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1 Complexity of equivalence relations

A topic much in vogue in descriptive set theory for at least the last twenty years is the
study of the relative complexity of Borel and analytic equivalence relations on Polish,
i.e., completely metrisable separable spaces. The motivation comes from the general
mathematical problem of classifying one class of mathematical objects by another, that
is, given some clasgl of mathematical objects, e.g., separable Banach spaces, and
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a corresponding notion of isomorphism one tries to find complete invariants for the
objects inA up to isomorphism. More explicitly, one would like to assign to each
object inA an object in another categoBy such that two objects i are isomorphic

if and only if their assignments i are isomorphic. If this can be done, one purports

to haveclassifiedhe elements afi by the elements 08 up to isomorphism. Thus, for
example, the discrete spectrum theorem of Halmos—von Neumann is a classification of
the ergodic measure preserving transformations with discrete spectrum by their sets of
eigenvalues. Similarly, by Stone duality, boolean algebras can by classified by compact
spaces up to homeomorphism.

In descriptive set theory there has been an effort to systematise the notion of clas-
sification itself and to determine which classes of objects can properly be said to be
classifiable in terms of another. This is done by restricting attention to classes of ob-
jects that can readily be made into a standard Borel space (i.e., the measurable space
of a Polish, or separable completely metrisable space) and the corresponding equiv-
alence relation of isomorphism. For example, the class of separable Banach spaces
can be identified with the set of closed linear subspaces of some isometrically univer-
sal space, e.g((2"), as we shall see later. However, as uncountable standard Borel
spaces are all Borel isomorphic, the perspective changes from the set of objects them-
selves to the equivalence relation that really encodes the complexity of the objects up
to isomorphism. The precise definition is as follows.

Definition 1. Let £ and F' be equivalence relations on standard Borel spa&eand
Y respectively. We say thdi is Borel reducibleto F if there is a Borel function
f X — Y such that

rBy < f(z)Ff(y)

for all z,y € X. We denote this by <g F and informally say tha®' less complex
thanF. If both E < F andF < FE, thenE and I are calledBorel bireducible
written E ~p F.

For example, if we lef3 be the standard Borel space of separable Banach spaces,
then we will see that the relation of isomorphism is analytic as a subsBt of.e.,
is the image by a Borel function of a standard Borel space. Since most other natural
isomorphism relations are also analytic or even Borel one usually restricts the attention
to this subclass. Thus, if we have two clasgeand B of mathematical objects, that
we have identified with standard Borel spaces- X andB ~ Y, respectively, and
we denote byE and F' the corresponding isomorphism relations randY’, then a
reductiony : X — Y of E to F' can be viewed as a classification of the objectd ioy
the objects in3. To sum up, one can say that the theory of complexity of equivalence
relations is the study of which invariants one can use for various mathematical objects.
We should also briefly mention a slightly other way of viewing Borel reducibility.
If $: X — Y is a Borel reduction of” to F', then it is easy to see thatinduces an
injection¢ : X/FE — Y/F and thus that the cardinality &/ E is smaller than that of
Y/F. In fact, one can use this to define a notioreffective cardinalityfor quotient
spaces, a notion that refines Cantor’s concept of cardinality. Thus, for example, the
effective cardinals are not wellordered or even linearly ordered.
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A large part of the general theory on analytic equivalence relations has concerned
the structure ok, i.e., the hierarchy of analytic equivalence relations under this or-
dering, and the place of naturally occurring isomorphism relations in the hierarchy. It
is now known thak g is extremely complex as an ordering, while, on the other hand,
most naturally occurring classification problems tend to be bireducible with a fairly
small class of equivalence relations for which there is also a nice structure theory. We
now proceed to describe some of these.

Apart from equivalence relations with only countable many classes the simplest
Borel equivalence relation is the relati¢R, =) of equality of real numbers. In fact,

a result of Silver [46] implies that any Borel equivalence relation either has countably
many classes, and thus is just a countable partition of the underlying space into Borel
sets, or(R, =) is Borel reducible to it, and thus has continuum many classes. Equiv-
alence relations reducible {®, =), calledsmooth are simply those “isomorphism”
relations that admit real numbers as complete invariants. One outstanding example is
Ornstein’s theorem that entropy is a complete invariant for Bernoulli shifts.

A deep result due to Harrington, Kechris, and Louveau [28] shows that among non-
smooth Borel equivalence relations there is a minimum (with respectjmne, which
is calledEyp. Itis the relation of eventual agreement between infinite binary sequences,
i.e., forz,y e 2V,

zEoy < AnVm = n Tm = Ym-

Besides being minimum aboy®&, =), Fj is also characterised as being maximum for
hyperfiniteBorel equivalence relations, i.e., those that can be written as an increasing
union of countably many Borel equivalence relations with finite classes. All Borel
actions ofz give rise to such orbit equivalence relations.

