε > 0 and every X ∈ Age(E) there is
δ > 0 such that if ϕ, ψ ∈ Embδ(X,E), then there exists T ∈ Isom(E) with
∥T ◦ ϕ− ψ∥ < ε.

(2) E is Fräıssé if for every ε > 0 and every dimension k ∈ N there is δ > 0
such that if X ∈ Agek(E) and ϕ, ψ ∈ Embδ(X,E), then there exists
T ∈ Isom(E) with ∥T ◦ ϕ− ψ∥ < ε.

In [15] it was proved that the Gurarij space G and Lp(0, 1) for p ̸∈ 2N + 4
are Fräıssé Banach spaces. While the Fräıssé property obviously implies the weak
Fräıssé property, it is not known whether the two properties coincide. Recall that
the Banach-Mazur distance on Agek(E) is defined by

dBM(X,Y ) = inf{log(∥T∥∥T−1∥) : T : X → Y is an isomorphism}.
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The authors of [15] prove that a Banach space is Fräıssé if and only if it is weak
Fräıssé and (Agek(E), dBM) is a compact metric space for each k ∈ N [15, Theorem
2.12]. Our guideline is now to investigate whether a similar result holds for natural
variations of these properties discussed in the introduction and that we shall now
define.

It will be important to recall that (Agek(E)
BM

, dBM) is a compact metric space
for each k ∈ N. While the Fräıssé and weak Fräıssé properties involved only ele-
ments of Age(E), an interesting fact is that we shall actually consider properties

where elements of Age(E)
BM

can be relevant as well.

Proposition 4.2. Let E be a Banach space. The following statements are
equivalent:

(1) whenever X ∈ Age(E)
BM

and ε > 0, there exists δ > 0 such that if
ϕ1, ϕ2 ∈ Embδ(X,E), there exists T ∈ Isomε(E) such that ϕ2 = T ◦ ϕ1.

(2) whenever k ∈ N and ε > 0, there exists δ > 0, such that if X ∈ Agek(E)
BM

and ϕ1, ϕ2 ∈ Embδ(X,E), there exists T ∈ Isomε(E) such that ϕ2 = T◦ϕ1.
(3) whenever k ∈ N and ε > 0, there exists δ > 0, such that if X ∈ Agek(E)

and ϕ1, ϕ2 ∈ Embδ(X,E), there exists T ∈ Isomε(E) such that ϕ2 = T◦ϕ1.
(4) whenever k ∈ N and ε > 0, there exists δ > 0, such that for any X ∈

Agek(E) and any ϕ ∈ Embδ(X,E), there exists T ∈ Isomε(E) such that
T |X = ϕ.

Proof. The implications (2) ⇒ (1), (2) ⇒ (3) and (3) ⇒ (4) are immediate.
We prove (1) ⇒ (2) , (4) ⇒ (3), and (3) ⇒ (2).

(1) ⇒ (2): Suppose that (2) does not hold. So there is k0 ∈ N and ε0 > 0 such

that for each n ∈ N there exist Xn ∈ Agek0
(E)

BM
and ϕ1n, ϕ

2
n ∈ Emb1/n(Xn, E)

satisfying ϕ2n ̸= T ◦ ϕ1n for any T ∈ Isomε0(E). By compactness of Agek0
(E)

BM

we may assume that Xn
BM→ X for some X ∈ Agek0

(E)
BM

. Now, let δ > 0 be the
corresponding number satisfying (1) for X and ε1 = ε0/2. Choose 0 < ξ < δ and

let n0 ∈ N be such that 1
n0

< δ−ξ
1+ξ and dBM(Xn0 , X) < ξ. If l : X → Xn0 is an

isomorphism with ∥l∥ = 1 and ∥l−1∥ ≤ 1+ξ, then ϕ1n0
◦ l, ϕ2n0

◦ l ∈ Embδ(X,E). By

(1), there exists T ∈ Isomε1(E) such that ϕ2n0
◦ l = T ◦ϕ1n0

◦ l. Hence ϕ2n0
= T ◦ϕ1n0

for some T ∈ Isomε0(E) which is impossible.
(4) ⇒ (3): Suppose that (4) is valid and let ε > 0 and k ∈ N be given. Take

δ > 0 corresponding to (4) and fix 0 < δ′ < δ such that (1 + δ′)2 ≤ 1 + δ. Now let
ϕ, ψ ∈ Embδ′(X,E) be given. Write Y = ϕ(X) ∈ Agek(E) and define η : Y → E
by ηy = ψ(ϕ−1y), y ∈ Y . Thus, η ∈ Embδ(Y,E) and by (4), there is T ∈ Isomε(E)
such that T |Y = η. The equation T |Y = η means that T ◦ ϕ = ψ.

(3) ⇒ (2): Indeed, let ε > 0 and k ∈ N be given, fix δ > 0 as in (3) and

take 0 < ξ < δ
2+δ . If X ∈ Agek(E)

BM
, there exists an ξ-isometry Aξ : X → Xξ,

where Xξ ∈ Agek(E). Now, for ϕ, ψ ∈ Embδ/2(X,E), we have ϕ ◦ A−1
ξ , ψ ◦ A−1

ξ ∈
Embδ(Xξ, E). By (3), we have ψ ◦ A−1

ξ = T ◦ ϕ ◦ A−1
ξ for some T ∈ Isomε(E).

Thus, ψ = T ◦ ϕ. □

Proposition 4.3. Let E be a Banach space. The following statements are
equivalent:
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(5) whenever X ∈ Age(E) and ε > 0, there exists δ > 0 such that if ϕ1, ϕ2 ∈
Embδ(X,E), there exists T ∈ Isomε(E) such that ϕ2 = T ◦ ϕ1.

(6) whenever X ∈ Age(E) and ε > 0, there exists δ > 0 such that if ϕ ∈
Embδ(X,E), there exists T ∈ Isomε(E) such that T |X = ϕ.

Proof. Suppose that (6) is valid and let X ∈ Age(E) and ε > 0 be given.
If ξ > 0 satisfies (1 + ξ)2 ≤ 1 + ε, take δ > 0 corresponding to ξ in (6). Let
ϕ1, ϕ2 ∈ Embδ(X,E) be given. From (6) there are T1, T2 ∈ Isomξ(E) such that

T1|X = ϕ1 and T2|X = ϕ2. So, T = T2 ◦ T−1
1 ∈ Isomε(E) and T ◦ ϕ1 = ϕ2. □

Propositions 4.2 and 4.3 together with Definition 4.1 motivate the next defini-
tions.

Definition 4.4. Let E be a Banach space.

(1) E is almost Fräıssé (AF) if it satisfies one of conditions (and hence all of
them) in Proposition 4.2.

(2) E is weak almost Fräıssé (weak AF) if it satisfies one of conditions (and
hence all of them) in Proposition 4.3.

It is obvious, but worth stating, that the AF-property implies the weak AF-
property. Items (2)-(3)-(4) in Proposition 4.2 indicates that some uniformity with
respect to the dimension of E follows from the almost Fräıssé property, while this
is not formally implied by the weak almost Fräıssé property. However, as a conse-
quence of (1) in Proposition 4.2 and (5) in Proposition 4.3, we obtain:

Corollary 4.5. If E is a weak AF Banach space and Agek(E) is compact for
all k, then E is AF.

It seems to be open whether the AF-property implies that Agek(E) is compact
for all k, or whether the weak AF property implies the AF property in general.
The next result justifies the terminology used here.

Proposition 4.6. Any Fräıssé (resp. weak Fräıssé) Banach space is AF (resp.
weak AF).