Of special interest among analytic equivalence relations are those that appear as the
orbit equivalence relation of a continuous action of a Polish group, i.e., a topological
group whose topology is Polish. Since any countable or locally compact second count-
able group is Polish, this class encompasses most of the orbit equivalence relations
usually studied in analysis. It turns out that for each Polish gildupere is a max-
imum, with respect ta< s, orbit equivalence relation induced ¥, and even among
all orbit equivalence relations induced by actions of countable (or what turns out to be
the same, locally compact second countable) groups there is a maximum one denoted
by FE... Itis characterised as the maximum Borel equivalence relation all of whose
classes are countable. Similarly, there is a maximum orbit equivalence relation among
all those induced by Polish groups, which we denotéshy

We should also mention two other equivalence relations of complexity betigen
and E¢: the relation=" on infinite sequences of complex numbers enumerating the
same sets, i.e., faw,), (y,) € CV,

(Tn)n =" (Un)n = {Zntn = {Un}n,

and the< z-maximum orbit equivalenc€s__ induced by the infinite symmetric group
S+. One easily sees that" is induced by an action &f., which is Polish, and thus
also Fs_ reduces taFE. And on the other hand, if is a Borel equivalence relation
with countable classes, then for eaclin the domain ofE, we can enumeratg]| g
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in some way depending on which will reduceFE to =*. So alsoE,, <g=". The
discrete spectrum theorem of Halmos and von Neumann says that two ergodic measure
preserving automorphisns and S of Lebesgue spaces with discrete spectrum are
isomorphic if and only if they have the same countable set of eigenvah{&g,and
A(S). Thus, if we fix a Borel functiony that to eachl’ picks out an enumeration
(A\n) of the set of eigenvalue&(T), then we see thaf and S are isomorphic if and

only if ¢(T) =" ¢(S) and hence isomorphism reduces=to. On the other hand,
there is no way of constructing so that it makes the same choice of enumeration of
A(T) andA(S) provided the twesetsare the same. This has to do with the fact that
the quotient spacé” /=" is not countably separated, or in our terminology thdt

is non-smooth. And in fact, isomorphism of measure preserving automorphisms with
discrete spectrum is Borel bireducible with™ (see Foreman [21]).

An interesting discovery due to Kechris and Louveau [32] is that there are analytic
equivalence relations that are not reducible to orbit equivalence relations, or equiva-
lently, to E¢. In fact, there is one, minimal among Borel equivalence relations having
this property, namelys, which is the relation of eventual agreement between infinite
sequences of real numbers. l.e., foy € RY,

rFE1y < InVm >n x, = Ym.

To this moment,E; is the only known obstruction for Borel equivalence relations to
being reducible to an orbit equivalence relation. As wil}) E1 is not only charac-
terised by its minimality property, but also by the fact that it is maximum among Borel
equivalence relations that can be written as a union of a countable increasing chain of
smooth equivalence relations, callegbersmooth

Beyond E; there is the relatiorfx, maximum among al,, equivalence rela-
tions, i.e., those that can be written as an increasing union of compact sets. It is defined
on the spacg] - ,{1,...,n} by the following formula

2Ek_ y < IN Vn |z, —y,| < N.

Another realisation of this important degree is, for example, a growth relation on func-
tions f : N — N [43]. Itis not too hard to see th#i,, <p Ex,, while, on the other
hand,=+§<\3 EK(,-

As a last example we shall mention the most complex of all analytic equivalence
relations, namely theomplete analytic equivalence relati@‘t}. It is simply charac-
terised by being maximum among all analytic relations. Combinatorial realisations of
this relation may be found in [36] and [17].
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Simplified diagram of complexity of analytic equivalence relations.

2 Standard Borel spaces

For us to consider the class of separable Banach spaces as a standard Borel space,
we notice that up to isometry they are all represented as closed subspaces of some
metrically universal separable space suctCé8"). We now use a by now standard

way to make the closed subspaces(dP") into a standard Borel space. First we
denote byF(X) the set of all closed subsets &f= C(2"Y) and equipF' (X ) with its so

called Effros—Borel structure, which is thealgebra generated by the sets on the form

{FeFX)|FnU#0},

whereU varies over open subsets af. Equipped with the Effros—Borel structure,
F(X) becomes a standard Borel space, i.e., isomorphic as a measure spae with
given its standard Borel algebra. One then easily checks that various relations on
F(X)?andX x F(X) are Borel, e.g., for € X andF € F(X),

reEF —vVn(xelU,— FNU, #0),

where{U,,} is a fixed basis for the topology oK. So the relation¢’ is Borel in
X x F(X). We can now also verify that the s of closedlinear subspaces ok
form a Borel set inF'(X). To do this, notice that fory € F(X), Y is a linear subspace
if and only if

OeY &Vn,mVp,qgeQ
(YNU, #0&YNU, #0 =Y N (p-Up+q-Upy) #0).
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As all the quantifiers are over countable sé@sis a Borel set in/(X) and thus a
standard Borel space in its own right and we designate thiseasandard Borel space
of separable Banach spaces. One could of course have constructed this space in other
ways, e.g., as the set of norms on a countable set of vectors, but experience shows that
any other way of proceeding leads to equivalent results.

Let us now see that, e.g., isometry of separable Banach spaces is an analytic equiv-
alence relation.

Y = Z <3(y,) € XN 3(z,) € XN
Vm (Y NUp # 0 — Inyn € Un)
&Vm (ZNUp # 0 — In 2z, € Up)
&Vn(ynEY)&Vn(zneZ)

& Vn,m ”yn - ymH = Hzn - Zm||>

which simply expresses that two separable spaces are isometric if and only if they have
countable dense subsets which are isometric.

In many cases, we are not interested in all separable Banach spaces, but only in
a Borel set of spaces. The most common situation is when we consider only the sub-
spaces of a particular space. But itis not hard to see thaefB, then®B(X) = {Y €
B | Y C X} is Borel and we can thus talk about the complexity of the isomorphism
relation restricted to this set.