Proof. Let ε > 0 and k ∈ N be given, and take 0 < ξ < 1 such that 1+ξ
1−ξ <

1 + ε. Fix δ > 0 corresponding to ξ/k in the definition of Fräıssé. Also let X ∈
Agek(E) and ϕ ∈ Embδ(X,E). By the Fräıssé-ness, there is S ∈ Isom(E) satisfying

∥S|X − ϕ∥ < ξ
k . If ψ := S|X − ϕ and P : E → X is a projection with ∥P∥ ≤ k,

then by setting T = S − ψ ◦ P : E → E we have T |X = ϕ and max{∥T∥, ∥T−1∥} ≤
1+ξ
1−ξ < 1 + ε, so T ∈ Isomε(E). The proof of the second statement is analogous. □

It is worth noting the following property of AF spaces. Recall that two spaces
are said to be almost isometric if they are ε-isometric for all ε > 0.

Fact 4.7. If E is almost isometric to F and E is AF (weak AF, respectively),
then F is AF (weak AF, respectively).

Proof. Let ε > 0 and k ∈ N be given, and let δ > 0 be the corresponding
number to the AF definition. Take 0 < ξ < δ/(2 + δ) and let j : E → F be
an ξ-isometry. If Y ∈ Agek(F ) and ϕ1, ϕ2 ∈ Embδ/2(Y, F ), then ϕ1 ◦ j, ϕ2 ◦ j ∈
Embδ(j−1(Y ), E). Since E is AF, there is T ∈ Isomε(E) such that T ◦ϕ1◦j = ϕ2◦j,
that is, T ◦ ϕ1 = ϕ2. The statement for weak AF spaces is proved similarly. □
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On the other hand, we do not know if the class of FIE or aFIE spaces is stable
by almost isometries.

We end this part by displaying the relationships between the notions introduced
throughout the paper.

Fräıssé ⇒ Almost Fräıssé
⇓ ⇓

Weak Fräıssé ⇒ Weak Almost Fräıssé
⇓ ⇓

Ultrahomogeneous ⇒ Approx. Ultrahomogeneous ⇒ Almost Ultrahomogeneous
⇓ ⇓

FIE ⇒ aFIE

We know of no example which is almost ultrahomogeneous but not Fräıssé.
So the six properties in the upper right corner could be equivalent; one important
aspect of this question relates to whether Age(E) is closed with respect to the
Banach-Mazur pseudodistance. Under this hypothesis, Fräıssé and its weak version
are equivalent (Theorem 2.12 in [15]), and almost Fräıssé and its weak version are
equivalent (Corollary 4.5).

4.1. Some pseudodistances associated to AF Banach spaces. To con-
tinue, we recall the Gromov-Hausdorff function on Agek(E)2 introduced in [15] in
order to study Fräıssé Banach spaces. If X,Y ∈ Agek(E), the authors define

γE(X,Y ) = inf{dH(BX0
, BY0

) : X0 ≡ X and Y0 ≡ Y },(4.1)

where dH is the ∥ · ∥E-Hausdorff metric and the symbol ≡ means “isometric to”.
Another function defined on Agek(E)2 and considered in [15] is

DE(X,Y ) = inf{dH(BTX , BY ) : T ∈ Isom(E)}, X, Y ∈ Agek(E).

It is easy to see that DE is always a pseudometric on Agek(E), that γE ≤ DE ,
and that both are invariant under the action of Isom(E). Also, DE is a complete
metric for every Banach space E and γE = DE when E is approximately UH, [15,
Proposition 2.14] - and therefore γE is complete when E is approximately UH, as
is implicitly used in [15]. The DE-completeness is consequence of the following fact
which is certainly well-known but for which we include a proof.

Lemma 4.8. Let (X, d) be a complete metric space. Suppose that G is a group
acting on X. If d is G-invariant, then

ρ : X ×X → R
(x, y) 7→ ρ(x, y) = inf

g∈G
d(gx, y)

is a complete pseudometric.

Proof. It is not difficult to check that ρ is a pseudometric. Now, we prove
the completeness. Let (xn) be a sequence in X such that ρ(xn, xn+1) < 1/2n

for each n ∈ N. We shall contruct sequences (zn) in X and (gn) in G such that
gnzn = xn and d(zn, zn+1) < 1/2n for each n ∈ N. Suppose that z1, . . . , zn ∈ X
and g1, . . . , gn ∈ G have already been defined. Since ρ(xn, xn+1) < 1/2n, there
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exists hn ∈ G satisfying d(hnxn, xn+1) < 1/2n. By the G-invariance of d we have

d(hnxn, xn+1) = d(xn, h
−1
n xn+1) = d(gnzn, h

−1
n xn+1)

= d(zn, g
−1
n h−1

n xn+1) < 1/2n.

By setting zn+1 = g−1
n h−1

n xn+1 and gn+1 = hngn, we end the induction.
If z ∈ X satisfies zn → z, then ρ(xn, z) ≤ d(zn, z) → 0 as n → ∞. Therefore,

ρ is complete. □

Proposition 4.9. If E is a Banach space, then (Age(E), DE) is complete. If
E is approximately UH, then the function γE coincides with DE, and is therefore
a complete metric.

Proof. The second part is [15, Proposition 2.14]. For the first part, let K(E)
be the family of nonempty compact subsets of E. Since the map Ψ: X ∈ Age(E) 7→
BX ∈ K(E) is injective and (K(E), dH) is complete, it suffices to check that
Ψ(Age(E)) is dH -closed to prove that it is dH -complete.

Let (Xn) be a sequence in Age(E) such that Ψ(Xn) = BXn

dH→ A. In particular
there exists k such that Xn ∈ Agek(E) for each n ∈ N. Note that the limit A
is a non-empty balanced compact convex subset of E. So X0 =

⋃
λ>0 λA is a

subspace of E and Ψ(X0) = BX0 = A. Finally, by taking n0 ∈ N such that
dH(BXn0

, BX0
) < 1/2k, we obtain that dimX0 = k, that is, X0 ∈ Agek(E).

Now, since dH is Isom(E)-invariant, the conclusion of the Proposition follows
from Lemma 4.8. □

Now, following the above ideas, we introduce “almost” versions Da
E of DE , and

γaE of γE . These functions are intended to be relevant to the case when E is almost
UH (and not necessarily UH), or weak AF (and not necessarily weak Fräıssé).
While Da

E will be defined on Agek(E), an interesting new feature of γaE is that it

will be defined on Age(E)
BM

.

Definition 4.10. If X,Y ∈ Age(E), we let

Dδ(X,Y ) = inf{dH(T (BX), U(BY )) : T,U ∈ Isomδ(E)}

and

Da
E(X,Y ) := lim

δ→0
Dδ(X,Y ) = sup

δ>0
Dδ(X,Y ).

We note the following:

Fact 4.11. Let E be a Banach space. Then Da
E(X,Y ) is a pseudometric on

Age(E) such that Da
E(X,Y ) ≤ DE(X,Y ).

Proof. We use the immediate fact: if A,B ⊂ E are compact and T ∈
Isomδ(E), then dH(T (A), T (B)) ≤ (1 + δ)dH(A,B). From this we obtain for each
ε, δ > 0

Dδ(X,Y ) +Dδ(Y,Z) + ε ≥ (1 + δ)−1Dδ2+2δ(X,Z).

The triangle inequality follows when ε, δ tends to zero. □

In contrast to DE , we have no reason to think that Da
E is a complete pseudo-

metric in general. We now turn to the definition of the function γaE .
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Definition 4.12. Let E be a Banach space. If X,Y ∈ Agek(E)
BM

, we set

dδ(X,Y ) = inf{dH(t(BX), t′(BY )) : t ∈ Embδ(X,E), t′ ∈ Embδ(Y,E)}

and

γaE(X,Y ) := lim
δ→0

dδ(X,Y ) = sup
δ>0

dδ(X,Y ).