If we are interested in a relation between subsequences of a given(basiof
a spaceX, e.g. isomorphism of the closed linear spans or equivalence of the subse-
quences, we identify the spaldg™ of infinite subsets oif with the set of subsequences
of (en)n. The associated embedding[Bf" into B (X) is Borel and therefore we can
also compute the complexity of isomorphism etc. between subspaces spanned by sub-
sequences of the basis. The case of block-subspaces is more complicated and will be
developed later.

3 Relations between separable Banach spaces

Certainly among the relations of similarity between (infinite-dimensional) Banach spaces
a few stick out as being of outmost importance, namely, linear isomorphism, (linear)
isometry, Lipschitz isomorphism, and uniform homeomorphism. It is well-known that
the project of classifying separable Banach spaces up to isomorphism is essentially an
impossible task and the tendency nowadays is to settle for something less, namely to
find a “basis” for the class of separable Banach spaces, i.e., a list of recognisable spaces
such that every space contains a copy of some space in the list.

Another natural question however is also what the complexity of the various clas-
sification problems is in the hierarchy of analytic equivalence relations. For example,
if one can show that the relation of isomorphism is of high complexity then this lends
mathematical sense to the feeling that this relation remains intractable.
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Concerning these various relations, Gao and Kechris [22] have shown that isometry
between separable complete metric spaces is bireducible with the most complex orbit
equivalence relationfs, and thus the relation of isometry between separable Banach
spaces is at most of this complexity. However, recently, Melleray [38] has been able to
show that isometry of8 is itself Borel bireducible withE. This should be contrasted
with the result in [36] saying that the relation of (linear) isometric biembeddability
between separable Banach spaces is a complete analytic equivalence relation.

Concerning the complexity of isomorphism, lower bounds were successively ob-
tained by BossardHj, [7]), Rosendal &1, [41]), and Ferenczi-Galego (the product
Ex,® =", [15]). And the complexity was finally determined by a very recent and yet
unpublished result of Ferenczi, Louveau, and Rosendal [17].

Theorem 2 (Ferenczi—Louveau—Rosendal [17T)he relations of isomorphism, Lips-

chitz isomorphism, (complemented) biembeddability, and Lipschitz biembeddability
between separable Banach spaces are analytic complete, i.e., are maximum among
analytic equivalence relations in the Borel reducibility orderidg. The same holds

for the relation of permutative equivalence of unconditional basic sequences.

This result thus has the surprising consequence that it is possible to assign in a Borel
manner to each separable Banach spa@n unconditional basic sequene€) such
that two spaceX andY” are isomorphic if and only ifeX ) and(e}) are permutatively
equivalent. This seems to contradict the feeling that it is somehow easier to check
permutative equivalence rather than isomorphism. However, the proof of this result
gives no hint as to how this assignment could be computed and obviously théasis
does not itself has to be related to the spacet would certainly be very interesting
to find an “explicit” such assignment which could potentially be of use in applications.
We shall not go into the proof of this result, but only mention that it relies on an
elaborate construction due to S. Argyros and P. Dodos [4] that allows one to construct
spaces containing any specified analytic sét,&fas its minimal subspaces.

In the fundamental paper [24] W. T. Gowers proved his now famous dichotomy
theorem stating that any infinite-dimensional Banach space contains either an uncon-
ditional basic sequence or an HI subspace. This result, in combination with another
result of A. Komorowski—N. Tomczak-Jaegermann [33], also solved the homogeneous
space problen¥; is the only (infinite-dimensional) Banach space which is isomorphic
to all its infinite-dimensional closed subspaces.

Given a separable Banach spakewhich is not isomorphic td,, the question
remains as to what the possible complexity of isomorphism (and also biembeddability
etc.) is on the set of subspacesXf This is in line with the general question of
Gowers concerning the structure of the set of subspaces of a separable Banach space
under the quasiorder of embeddability. Even for classical spaces these questions remain
unsolved, only lower bounds are obtained.

We shall say that a separable Banach spa@n#ytic completdf isomorphism
between its subspaces is analytic complete. It is said evdmdic[20] if isomorphism
between its subspaces reduces the relafipn Analytic complete spaces are those
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spaces on which isomorphism between subspaces reflects the complexity of isomor-
phism between all separable Banach spaces (equivalently, of the most complex ana-
Iytic equivalence relation). Ergodic spaces are such that isomorphism between their
subspaces is not smooth though it is not clear whether this is also sufficient for a space
to be ergodic.

Question 3. Let X be a separable Banach space which is not isomorphi.tds X
ergodic? IsX analytic complete?

By the proof of [17], the universal unconditional basis of Pefisly spans an ana-
lytic complete space. The spacgsand/,, 1 < p < 2 are ergodic [15], and, in fact,
isomorphism between their subspaces has complexity at#gastisomorphism be-
tween subspaces @f,, 1 < p < 2, has complexity at leadix,® =". Concerning
¢,,p > 2, itis only known that there are uncountably many non-isomorphic subspaces
[34]. Isomorphism between subspaces of Tsirelson’s spaas well as of its dudl™,
has complexity at leadt; [41].

When the spac& is equipped with a Schauder basis, it is natural to restrict the
question of complexity of isomorphism to the class of block-subspac¥s éfnatural
topological setting for this is the spaé& X) of normalised block-sequences &f,
seen as a subspace®f' whereX is equipped with the norm topology. The relation
of isomorphism induces a relation denotedn bb(X ), and the canonical map from
bb(X) into B(X) is Borel.