Lemma 4.13. The following functions give alternative definitions of γaE: for

X,Y ∈ Agek(E)
BM

, we set

d1δ(X,Y ) = inf{dH(BtX , BsY ) : t ∈ Embδ(X,E), s ∈ Embδ(Y,E)}, and

d2δ(X,Y ) = inf{dH(t(BX), BsY ) : t ∈ Embδ(X,E), s ∈ Embδ(Y,E)}.

Then

γaE(X,Y ) = lim
δ→0

d1δ(X,Y ) = lim
δ→0

d2δ(X,Y ).

Moreover, if X,Y ∈ Age(E) and

D1
δ(X,Y ) = inf{dH(BUX , BV Y ) : U, V ∈ Isomδ(E)},

then

Da
E(X,Y ) = lim

δ→0
D1

δ(X,Y ) = sup
δ>0

D1
δ(X,Y ).

Proof. If u : E → F is a δ-isometry, then
1

1 + δ
BuE ⊂ u(BE) ⊂ (1 + δ)BuE .

So, dH(u(BE), BuE) ≤ δ. Hence if t ∈ Embδ(X,E) and s ∈ Embδ(Y,E), then

dH(t(BX), s(BY )) ≤ 2δ + dH(BtX , BsY ), and

dH(BtX , BsY ) ≤ 2δ + dH(t(BX), s(BY )).

Thus γaE(X,Y ) = lim
δ→0

d1δ(X,Y ). The other statements are proved similarly. □

Before comparing this function to the more classical ones, we observe an easy
consequence of its definition. It is inspired from [15, Proposition 2.14], where it
was proved that dBM(X,Y ) ≤ 4kdH(BX , BY ) for each X,Y ∈ Agek(E) such that
dH(BX , BY ) < 1/2k.

Lemma 4.14. Let E be a Banach space and X,Y ∈ Agek(E)
BM

.

(1) If X,Y ∈ Agek(E) and dH(X,Y ) ≤ d < 1/2k, then there exists an iso-
morphism λ : X → Y such that ∥λ∥ ≤ 1 + kd, ∥λ−1∥ ≤ 1/(1 − kd) and
∥λ− Id∥ ≤ kd.

(2) Suppose that X,Y ∈ Agek(E) and let σ > 0 be given. If λ : X → Y is an
ε-perturbation of Id with kε ≤ σ/(2 + σ), there exists T ∈ Isomσ(E) such
that T |X = λ.

(3) dBM(X,Y ) ≤ 4kγaE(X,Y ) whenever γaE(X,Y ) < 1/2k, and γaE(X,Y ) = 0
if and only if X ≡ Y .

(4) γaE is BM-lower semicontinuous on Agek(E)
BM

, in the sense that if
limn dBM(Xn, X) = 0 and limn dBM(Yn, Y ) = 0, then

γaE(X,Y ) ≤ lim inf γaE(Xn, Yn).
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Proof. (1) Fix an Auerbach basis of X, {x1, . . . , xk}. From definition
of dH , for each j = 1, . . . , k there are yj ∈ Y satisfying ∥xj − yj∥ ≤ d. If
a1, . . . , ak ∈ K, we have

(1 − kd)

∥∥∥∥∥∥
k∑

j=1

ajx
′
j

∥∥∥∥∥∥ ≤

∥∥∥∥∥∥
k∑

j=1

ajy
′
j

∥∥∥∥∥∥ ≤ (1 + kd)

∥∥∥∥∥∥
k∑

j=1

ajx
′
j

∥∥∥∥∥∥ .
Thus, λ : X → Y defined linearly by xj ∈ X 7→ yj ∈ Y is an isomorphism
with ∥λ∥ ≤ 1 + kd, ∥λ−1∥ ≤ 1/(1 − kd) and ∥λ− Id∥ ≤ kd.

(2) If PX : E → X is a projection with ∥PX∥ ≤ k, let T : E → E be defined
by T = Id − (IdX − λ) ◦ PX . Note that T |X = λ, ∥T∥ ≤ 1 + kε ≤ 1 + σ
and ∥T−1∥ ≤ 1/(1 − kε) ≤ 1 + σ. Hence, T ∈ Isomσ(E).

(3) Let d > 0 be such that γaE(X,Y ) < d < 1/2k. Also let δ > 0 be such that
d1δ(X,Y ) < d < 1/2k. So there are t ∈ Embδ(X,E) and s ∈ Embδ(Y,E)
satisfying dH(BtX , BsY ) < d.

Write X ′ = tX and Y ′ = sY . By Item (1), there exists an isomor-
phism λ : X ′ → Y ′ such that ∥λ∥ ≤ 1+kd and ∥λ−1∥ ≤ 1/(1−kd). Hence,
dBM(X,Y ) ≤ 4 log(1 + δ) + log( 1+kd

1−kd ) ≤ 4 log(1 + δ) + 4kd. Since δ, d were

arbitrary, we conclude that dBM(X,Y ) ≤ 4kγaE(X,Y ).

(4) Note that if X,Y,X ′, Y ′ ∈ Agek(E)
BM

, and s : X → X ′, t : Y → Y ′ are
1 + ε-isometric maps, then

dδ(X ′, Y ′) = inf{dH(BuX′ , BvY ′) : u ∈ Embδ(X,E), v ∈ Embδ(Y,E)}
= inf{dH(BusX , BvtY ) : u ∈ Embδ(X,E), v ∈ Embδ(Y,E)}
≥ dδ+ε+δε(X,Y ).

In particular, if limn dBM(Xn, X) = 0 and limn dBM(Yn, Y ) = 0, then

dδ+ε+δε(X,Y ) ≤ lim inf dδ(Xn, Yn) ≤ lim inf γaE(Xn, Yn)

and since δ and ε were arbitrary,

γaE(X,Y ) ≤ lim inf γaE(Xn, Yn). □

Now we list some relationships between the above defined functions and the
different forms of ultrahomogeneity.

Proposition 4.15. Let E be a Banach space and X,Y ∈ Age(E). Then

(1) γaE(X,Y ) ≤ γE(X,Y ) ≤ DE(X,Y ) and γaE(X,Y ) ≤ Da
E(X,Y ) ≤ DE(X,Y ).

(2) If E is almost UH, then γaE(X,Y ) ≤ Da
E(X,Y ) ≤ γE(X,Y ) ≤ DE(X,Y ).

(3) If E is weak AF, then γaE(X,Y ) = Da
E(X,Y ) ≤ γE(X,Y ) ≤ DE(X,Y ),

and particular γaE is a pseudometric on Age(E).
(4) If E is approximately UH, then γaE(X,Y ) ≤ Da

E(X,Y ) ≤ γE(X,Y ) =
DE(X,Y ), and in particular γE is a pseudometric on Age(E).

(5) If E is weak Fräıssé, then the four maps γaE , γE , D
a
E , DE are pseudometrics

which coincide on Age(E).

Proof. (1) is obvious and (4) was observed in [15].
(2) if t, t′ are isometric embeddings of X and Y into E, and δ > 0 is given,

let T, T ′ ∈ Isomδ(E) be extensions of t and t′ respectively. Then Dδ(X,Y ) ≤
dH(TBX , T

′BY ) = dH(tBX , t
′BY ). Taking the supremum over δ and the infimum

over t, t′ gives that Da
E(X,Y ) ≤ γE(X,Y ).