In this setting, the spaceg and/,, 1 < p < 400, with their canonical bases, are
the natural homogeneous examples; their basellack-homogeneoyumeaning that
all their block-subspaces are isomorphic.

Concerningl" with its canonical basis, it follows from [41] and [43] that

E1 <p (bb(T),~) <p Fk,,

but the exact complexity afob(T'), ~) remains unknown. Note that the basisTofs
strongly asymptoti¢;, where a basiée; ) is strongly asymptotié, if for someC < oo
and some increasing functigh: N — N, every normalised sequen¢e;)” ; (n € N)

of disjointly supported vectors frorb(lei)l‘?gf(m] is C-equivalent to the unit vector basis
of ¢,. For example, the convexificatidh), of Tsirelson’s space, X p < +oco, has a
strongly asymptoti@,, basis, andl™ has a strongly asymptoti¢,, basis. It is more
generally proved in [9] that for any spadewith a strongly asymptoti¢, basis (1<

p < +00), that is not equivalent to the canonical basisgdr ¢,,, Ey is Borel reducible

to isomorphism between block-subspaces(ofeven to isomorphism between spaces
spanned by subsequences of the basis).

It is unknown whethety and/,, 1 < p < +oo, are the only spaces with a block-
homogeneous basis. This would be a natural generalisation of Zippin's theorem about
perfectly homogeneous bases [47]. Note that a positive answer would imply the ho-
mogeneous Banach space theorem of Gowers and Komorowski—Tomczak-Jaegermann,
via the fact that every Banach space contains a basic sequence and the non-trivial fact
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that the spaces and/,, p # 2, are not homogeneous. The following question could
be easier to solve than the first part of Question 3.

Question 4. Let X be a separable Banach space with a Schauder basis which is not
isomorphic tacg or £, 1 < p < +o0. Does it follow thatEy <z (bb(X),~)?

4 Isomorphism and spaces with an unconditional basis

The general idea of this section is that spaces with an unconditional basis which are
not ergodic must satisfy some algebraic properties (isomorphism with their square,
their hyperplanes etc.). They therefore resemble Hilbert space more than a generic
separable Banach space. Quite similar ideas in the context of thédgcHBernstein
property for Banach spaces were first developed by N. Kalton [30].

4.1 Subspaces spanned by subsequences of the basis

Given a spaceX with a Schauder basig;), we first look at the spaces(e;) of sub-
sequences of the basis, which we identify with the sgai¢® of infinite subsets ofN
considered as a subset df @ith its induced topology. The relation induced by iso-
morphism of the corresponding linear spans will be denetednd fork > 1, ~%
denotes the relation induced by isomorphism with constant at most

Theorem 5. Let X be a Banach space with an unconditional bagig. ThenEy <p
(ss(e;), =), or X is uniformly isomorphic toX @ Y, for all Y generated by a finite

or infinite subsequence of the basis - and therefore isomorphic to its square and to its
hyperplanes - and, moreover, isomorphic to an infinite direct sum of uniformly isomor-
phic copies of itself.

Proof. The proof uses the following lemma. We need to define the reld@tjdretween
infinite subsets oN: two setsA, B C N are Ej equivalent if (AU B) \ 4| = [(AU
B)\ B| < , i.e., if A and B have the same finite co-cardinality iU B. If (e;) is

a basic sequence and we identify a subset N with the subsequence it generates,
then one easily sees that the relation of equivalence between subsequefiggssof
Ej-invariant.

Lemma 6 (cf. [42]). Let E be an analytic equivalence relation dN]" that is E§-
invariant. Then eithely <p E or E has a comeagre class. In the latter case there
are A, B € NN such thatAE(~ A) and BE(B \ min B).

Proof. If E is meagre as a subset [pf] x [N], then it is not difficult to build finite
successive subset§ andal of N such thatla®| = |a%| and such that the map :

2V — [N defined byI'(a) = Ujen ag<’€> Borel reduces, to ~. If on the other hand

E is non-meagre, then by a classical result of Kuratowski—Ulam, [31] Theorem 8.41,
someE-classA is non-meagre. Thereforen U is comeagre i for some basic open
setU. By Ej-invariance it follows tha#\ is comeagre.
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Now the map: : 2V — 2V defined byc(A4) = ~ A is a homeomorphism of2and
as[NJN is comeagre in'2, alsoA is comeagre in2 But then alsa:(A) is comeagre
in 2V and henceA N ¢(A) is comeagre too. So pick some € A N ¢(A) which is
co-infinite. ThendE(~ A).

Similarly, for eachn € N, the mapC € [N]N — CA{n} € [NV is an involution
homeomorphism ofN]" and thus there must be sonie € A such that for alln,
BA{n} € A. In particular,BE(B \ minB). O

Going back to the proof of Theorem 5, assumingis not Borel reducible ta- on
[N]Y, we apply Lemma 6 and obtain a comeagrelassA. Classical Banach space
arguments about perturbation by finite-dimensional subspaces then ensure that the set
Ag ={A € [N]N: A ~K Aq} is comeagre for some fixedh € A and somex > 1.

If @ andb are non empty subsets dfanda is finite, recall thata andb are suc-
cessiveq < b, whenmax(a) < min(b). If b is a finite subset o, say thatd € [N]¥
passes through if A = a UbU C for some finite subset of N and some” € [N]Y
such thatr < b < C. We now use the following classical characterization of comeagre
subsets ofN]", see, e.g., [19].

Lemma 7. Let A be a subset ofN]N. ThenA is comeagre if and only if there exists
a countable family{ay, k¥ € N} of finite successive subsetsNsuch that whenever
A € [N]N passes through;, for infinitely manyk’s, then A belongs toA.

Choose such a familja,, k € N} for our setA. To conclude the proof of Theorem
5, we fix Ag € Ak such that~ Ap) € Ak, and we obtain by unconditionality of the
basis(ey, )nen Of X,

X ~[en,n € Ag] @ [en,n ¢ Ag] =~ [en,n € Ag)?,
and
[e'rMn 6 AO] =~ [enan e a’k'?k e N] = [enan e a2k7k e N} @ [enan 6 a2k+l7k E N]?

thereforele,, n € Ag] ~ [e,,n € Ag]? ~ X.
Fix ko € N, then{1,... ko} U U,Dk0 ay, andubko ay belong toA . Therefore
[en,n € U ag] ~ [e1,. .., ex) B [en,n € U ag),
k>ko k>ko

and by taking a direct sum with the appropriate subspace, we obtain
X =~ [en,n > ko).

Whenever is a subset o andY = [e,,, n € I], we may find a partitiof I1, I} of
I and two infinite disjoint subsef$; andNV, of N such thatflﬁ(UkeN2 [minay, maxa]) =
0 and 2 N (Ugen, [Minay, maxa]) = 0. It follows thatI; U (U, ax) and I U
Uk,EN2 ay belong toA i and therefore

X~ X ®ley,n e I
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and
X~Xo [en,n S Ig].

Thus
X>X®lep,neh|Plep,nehl~XaY.

Finally, let {B;,i € N} be a partition ofN in infinite subsets and let far € N,
C; = UkEBi ar. ThenC; € Ak for all 4, while alsol J,.y C; € Ak. Therefore

X ~ [en,n € U 01] ~ @ieN[enan € Cv]»
€N

with [e,,,n € C;] = X, foralli € N.
All the isomorphisms are obtained with uniform constants depending onli on
and the unconditional constant of the basis. d

Note that these results may be generalized to spaces with unconditional decompo-
sitions in the same spirit as in [30], see [16].

4.2 Subspaces spanned by block-sequences of the basis

We consider here a spacé with a Schauder basi&;) and the class of subspaces
generated by block-bases, i.e., sequences of vectors with successive supports (called
successive vectors). Rather tHa#(X ), the correct setting for the main theorem here
(Theorem 8) seems to be the space denbigd.X ) defined as follows. Let firsf) be
a countable subfield @& such that any finit€-linear combination of the basis vectors
has norm inQ and letD be the set of non-zero blocks with coefficient€nD; be the
set of norm 1 vectors ifv. The assumption o@ allows us to normalise while staying
in Q. The sebbq(X) is then the set of block-bases of vector®in equipped with the
product topology of the discrete topology Ba. The relation of isomorphism induces
arelation~ onbbq (X). AsD; is countable, this topology is Polish and epsilon matters
may be forgotten until the applications. When we deal with isomorphism classes, they
are not relevant since a small enough perturbation preserves the class. Note that the
canonical map obbq (X) into B(X) is Borel, and this allows us to forget about the
Effros-Borel structure when computing the complexity on block-subspaces. Note also
that the reduction of to ~ on bbq(X) in Theorem 8 will provide a reduction ts
onbb(X) as well.

The setfbbq(X) denotes the set of finite successive sequences of blodks.in
The supportsupp(a) of such a sequenceis the union of the supports of the blocks
composing the sequence.

Theorem 8(Ferenczi—Rosendal [20]Let X be a Banach space with an uncondi-
tional basis. ThenE, is Borel reducible to(bbg(X),~) or there exists a block-
subspaceX of X which is uniformly isomorphic t& ¢ Y for all block-subspace¥
of X.
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Proof. The argument being similar to the case of subsequences, we shall just sketch
the proof. If Ey is not Borel reducible tgbbg(X),~), then there exists a comeagre
~-classA C bbq(X). Now comeagre subsets @ifq (X ) may be characterized up to
small perturbations by the next lemma from [20]. kaa finite block-sequence ardd

a finite or infinite block-sequence such tkapp(a) < supp(b), a~b denotes the finite
or infinite block-sequence which is the concatenation ahdb. If b € fbbg(X), and

A € bbg(X), then A passes through if A = a~b~C for somea € fbbg(X) and
someC € bbg(X). If A is a subset obbg(X) andA = (4,,)nen IS @ sequence of
strictly positive real numbers, writteh > 0, we denote by, the A-expansion ofA

in bbq(X), thatisz = (x,) € A, if and only if there existg = (y,,) € A such that
lyn — Znl| < 0n, ¥n € N.

Lemma 9. Let A be comeagre ibg(X). Then for allA > 0, there exist successive
finite block-sequences,, n € Nin fbbg(X) such that any element dfig (X) passing
trough infinitely many of the,,’s is in Aa.

By classical perturbation arguments,= A, for someA small enough. Let,, =
(al a™),n € N be given by Lemma 9 and I&fy = [A4o], for someA, € A.

ny ey Uy

FiXY = (yn)nen in bbg(X). We may find a partitiort/, ) ey Of N in successive
intervals and an increasing sequefeg) of integers such that for all in N,

supp(Yn,n € Iy) < supp(an, ) < supp(yn,n € Ixi2).