14 VALENTIN FERENCZI AND MICHAEL A. RINCÓN-VILLAMIZAR

(3) If ε > 0 is given, let δ > 0 be the corresponding number of definition of weak
AF to X and Y . From its definition there are t ∈ Embδ(X,E) and s ∈ Embδ(Y,E)
such that dH(t(BX), s(BY )) ≤ γaE(X,Y ). Since E is weak AF, there are T, S ∈
Isomε(E) which extend t and s, respectively. Thus Dε(X,Y ) ≤ γaE(X,Y ) and the
arbitrariness of ε > 0 yields Da

E(X,Y ) ≤ γaE(X,Y ).
(5) Because of (2), it is enough to prove that DE ≤ γaE . Let ε > 0 and δ > 0 be

associated number by the weak Fräıssé property in X and Y . If t ∈ Embδ(X,E)
and s ∈ Embδ(X,E) are given, let T, S ∈ Isom(E) be such that ∥T |X − t∥ ≤ ε and
∥S|Y − s∥ ≤ ε. Then

dH(T (BX), S(BY )) ≤ dH(T (BX), t(BX)) + dH(S(BY ), s(BY )) + dH(t(BX), s(BY ))

≤ 2ε+ dH(t(BX), s(BY )).

Thus, DE(X,Y ) ≤ 2ε+ dδ(X,Y ) ≤ 2ε+ γaE(X,Y ) . By taking ε→ 0+ we get the
result. □

We now turn to characterizations of almost Fräıssé spaces among weak almost
Fräıssé spaces. As we shall see, the situation is more involved than for Fräıssé
spaces, which by [15, Theorem 2.12] are exactly the weak Fräıssé spaces for which
Agek(E) is BM-compact for all k.

We consider another natural pseudometric, which is only defined on Age(E).

Definition 4.16. Let E be a Banach space and X,Y ∈ Age(E). We let

DE
BM(X,Y ) = inf{log(∥T∥∥T−1∥) : T : E → E is an isomorphism and T (X) = Y }.

We have the following facts:

Lemma 4.17. Let E be a Banach space.

(1) DE
BM is apseudometric on Age(E) dominating dBM.

(2) There is a constant c(δ, k) > 0 such that for any X,Y ∈ Agek(E), we
have Da

E(X,Y ) ≤ δ < 1/2k2 ⇒ DE
BM(X,Y ) ≤ c(δ, k).

(3) For any X,Y ∈ Age(E), Da
E(X,Y ) = 0 ⇔ DE

BM(X,Y ) = 0.
(4) If E is weak AF, then Id is an homeomorphism between (Age(E), dBM)

and (Age(E), DE
BM).

(5) If E is AF, then Id is a uniform homeomorphism between (Age(E), dBM)
and (Age(E), DE

BM).

Proof. (1) follows from definition. (2) By Lemma 4.13 there are U, V ∈
Isomδ(E) satisfying dH(BUX , BV Y ) ≤ δ. If X ′ = UX and Y ′ = V Y , then by
Lemma 4.14(1) there is λ : X ′ → Y ′ which is a kδ-perturbation of Id. Once again by

Lemma 4.14(2), there exists λ̃ ∈ Isomσ(k,δ)(E) such that λ̃|X = λ, where σ(k, δ) =

2k2δ/(1 − k2δ). If T = V −1λ̃U , then T : E → E is an isomorphism with TX = Y
and

DE
BM(X,Y ) ≤ log(∥T∥∥T−1∥) ≤ 2 log(1 + δ) + log

(
1 + k2δ

1 − k2δ

)
:= c(δ, k).

(3) follows from (2) since lim
δ→0

c(δ, k) = 0. (4) and (5) are obvious implications of

the definition. □

Question 4.18. When is DE
BM a complete pseudometric?
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Note that if DE
BM is complete and E is AF, then Age(E) is BM-compact.

Recall that for X,Y ∈ Agek(E)
BM

we have γaE(X,Y ) = 0 if and only if X ≡ Y
(Lemma 4.14), and if E is weak AF, then we have that γaE = supδ>0 dδ is a
pseudometric on Age(E) coinciding with Da

E = supδ>0Dδ (Item 3 in Proposition
4.15).

Note that although γaE is defined on Agek(E)
BM

, it is not clear whether it is
a pseudometric there. We start with a lemma which implies that when E is AF,

then γaE is indeed a complete pseudometric on Agek(E)
BM

.
We denote by (Ck(E), γaE) the γaE-completion of Agek(E), and by j the map

Ck(E) → Agek(E)
BM

, defined by j((Xn)n) = BM − limnXn. Note that j is well
defined by uniform continuity of the map Id on Age(E) with respect to the γaE and
BM pseudometrics.

Lemma 4.19. Let E be a Banach space. Then we have the relation, for X,Y ∈
Ck(E),

γaE(jX, jY ) ≤ γaE(X,Y ).

Furthermore, consider the properties:

(1) E is AF.

(2) γaE is a pseudometric on Agek(E)
BM

.

(3) The map j : Ck(E) → Agek(E)
BM

is surjective and satisfies γaE(jX, jY ) =
γaE(X,Y ).

(4) Id: (Agek(E)
BM

, γaE) → (Agek(E)
BM

,BM) is uniformly continuous for
each k.

Then (1) ⇒ (2) ⇔ (3) ⇒ (4).

In particular, if E is AF, then γaE is a complete pseudometric on Agek(E)
BM

.

Proof. WriteX = (Xn)n, Y = (Yn)n, whereXn, Yn are γaE-Cauchy sequences.
Then Xn and Yn tend to jX and jY respectively with respect to dBM. By Lemma
4.14(3), it follows that γaE(jX, jY ) ≤ lim inf γaE(Xn, Yn) = limn γ

a
E(Xn, Yn) =

γaE(X,Y ).

Also, if (2) holds, i.e. γaE is a complete pseudometric on Agek(E)
BM

, and
admitting for now (2) ⇒ (3), then j is a surjective isometry between (Ck(E), γaE)

and (Agek(E)
BM

, γaE), so γaE is necessarily a complete pseudometric on Agek(E)
BM

,
proving the last affirmation of the lemma.

(2) ⇒ (4) is an immediate consequence of Lemma 4.14(3). (3) ⇒ (2) is also
clear, since if (3) holds then the γaE-completion (Ck(E), γaE) of Agek(E) coincides

with (Agek(E)
BM

, γaE), through the map j.

(1) ⇒ (2): We prove the triangular inequality. Let X,Y, Z ∈ Agek(E)
BM

and
r > 0 be fixed. If 0 < ε < r is given, let δ > 0 be the corresponding value in the
definition of AF. Also, fix δ′ > 0 such that (1 + δ′)(1 + ε) < 1 + r and 0 < δ′ < δ.
Then

dδ′(X,Y ) ≤ γaE(X,Y ) and dδ′(Y,Z) ≤ γaE(Y,Z).
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From definition there are u ∈ Embδ′(X,E), v ∈ Embδ′(Y,E), t ∈ Embδ′(Y,E) and
s ∈ Embδ′(Z,E) such that

dH(u(BX), v(BY )) ≤ γaE(X,Y ) and dH(t(BY ), s(BZ)) ≤ γaE(Y, Z).(4.2)

Since E is AF, by (2) of Theorem 4.2 there is T ∈ Isomε(E) with v = T ◦ t. So,

dH(Tt(BY ), T s(BZ)) ≤ (1 + ε)dH(t(BY ), s(BZ)).(4.3)

By combining (4.2) and (4.3) we obtain

1

1 + ε
dH(v(BY ), T s(BZ)) =

1

1 + ε
dH(Tt(BY ), T s(BZ)) ≤ γaE(Y,Z).

By adding the previous inequality and (4.2) it follows that

1

1 + ε
dH(u(BX), T s(BZ)) ≤ 1

1 + ε
γaE(X,Y ) + γaE(Y,Z).

Since T ◦ s ∈ Embr(Z,E) and u ∈ Embδ′(X,E) ⊂ Embr(X,E), we have

1

1 + ε
dr(X,Z) ≤ 1

1 + ε
γaE(X,Y ) + γaE(Y, Z).

Since r, ε > 0 were arbitrary, we obtain γaE(X,Z) ≤ γaE(X,Y ) + γaE(Y, Z).
(2) ⇒ (3): Let (Xn)n and (Yn)n be γaE-Cauchy sequences in Age(E) and

X = j((Xn)n), Y = j((Yn)n). By using the triangular inequality and the lower
semicontinuity of γaE (Lemma 4.14) we have

|γaE(X,Y ) − γaE(Xn, Yn)| ≤ γaE(Xn, X) + γaE(Xn, X)

≤ lim inf
k

γaE(Xn, Xk) + lim inf
k

γaE(Xn, Xk).

Since (Xn)n and (Yn)n are γaE-Cauchy, the last inequality implies that

γaE(X,Y ) = lim
n
γaE(Xn, Yn) = γaE((Xn)n, (Yn)n).

From the completeness of (Ck(E), γaE) it follows that j(Ck(E)) is closed and since
it is dense (it contains Agek(E)), j is surjective. □

We finally obtain a list of equivalent sufficient conditions regarding weak AF
spaces.

Proposition 4.20. Let E be a weak AF Banach space such that γaE is a pseu-

dometric on Age(E)
BM

. The following statements are equivalent:

(1) Id: (Agek(E), γaE) → (Agek(E),BM) is a uniform homeomorphism for
each k.

(2) The map

Id : (Age(E)
BM

, γaE) → (Age(E)
BM

,BM)

is an homeomorphism.
(3) The map

Id : (Agek(E)
BM

, γaE) → (Agek(E)
BM

,BM)

is a uniform homeomorphism for each k.

(4) γaE is a compact pseudometric on Agek(E)
BM

for each k.
(5) The set (Agek(E), γaE) is totally bounded for each k.
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Proof. (4) ⇒ (3) : if (4) holds then by Lemma 4.14 (2), Id is a uniformly con-

tinuous bijection between the compact spaces (Agek(E)
BM

, γaE) and (Agek(E)
BM

,BM)
and therefore a uniform homeomorphism.

(3) ⇒ (2) is obvious. (2) ⇒ (1): if (2) is valid, the map Id is a homeomorphism
between compact spaces, and therefore a uniform homeomorphism, implying (1).

(1) ⇒ (5): By (1), the completions of Agek(E) with respect to BM and γaE
coincide. In particular the γaE-completion of (Agek(E), γaE) is compact, and so
Agek(E) is totally bounded for γaE .

(5) ⇒ (4): since γaE is a pseudometric on Agek(E)
BM

, it follows from (2)⇔(3)

in Lemma 4.19 that the map j : Ck(E) → (Agek(E)
BM

, γaE) given by (Xn)n 7→
BM− limnXn is a surjective isometry. Therefore (Agek(E)

BM
, γaE) is compact. □

Since it is not clear how the above properties relate to the AF property, we
ask:

Question 4.21. Does the AF-property imply (1) to (5) of Proposition 4.20?

What we know is that the AF-property implies that γaE is a pseudometric on

Agek(E)
BM

and that this pseudometric is complete ((2) and (3) of Lemma 4.19).

To conclude this section, we comment on the relation between AF spaces and
Kubís’ work [17], in which “approximate” Fräıssé limits are considered for “metric-
enriched” categories. His theory includes the class of separable Banach spaces [17,
Example 2.2] and allows 1 + ε-isometric embeddings to be considered. The Gurarij
space is the approximate Fräıssé limit of the class of finite dimensional normed
spaces in this sense [17, Section 4.1]; it is probable (but remains to be proved) that
the Lebesgue spaces also appear as approximate Fräıssé limits in Kubís’ sense. The
almost Fräıssé property studied in our paper seems formally more general than this
notion. Indeed, while Kubís considers 1 + ε-isometries (or isometric embeddings)
which are perturbations of isometries (or isometric embeddings), the concept of
an almost Fräıssé space does not, at least formally, require the existence of any
non-trivial isometries on the space.

4.2. Ultrapowers of AF Banach spaces. Now we proceed to proving that
ultrapowers of AF Banach spaces are AF and UH, and obtaining characterizations
of AF for ultrapowers. The UH-property of ultrapowers of E was proven in [15]
under the formally stronger assumption that E is Fräıssé. Recall that for a Banach
E and a non-principal ultrafilter U on N, EU denotes the ultrapower EN/U . For
ε ≥ 0, We denote by (Isomε(E))U the set of maps T acting on EU by T ([(xn)]U ) =
[(Tnxn)]U for each [(xn)]U ∈ EU , where (Tn)n is a sequence of elements of Isomεn(E)
with limn εn = ε, and we note that (Isomε(E))U ⊆ Isomε(EU ).

Lemma 4.22. Let E be an AF Banach space and U be a non-principal ultrafilter
on N. Then for each ε > 0 and k ∈ N, there is δ > 0 with the following property:

if X ∈ Agek(E)
BM

and ϕ1, ϕ2 ∈ Embδ(X,EU ), there exists T ∈ (Isomε(E))U such
that T ◦ ϕ1 = ϕ2.

Proof. Let ε > 0 and k ∈ N be given and ξ > 0 satisfying (1 + ξ)2 ≤ 1 + ε.
Fix δ0 > 0 corresponding to the definition of AF and set δ = δ0/2. Also, let

X ∈ Agek(E)
BM

and ϕ1, ϕ2 ∈ Embδ′(X,EU ). Since dimX < ∞, there are two
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sequences (ϕ1n) and (ϕ2n) of linear operators from X to E such that ϕ1x = [(ϕ1n(x))]U
and ϕ2x = [(ϕ2n(x))]U for all x ∈ X, ∥ϕ1∥ = limU ∥ϕ1n∥ and ∥ϕ2∥ = limU ∥ϕ2n∥. Let
A ∈ U be such that ϕ1n, ϕ

2
n ∈ Embδ(X,E) for all n ∈ A. By definition of AF, for

each n ∈ A, there exists Tn ∈ Isomξ(E) such that Tn◦ϕ1n = ϕ2n. Define T : EU → EU
by [(xn)]U 7→ [(yn)]U , where

yn =

{
Tn(xn), n ∈ A;

xn, n ̸∈ A.

Suppose that [(xn)]U = [(x′n)]U , then {n ∈ N : ∥xn − x′n∥ < r/(1 + ξ)} ∈ U for all
r > 0. Thus, {n ∈ A : ∥xn − x′n∥ < r/(1 + ξ)} ∈ U and hence, {n ∈ A : ∥Tn(xn) −
Tn(x′n)∥ < r} ∈ U . So, T is well defined. Also, ∥T∥ ≤ 1 + ξ. Now, assume that
T ([(xn)]U ) = [(yn)]U = 0. Thus, for each r > 0, {n ∈ N : ∥yn∥ < r/(1+ξ)} ∈ U and
it follows that {n ∈ A : ∥yn∥ < r/(1+ξ)} ∈ U . Then, {n ∈ A : ∥xn∥ < r} ∈ U , i.e.,
[(xn)]U = 0. From its definition we have ∥T−1∥ ≤ 1 + ξ. Whence T ∈ (Isomε(E))U .
Finally, since A ⊂ {n ∈ N : ∥ϕ2nx − (Tn ◦ ϕ1n)x∥ < r} for all r > 0 and x ∈ X, we
have T ◦ ϕ1 = ϕ2. □

Note that the previous proof also works under the assumption that E is weak
AF and that X ∈ Age(E). So it is worth noting the next result.