Therefore the block sequende= (z, ),en defined by

{zmn c N} = U {yn>n € 12k+1} U U {aghlzk-7 to 7@;? ’

keN keN

belongs taA. It follows that

Xo~ X0 [yn,n € U Ipp14],

keN
and likewise
X0~ Xo® [yn,n € U Do),
keN
whence finally
Xo~ XoaY.
Additional care in the proof guarantees uniformity. a

5 Embeddability, biembeddability, and isomorphism

In the paper [24] W.T. Gowers proved his dichotomy theorem stating that any infinite-
dimensional Banach space contains either an unconditional basic sequence or an Hl
subspace. Actually Gowers proved more refined structure results that set the stage for
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a detailed list of inevitable classes of subspaces. To simplify notation in the following
we shall useX C Y to denote that a spacé embeds isomorphically intg. Moreover,
we shall assume all spaces considered are infinite-dimensional.

A space is said to bminimalif itis C-minimal among its subspacegjasi-minimal
if any two subspaces have a commorminorant, andstrictly quasi-minimaif it is
guasi-minimal but does not contain a minimal subspace. On the other hand, we shall
say that a space with a Schauder basis hasttbag Casazza proper{in reference to
a property defined by Casazza, see [23]) if no two disjointly supported block-subspaces
are isomorphic. Two spaces are said tafm®mparablén case neither of them embeds
into the other, antbtally incomparabléf no space embeds into both of them.

Theorem 10(Gowers [24]).Let X be an infinite dimensional Banach space. Thén
contains a subspace with one of the following properties, which are all possible and
mutually exclusive.

1. Y is hereditarily indecomposable,

2. Y has an unconditional basis with the strong Casazza property,
3. Y has an unconditional basis and is strictly quasi-minimal,

4. Y has an unconditional basis and is minimal.

Type (1) spaces were discovered by Gowers and Maurey [25] in 1991, and a type
(2) space was constructed by Gowers in [23] and further analysed in [26]. Tsirelson’s
spaceT’, the precursor of Banach spaces with “exotic” properties such as Gowers and
Maurey’s examples is a typical example of a type (3) space. The spgcésfor
1 < p < oo, the duall™* of Tsirelson’s space, and Schlumprecht’s spéi§2] are the
main known examples of spaces of type (4).

In each case one can ask what the structure of the relations of embeddahility,
biembeddability=, and isomorphismgz, is on the subspace in question. In his paper
[24] Gowers had asked the question of what quasiorders could be realised as the set of
subspaces of a separable Banach space ordered by

Theorem 11. Let X be a separable infinite-dimensional Banach space belonging to
one of the four types given by Gowers’ Theorem 10. Then for each of the relations
=, and=, we have lower bounds on the complexity as given in the following diagram.

Type | C = =

(1) R, w1, andw;-chains, uncountable Borel antichain | Ep Eo

(2) R, w1, andw;-chains, Ey Ey
uncountable Borel set of totally incomparable spaces

3 wj-chain, uncountable Borel antichain Ey Ey

4) trivial trivial | none
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We should mention that by classical results, all uncountable Borel sets are of the size of
the continuum, so we get, for example, continuum size antichains in the case of strictly
quasiminimal spaces.

Proof. In order to prove this result, we will show how to get it from, in each case,
stronger and more refined results that also have somewhat larger scopes.

We may first deduce the results ferand= for type (1) and (2) from Lemma 6.
For if we are given a Schauder baéis), we can for= and= consider the correspond-
ing analytic equivalence relation dh|" obtained by identifyingd < [N] with the
subspacée;|;c4. As an HI space is non-isomorphic with all of its proper subspaces,
we thus see that fde;) of type (1) there is nd3 € [N]N such thatB = B\ min B or
B = B\ min B, whenceEy must reduce to botk: and=. Similarly, in case of type
(2), there is nad such thatd = ~ A or A = ~ A, and thus agaity reduces to both:
and=.

In the case of type (2), there is also an explicit reduction by the map2"
[62n+a(n)7 ne N}

Consider now the chains in the case of type (1) and type (2). Fix first a basic
sequence either spanning an HI space or such that any two disjointly supported spaces
are totally incomparable.

Assume now that for infinite sets, B C N we haveA\ B| < oo, but|B\ A| = oo,
which we denote byl C* B. Then we can find somB’EyB such thatd C B’ and
|B'\ A| = oo, whencele;]ica C [e;]icn = [ei]ics. On the other hand, in the case of
Hl spaces|e;|ics = [eilicn £ [€ilica, and in case of type (2)¢;]ic4 andle;];cpna
are totally incomparable and heneg;c s = [e;]icn’ £ [ei]ica @gain. In any case,

AC" B=leilica C [eilies & leilien £ [eilica.

By simple diagonalisation it is now easy to construct a sequeficg «.,, such that
if £ < ¢ <wi, thend, C* A, whence([eiheAg)5<w1 gives awi-chain in the ordering
C. Similarly for anwj-chain. Now to construct thR-chain, we identifyQ with N and
R with the left parts of the corresponding Dedekind cuts. Thus«f s belong toR,
then they correspond to subselts C* A, of N. Thus,([e;]ic4, )rer forms anR-chain
in C.

To get an uncountable Borel set of totally incomparable subspaces, i.e. such that
no subspace of one embeds into the other, in the case of type (2), we simply pick
an uncountable Borel set of almost disjoint subset®d @nd notice that ifA and B
are almost disjoint, i.e., they are both infinite with finite intersection, fagn: 4 and
[e;):c 5 are totally incomparable.