Lemma 4.23. Let E be a weak AF Banach space and U be a non-principal
ultrafilter on N. Then for each ε > 0 and X ∈ Age(E), there is δ > 0 with the
following property: if ϕ1, ϕ2 ∈ Embδ(X,EU ), there exists T ∈ (Isomε(E))U such
that T ◦ ϕ1 = ϕ2.

We also have:

Lemma 4.24. Let E be an AF Banach space and U be a non-principal ultrafilter

on N. Then for every k ∈ N, X ∈ Agek(E)
BM

and ϕ1, ϕ2 ∈ Emb(X,EU ), there
exists T ∈ Isom(EU ) such that T ◦ ϕ1 = ϕ2.

Proof. Let k ∈ N be fixed and also let X ∈ Agek(E)
BM

and ϕ1, ϕ2 ∈
Emb(X,EU ). For each m ∈ N, let δm > 0 be the corresponding number to 1/m
in the definition of AF and assume that δm → 0. Since dimX < ∞, there are
two sequences (ϕ1n) and (ϕ2n) of linear operators from X to E and a null sequence
of positive numbers (αn) such that ϕ1x = [(ϕ1nx)]U and ϕ2x = [(ϕ2nx)]U for all
x ∈ X, and for i = 1, 2 we have ∥ϕi∥ = limU ∥ϕin∥ and ϕin is an αn-isometry
for each n ∈ N. We may suppose that αm < δm for each m ∈ N. So, the set
Am = {n ∈ N : ϕ1n, ϕ

2
n ∈ Embδm(X,E)} is in U for every m ∈ N. By taking

small perturbations, we assume that ϕn is not an isometry for each n ∈ N. Thus,⋂
S Am = ∅ for each S ⊂ N infinite. By definition of AF, for each m ∈ N and

n ∈ Am, there is Tm
n ∈ Isom1/m(E) with Tm

n ◦ ϕ1n = ϕ2n. If n ∈ N, let k(n) ∈ N
be the maximal k satisfying n ∈ Ak and define T : EU → EU by [(xn)]U 7→ [(yn)]U ,
where

yn =

{
T

k(n)
n (xn), n ∈

⋃
Am;

xn, n ̸∈
⋃
Am.

Since k(n) ≥ n for each n ∈ N, T is an isometry and by following the proof of
Lemma 4.22 we conclude that T ◦ ϕ1 = ϕ2. □
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It is worth noting the following statement for weak AF spaces, which is obtained
through a similar proof.

Lemma 4.25. Let E be a weak AF Banach space and U be a non-principal
ultrafilter on N. Then for every X ∈ Age(E) and ϕ1, ϕ2 ∈ Emb(X,EU ), there
exists T ∈ Isom(EU ) such that T ◦ ϕ1 = ϕ2.

Theorem 4.26. Let E be a Banach space and U be a non-principal ultrafilter
on N. If E is AF, then EU is AF and UH.

Proof. Since Agek(EU ) ≡ Agek(E)
BM

for each k ∈ N the AF-result follows
from Lemma 4.22. The UH follows from Lemma 4.24 and from the fact that

Agek(EU ) ≡ Agek(E)
BM

for each k ∈ N. □

Recall from the beginning of this subsection that Isom0(E)U denotes the set of
all elements T ∈ Isom(EU ) satisfying the next condition: there are a null sequence
(an) ∈ (0,∞)N and a sequence of operators (Tn) with Tn ∈ Isoman(E) for each
n ∈ N such that T ([(xn)]U ) = [(Tnxn)]U for all [(xn)]U ∈ EU . The set Isom0(E)U
can be compared with the set Isom(E)U of all elements of Isom(EU ) of the form
[(xn)]U 7→ [(gn(xn))]U for some sequence (gn) ∈ Isom(E)N, which was considered
in [15, Proposition 2.15]. We have the obvious inclusion Isom(E)U ⊆ Isom0(E)U .

Proposition 4.27.

(1) if EU is approximately UH and the set Isom0(E)U is dense with respect
to the strong operator topology in Isom(EU ), then E is AF.

(2) if EU is almost UH and the set (Isomδ(E))U is dense with respect to the
strong operator topology in Isomδ(EU ), then E is AF.

Proof. Suppose that E is not AF. Then there are k0 ∈ N and 0 < ε0 < 1/4
such that for each n ∈ N, there exist Xn ∈ Agek0

(E) and ϕn ∈ Emb1/n(Xn, E)

with A|Xn ̸= ϕn for all A ∈ Isomε0(E). Let X̂ be the natural finite dimensional

subspace of EU associated to the sequence (Xn) and ϕ : X̂ → EU be defined as

ϕ ˆ(xn) = [(ϕnxn)]U , where xn ∈ Xn for each n ∈ N.

In case (1), since EU is approximately UH and ϕ ∈ Emb(X̂, EU ), there is
T ∈ Isom(EU ) satisfying ∥T |X̂ − ϕ∥ < ε0/4k0. By the density of Isom0(E)U , there

is S ∈ Isom0(E)U such that ∥T − S∥X̂ < ε0/4k0. In case (2), since EU is almost

UH and ϕ ∈ Emb(X̂, EU ), there is T ∈ Isomε/4k0
(EU ) satisfying T |X̂ = ϕ. By the

density of Isomδ(E)U , there is S ∈ Isomδ(E)U such that ∥T −S∥X̂ < ε0/4k0, where
δ := ε0/4k0.

So ∥ϕ − S|X̂∥ < ε0/2k0 which means that lim
U

∥ϕn − Sn|Xn
∥ < ε0/2k0, where

(Sn) is a sequence of an-isometries from E onto E with an → 0 in Case 1 or an → δ
in Case 2. Thus A = {n ∈ N : ∥ϕn − Sn|Xn∥ < ε0/2k0} ∈ U . Choose n ∈ N such
that ∥ϕn − Sn|Xn∥ < ε0/2k0 and Sn is a ϵ0/3-isometry. If PXn : E → Xn is a
projection with ∥PXn

∥ ≤ k0, then An := Sn + (ϕn − Sn) ◦ PXn
extends ϕn and

a small computation shows that it is a ε0-isometry, which is absurd. Hence E is
AF. □

This is to compare with [15, Proposition 2.15] stating (implicitely) that if EU is
approximately UH and the set Isom(E)U is dense in Isom(EU ), then E is Fräıssé.
So for example, under the weaker hypothesis of density of Isom0(E)U , we obtain
the weaker AF property for E.
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5. Oligomorphy and the Fräıssé property

5.1. Some pseudometrics on Sn
E. Fixing a Banach space E and n ∈ N, we

denote by (T, x) 7→ T · x the usual action of Isom(E) on En defined in (1.1), i.e.

(T, (x1, . . . , xn)) 7→ (Tx1, . . . , Txn).(5.1)

It is usual to fix an equivalent norm ∥ · ∥ on En such that this action is isometric
on En. Because of Definition 5.4, we shall additionally need that the similar action
induced by δ-isometric maps on E is δ′-isometric, for small enough δ and δ′. For
this reason we choose to fix on En the usual ℓ2-norm.

Definition 5.1. If x, y ∈ Sn
E , we set

d(x, y) = inf
T∈Isom(E)

∥T · x− y∥.

If necessary we denote by d̃ the induced metric on the quotient Qn of Sn
E by the

relation x ∼ y ⇐⇒ d(x, y) = 0. We may also use the classical notation Sn
E//Isom(E)

for this quotient, see e.g. [21]. From Lemma 4.8 we have:

Fact 5.2. d is a complete pseudometric. Consequently, d̃ is a complete metric.

On Sn
E , by analogy with the Banach-Mazur pseudometric, we also consider the

following pseudometric.

Definition 5.3. If x, y ∈ Sn
E , we set

dBM(x, y) = log ∥A∥∥A−1∥,
if there exists (a necessarily unique) linear invertible map A from [x] to [y] with
A(xi) = yi for all i = 1, . . . , n, and dBM(x, y) = +∞ otherwise.

Let d̃BM denote the distance induced on the quotient of Sn
E by the relation

x ∼BM y ⇐⇒ dBM(x, y) = 0. Finally we also consider a third and less classical
pseudometric:

Definition 5.4. If x, y ∈ Sn
E , we set

da(x, y) = sup
δ>0

inf
T∈Isomδ(E)

∥T · x− y∥.

Lemma 5.5. The function da is a pseudometric on Sn
E.

Proof. Let us define dδa(x, y) := inf
T∈Isomδ(E)

∥T ·x−y∥. By using that Isomδ(E)

is invariant under taking inverses, we obtain that (1 + δ)−1dδa(x, y) ≤ dδa(y, x) ≤
(1 + δ)dδa(x, y) and therefore that da is symmetric. The triangle inequality follows
from the estimate

dδa(x, y) + dδa(z, y) ≥ (1 + δ)−1dδ
2+2δ

a (x, z),

which we leave to the reader as an exercise. □

When necessary we denote by d̃a the induced distance on the quotient Qa
n of

Sn
E by the relation x ∼a y ⇔ da(x, y) = 0.

We observe the following immediate relations between these pseudometrics and
corresponding ultrahomogeneity properties.

Fact 5.6.
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(i) If x, y ∈ Sn
E then da(x, y) ≤ d(x, y).

(ii) If x, y ∈ Sn
E and da(x, y) = 0, then dBM(x, y) = 0.

(iii) E is approximately UH if and only if whenever n ∈ N and x, y ∈ Sn
E

satisfy dBM(x, y) = 0, we have d(x, y) = 0.
(iv) E is almost UH if and only if whenever n ∈ N and x, y ∈ Sn

E satisfy
dBM(x, y) = 0, we have da(x, y) = 0.

Notation 5.7. Let R = {R1, . . . , Rk} be any list of relations of linear de-
pendence between the elements of an n-uple (x1, . . . , xn) of Sn

E such that none of
the relations of the list is consequence of the others. We denote by (Sn

E)R the set
of n-uples of Sn

E satisfying R and no additional relation of linear dependence. In
particular (Sn

E)∅ is the set of n-uples of Sn
E which are linearly independent.

The point of this technical notation is that in order that dBM(x, y) < +∞, x
and y must belong to a same set (Sn

E)R. So this formalization will help us deal
with discontinuities of dBM with respect to d. As an example one may think of a
sequence of couples (x1, xk)k with (xk)k tending to x1 and xk ̸= x1. Then (x1, xk)k
tends to (x1, x1) with respect to d but not with respect to dBM.

Fact 5.8. Given any R as above, the map Id: ((Sn
E)R, d) → ((Sn

E)R, dBM) is
continuous.

Proof. Let ε > 0 be given. Fix (xi)i∈I a basis of [x1, . . . , xn] with constant
K. If d(x, y) < α, without loss of generality we may assume ∥x− y∥ ≤ α. Classical
estimates guarantee that if α was small enough, then (yi)i∈I is a 2K-basis of [yi]
and that the map t defined by xi 7→ yi, i ∈ I, is a (1 + ε)-isomorphism. Since both
x and y belong to (Sn

E)R, this maps sends xi to yi for all the other value of i as
well, so dBM(x, y) ≤ ε. □

We note that uniform continuity holds if we restrict to a subset where we control
the basis constant of (xi)i∈I : for K ≥ 1, let (Sn

E)K be the set of x ∈ Sn
E which

are a basic sequence with constant at most K. Note that (Sn
E)K is dBM-closed and

therefore d-closed. Hence:

Fact 5.9. Given n ∈ N, given anyK ≥ 1, the map Id: ((Sn
E)K , d) → ((Sn

E)K , dBM)
is uniformly continuous.

For n integer, we use the well-known fact that every n-dimensional space has a
basis with constant

√
n (since every n-dimensional space is

√
n isomorphic to ℓn2 ).

Fact 5.10. The following statements are equivalent:

(1) The space E is weak Fräıssé.
(2) For any n ∈ N, the map Id: ((Sn

E)2
√
n, d) → ((Sn

E)2
√
n, dBM) is an homeo-

morphism.
(3) For any n ∈ N, for any K ≥ 1 the map Id: ((Sn

E)K , d) → ((Sn
E)K , dBM) is

an homeomorphism.
(4) For any n ∈ N, the map Id: ((Sn

E)∅, d) → ((Sn
E)∅, dBM) is an homeomor-

phism.

Proof. (3) ⇒ (2) is obvious. (4) ⇒ (3) also holds because (Sn
E)∅ = ∪K≥1(Sn

E)K .
(2) ⇒ (1): Fix X ∈ Age(E) and x = (x1, . . . , xn) ∈ Sn

E a
√
n-basis of X. If t is

an (1 + α)-isometric embedding of [x] into E, let y = (y1, . . . , yn) = (tx1, . . . , txn),
which belongs to (Sn

E)2
√
n if α was chosen small enough. Then we deduce from
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dBM(x, y) < α that d(x, y) < ε, i.e. there exists T ∈ Isom(E) so that ∥T ·x−y∥ < ε,
so ∥T |[x] − t∥ is small if ε was well chosen.

(1) ⇒ (4): because of Fact 5.8 for ∅, we just need to prove that for any ε > 0,
for any x = (x1, . . . , xn) ∈ (Sn

E)∅, there exists α > 0, such that dBM(x, y) < α ⇒
d(x, y) < ε. If dBM(x, y) < α, i.e. there is t an (1 + α)-isometric embedding
of [x] into E defined by txi = yi and if α was chosen small enough, then there
exists T ∈ Isom(E) so that ∥T |[x] − t∥ < ε, therefore ∥Txi − yi∥ < ε for all i, and
∥T · x− y∥ ≤ nε, so d(x, y) < nε. □

Fact 5.11. The following assertions are equivalent:

(1) The space E is Fräıssé.
(2) For any n ∈ N, the map Id: ((Sn

E)2
√
n, d) → ((Sn

E)2
√
n, dBM) is a uniform

homeomorphism.
(3) For any n ∈ N, for any K ≥ 1, the map Id: ((Sn

E)K , d) → ((Sn
E)K , dBM)

is a uniform homeomorphism.
(4) For any n ∈ N, the map Id: ((Sn

E)∅, d) → ((Sn
E)∅, dBM) is a homeomor-

phism with uniformly continuous inverse.

Proof. (3) ⇒ (2) is obvious. (4) ⇒ (3) holds because of Fact 5.9 and because
(Sn

E)∅ = ∪K≥1(Sn
E)K . (2) ⇒ (1): Fix X ∈ Age(E) and x = (x1, . . . , xn) ∈ Sn

E

a
√
n-basis of X. If t is an (1 + α)-isometric embedding of [x] into E, let y =

(y1, . . . , yn) = (tx1, . . . , txn). Then y is a 2
√
n-basis if α was chosen small enough.