The last fairly simple part of the picture is the existence ofihehain in the case
of type (3). Again this is a direct set theoretical diagonalisation. We use here the
well-known fact that the embeddability relation on quasiminimal spaces is downwards
o-directed, i.e., that any countable family of subspaces have a common subspace up
to isomorphism. This is easy to see, fotkifis quasiminimal andY,,,) is a countable
family of infinite dimensional subspaces, where we supp@deas a basige;), then

by quasiminimality, we can inductively pick block sequen@éﬁ“)) such tha(xﬁlm“))
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is a block of(z\™), [+\™] C ¥;, and then take the diagonal seque(mg‘b))n. Then

[a:(z’;)]n C [zi™], C Y, for all m. By diagonalisation and using the fact that no
subspace is minimal one now constructs.grsequence in the orderirg.

The final four results, namely the existence of uncountable Borel antichains in type
(1) and (3) and the reduction éf to = and= in type (3), however, seems to necessitate
more advanced techniques, in particular, metamathematics and methods of effective
descriptive set theory. Moreover, also the determinacy result of Gowers [24] is here
used in its full force, i.e., for analytic sets. To our knowledge, this is one of the only
known applications of his result other than for closed/open sets.

To begin, let us first state a general Ramsey principle for equivalence relations that
is specifically adapted for the geometry of Banach spaces.

Theorem 12(Rosendal [42]).Let E be an analytic equivalence relation ¢KN]" that
is Eg-invariant, i.e.,Ey C E. Then eithetEy < E or for some infinite subset C N,
the sefA]" is contained in a singl&-class.

For example, if(e;) is a basis andz the induced relation ofiN]" of isomorphism
between spaces spanned by subsequences of the basig; theasily Ey-invariant.

We should mention that the only known proof of Theorem 12 uses metamathematical
methods and it would be interesting to find a more topological proof of this. Probably,
one would have to find some uniformity that could allow for standard methods. As an
application of the statement, we see thdijfdoes not reduce to isomorphism on the set

of subspaces dt;], then(e;) has an isomorphically homogeneous subsequence, i.e., a
subsequence all of whose further subsequences span isomorphic spaces. Nevertheless,
this principle does not in itself appear to be enough tomgein type (3). For that we

will need a better result due to Ferenczi, relying on the one hand on Theorem 12 and on
the other hand on the methods of Pelczar [40], who herself was inspired by the closed
case of Gowers’ determinacy result.

Theorem 13(Ferenczi [14]).Let X be a separable Banach space saturated with iso-
morphically homogeneous basic sequences. Theantains a minimal space. In fact,

it is enough to suppose th& is saturated with basic sequences whose closed span
embed into the closed span of any of their subsequences.

Pelczar’s original result was quite similar, but had a considerably stronger hypothesis,
namely, thatX was saturated with subsymmetric basic sequences.

Consider now the case of spaces of type (3)XIfs a space of type (3), anély
does not reduce to isomorphism between its subspaces, then any basic sequénce in
has an isomorphically homogeneous subsequence and Keis@aturated by such se-
guences. By Theorem 13X contains a minimal space, which is impossible. Similarly,
if Ep does not reduce to biembeddability between the subspacEstbien X is sat-
urated by sequences embeddable into all of the spaces spanned by their subsequences
and againX must contain a minimal space, which is a contradiction. Therefége,
reduces in each case.

For the record, we spell out the argument in the following corollary.
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Corollary 14. Let X be a separable infinite-dimensional Banach space. Then either
E, Borel reduces to isomorphism between its subspace’¥ @ontains a minimal
space.

The result we need for the existence of antichains is quite similar, but differs rather
by its proof. Again it does not rely heavily on geometric properties of Banach spaces,
but mostly on methods of combinatorics and descriptive set theory, and, in particu-
lar, not only Gowers’ determinacy theorem, but also on the solution to the distortion
problem by Odell and Schlumprecht [39].

Theorem 15(Rosendal [42]).Let X be an infinite-dimensional separable Banach space.
Either X contains a minimal space or there is an uncountable Borel set of incompara-
ble subspaces.

This immediately implies the existence of uncountable Borel antichains in type (1)
and type (3) spaces and thus finishes the proof. a

The remaining case is that of minimal spaces. The structuresapid= are trivial
on such spaces. Concerniggthere is of course no general result saying that there are
many non-isomorphic subspaces in this case, as the space could be Hilbertian, but if
the space is not homogeneous, it seems plausible that there must be many isomorphism
classes. Indeedp and/,, 1 < p < 2, [15], as well as Tsirelson’s dual spateé (by
the method of [41]) are ergodic. Note also that any non-reflexive minimal space must
containcg or ¢1 and therefore be ergodic, and that Theorem 5 and Theorem 8 may
provide other classes of minimal ergodic spaces.

Question 16. Does there exist an analytic complete minimal Banach space?

We end this section by sketching the proofs of Theorem 15 and of Theorem 13 in
the=-homogeneous case. In each case we may assume that th&dpasa Schauder
basis(e;). All vectors will belong to the s of non-zero finiteQ-linear combinations
of the basis vectorg:;), whereQ is a countable subfield @ closed under computing
norms. We recall thab; denotes the set of normalized blockshinthat the space of
infinite D;-block bases is denoted Byq (X) and the set of finité;-block bases is
denotedfbbq (X).