Then we deduce from dBM(x, y) < α that d(x, y) < ε, i.e. there exists T ∈ Isom(E)
so that ∥T · x− y∥ < ε, so ∥T |[x] − t∥ is small if ε was well chosen.

(1) ⇒ (2): because of Fact 5.8 for ∅, we just need to prove that for any n and
any ε > 0, there exists α > 0, such that for any x, y ∈ (Sn

E)∅, dBM(x, y) < α ⇒
d(x, y) < ε. Fix some n, and fix ε > 0. If dBM(x, y) < α, i.e. there is t an (1 + α)-
isometric embedding of [x] into E defined by txi = yi, if α was chosen small enough
then there exists T ∈ Isom(E) so that ∥T |[x] − t∥ < ε, therefore ∥Txi − yi∥ < ε for
all i, and ∥T · x− y∥ ≤ nε, so d(x, y) < nε. □

5.2. Oligomorphic Banach spaces.

Definition 5.12. Let E be a Banach space. We shall say that E is an oligo-
morphic Banach space when for each n ∈ N the quotient Sn

E//Isom(E) of Sn
E by

the orbit relation of the action of Isom(E) is d̃-compact (the pseudometric d̃ was
defined in Definition 5.1).

A few commentaries are necessary here. In the separable case, this property
is equivalent to the model theoretic notion of ω-categoricity; we shall not use this
name since we have no reason to restrict our results to separable spaces. In [5, 7, 21]
in a more general model theory context, the name “approximately oligomorphic”
action is used. Here the word “approximately” may be misleading since already
used among ultrahomogeneity properties. So in the present paper we choose the
simple terminology “oligomorphic Banach space”.

All Lp(0, 1)-spaces, 1 ≤ p < +∞, and the Gurarij space G are oligomorphic
[5, Section 17] and [6, Section 2], respectively. Moreover, separable oligomorphic
Banach spaces contain isometric copies of ℓ2 [16, Corollary 5.13]. See also [13] about
the relations between oligomorphy, Gδ-classes of Banach spaces, and restricted
forms of the Fräıssé property for separable Banach spaces.
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Theorem 5.13. A Banach space is Fräıssé if and only if it is approximately
UH and oligomorphic.

Proof. Fix K ≥ 1 and n ∈ N. Let E be an approximately UH Banach space
and consider the map

Id: ((Sn
E)K , d̃) → ((Sn

E)K , d̃BM).

By Facts 5.6 and 5.9 it defines a (uniformly) continuous bijective map between
metric spaces.

If E is oligomorphic, and since (Sn
E)K is d̃-closed in Sn

E , the domain of this
Id-map is compact. Therefore Id is a uniform homeomorphism. We conclude that
E is Fräıssé by Fact 5.11(3).

Assume conversely that E is Fräıssé. We prove compactness of Sn
E//Isom(E)

by letting yk = (xk1 , . . . , x
k
n) be a sequence in Sn

E and describing how to find a

d̃-converging subsequence of (yk)k.
We first look at [xk1 , x

k
2 ]. Passing to a subsequence either this is basic with a

fixed constant K2, or d(xk2 ,Rxk1) tends to 0. In the second case, we may find λ such
that d(xk2 , λx

k
1) tends to 0, and therefore assume wlog that xk2 = λxk1 . Repeating

this at each step we obtain I ⊆ {1, . . . , n}, K and R such that we may assume
without loss of generality that for all k

• {xki : i ∈ I} is a K-basic sequence
• [yk] = [xki : i ∈ I]
• {xk1 , . . . , xkn} ∈ (Sn

E)R.

Without loss of generality we may also assume that {xki : i ∈ I} is dBM-convergent
and therefore {xk1 , . . . , xkn} as well. The dBM-limit {z1, . . . , zn} of {xk1 , . . . , xkn} will
satisfy the three conditions that {zi : i ∈ I} is a K-basic sequence, [zi : 1 ≤ i ≤
n] = [zi : i ∈ I], and {z1, . . . , zn} ∈ (Sn

E)R. Now, from Fact 5.11, it follows
that {xk1 , . . . , xkn} is d-Cauchy, and hence d-convergent in Sn

E by Fact 5.2. So, the
limit has to coincide with {z1, . . . , zn}. In the end we have that {xki : i ∈ I}
is d-convergent to {zi : i ∈ I}. Since they all belong to (Sn

E)R, we finally have
d-convergence of yk to {z1, . . . , zn}. □

Spaces Lp[0, 1] for p = 4, 6, . . . are examples of oligomorphic spaces which are
not Fräıssé. The proof from [15, Chapter 4] that for p /∈ 2N+ 4, Lp[0, 1] is Fräıssé,
relies on technical estimates regarding approximate versions of the equimeasurabil-
ity theorem of Plotkin and Rudin. This proof is constructive in the sense that one
could expect to obtain some explicit estimates regarding the parameters ε and δ
of the Fräıssé property. However as Ben Yaacov has mentioned to us [4], one can
use Theorem 5.13 to obtain an abstract, model theoreric proof of the result of [15].
Just combine the result of Lusky that Lp(0, 1) is approximately ultrahomogeneous
for p /∈ 2N + 4, with the oligomorphic property of spaces Lp[0, 1].

6. Final remarks and Questions

In this section we propose some questions that emerged throughout this work.
Answering those could in our view give a better understanding of the theory.

Question 6.1. Is the ℓ∞-sum of FIE (aFIE) Banach spaces a FIE (aFIE,
respectively) Banach space?



24 VALENTIN FERENCZI AND MICHAEL A. RINCÓN-VILLAMIZAR

By Fact 2.4 the answer is positive for the FIE-property of arbitrary ℓ∞-sums
of c0(Γ).

Question 6.2. Are the properties aFIE and FIE equivalent?

We know that answer is positive for reflexive spaces (see (2) of Proposition 3.6).

Corollary 4.5 motivates the next two questions.

Question 6.3. When does the AF-property imply that Agek(E) is compact
for all k?

Question 6.4. When does the weak AF property imply the AF property?

Another natural question is:

Question 6.5. If X and Y are almost Fräıssé and almost isometric, must they
be isometric?

In [15, Problem 2.9], it is asked what other separable spaces different from G
and Lp(0, 1), p ̸∈ 2N + 4, are Fräıssé. Another related question is the following:

Question 6.6. Are G, Lp(0, 1) for p ̸∈ 2N + 4 and the Hilbert space ℓ2 the
only separable almost ultrahomogeneous Banach spaces?

The notion of oligomorphy could suggest defining and studying the next weaker
property:

Definition 6.7. We say that a Banach space E is almost oligomorphic if for
each n ∈ N the quotient of Sn

E by the orbit relation of the action of Isom(E) is

d̃a-compact.

Since da ≤ d, the identity map on Sn
E with respect to d and da is continuous

and therefore any space with the oligomorphic property also satisfies the almost
oligomorphic property. Inspired by Theorem 5.13 we ask:

Question 6.8. Is a Banach space almost Fräıssé if and only if it is almost
ultrahomogeneous and almost oligomorphic?

For a positive answer, there seem to be technical difficulties with the lack of
completeness of da. We conjecture that answer is positive if we add as hypothesis
that the age of the space is BM-closed.
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FAPESP, Processos 2016/25574-8 and 2021/01144-2, and UIS.

The authors would like to thank the anonymous referee for useful comments
and observations.

References

[1] Avilés, A.; Cabello Sánchez, F.; Castillo, J. M. F.; González, M.; Moreno, Y. Separably
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Brasil (IME-USP), Universidad Industrial de Santander (UIS), Escuela de Matemáticas,
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