Sketch of the proof of Theorem: e notice first thatC restricted to the standard
Borel space of subspaces &fis an analytic quasiorder. So Theorem 15 amounts to
saying that eitheC has a minimal element or an uncountable Borel antichain. The
idea of the proof is to replade by aBorel quasiorderr containingC and sufficiently
reflecting the properties of the latter. Then one can employ the analysis by Harrington,
Marker, and Shelah [29, 27] of Borel quasiorders to deduce the result. The exact result
we need can be deduced from [27].

Theorem 17(Harrington—Marker—Shelah [27])f R is a downwards -directed Borel
guasiorder on a standard Borel space, then eitli®has an uncountable Borel an-
tichain or a minimal element.
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HereR is downwardsr-directed if any countable family i® has a common mino-
rant. We have the following standard observation.

Lemma 18. SupposeX is quasi-minimal. Thef is downwardsr-directed orbbg (X).

ForY = (y), Z = (%) € bbq(X), letY < Z if Y is a blocking ofZ and put
Y <* Zif for somek, (v;)i>x < Z. Also, if A = (§;) is an infinite sequence of strictly
positive reals, writel(Y, Z) < Aif Vi |ly; — z;]| < 6;. SetY =* Zif Ik Vi > k y; = 2.
Evidently,Y =* Z impliesY ~ Z.

For a subset\ C bbq(X) let A* = {Y € bbq(X) | 3Z € A Z =* Y} and
Ap ={Y € bbq(X) | 3Z € A d(Z,Y) < A}. Notice that ifA is analytic so are both
A* andA,. We also sefY] = {Z € bbq(X) | Z < Y} and notice thafy] is a Borel
subset obbg (X). A is said to bdargein [Y] if for any Z € [Y] we have[Z] N A # 0.

For A C bbq(X) andY € bbg(X), the Bagaria—Gowers-épez-Abad gamey is
defined as follows: Player I plays in tih&h move of the game a vectaf, € D; such
thatz,_1 < 2. Player Il responds by either doing nothing or playing a vectarD;
such that € 241, . . ., 2] wherel was the last move where |l played a vector. We say
that player Il wins the game if in the end she has produced a block¥asigv;) € A.

A slight variant of this game is shown in [6] to be equivalent to the game studied by
Gowers in [24]. It follows from Gowers’ determinacy result in [24] thatif bbg(X)

is analytic, large ifY’] andA is given, then for som& € [Y], Il has a winning strategy

in the game)‘}‘. However, due to the complexity of the sets we are dealing with, we
need to have a stronger determinacy result, which holds under stronger set-theoretical
assumptions.

Lemma 19. (MA + —CH) SupposéV C bbq(X) is a 33 set, large in soméy’] and
A > 0. Then Il has a winning strategy m‘;’A for someZ € [Y].

Lemma 20. (MA +-CH) Suppose thak does not contain a minimal subspace. Then
forany W € bbq(X) there isY € [W] and a Borel functions: [Y] — [Y] such that
forall Z € [Y],

o(2)<Z

and

Z L $(Z).

Proof. We can assume th&lt = X. Also, ascg is minimal, X does not containy and
therefore, by the solution to the distortion problem by Odell and Schlumprecht [39], we
can by replacing( by a block-subspace suppose that we have two positively separated
setsFy, F; of the unit sphere, such that for ably € bbq(X) there arer,y € D, such
thatz € Iy, y € F1, andz,y € Y. We call such setmevitable
Let now
A={Y = (y;) € bbq(X) | Viy; € FoU F1}

and forY € A leta(Y) € 2 be defined by
Oé(Y)(Z) =0& y; € Fo.
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Thena: A — 2N is continuous. Fix an uncountable closed Betc 2V of almost
disjoint subsets o and let

B={Y c€A|a(Y)e P}

As P is closed, so i® and by the inevitability ofp and F1, B is large in everyY].

By fixing a Borel bijection betwee® and the set of infinite sequences of finite
non-zeroQ-tuples, we can see eaghe P as coding a way to construct an infinite
Q-block sequence of any € bbg (X ). Denote this infinite block sequence by and
notice thaty’? is a blocking ofY” though not necessarily normalised.

Consider now the set

W ={Y = (1) € bbq(X) | (v2r) €B A [y2isa] Z [(y2i42)* ]}

SoW consists of the block§y;) € bbq(X) such that(y,;) codes a subspace pb; 1]
into which [y2;+1] does not embed. First of all¥ is clearly coanalytic, and again,
using the inevitability ofF; and F; and the fact thak contains no minimal subspace,
one can verify thaWV is large inbbq (X).

Take now somé\ = (§;) depending on the basis constant such t#jatY”’) < A
impliesY ~ Y’, and, moreover, such th&t < %d(Fo, F;). By Lemma 19 we can find
aY e bbq(X) such that Il has a winning strategyin the game)?z.

We shall now show how the functiaft [Y] — [Y] is defined. For this, Ie¥ € [Y]
be given and suppose | plays the sequgnge= Z in the game)‘yz. Then using the
strategyo, Il will respond toZ by playing som&/ = (v;) < Z, V € Wj. There is
therefore soméV = (w;) € W such tha € {W};. ThisW might not, however, be

Borel in V. Nevertheless, we can in a Borel manner complte,;) € P, because for
almost all;

1
d(v2i, wo;) < 023 < éd(Fo,Fl)

andwy; € FoU Fy. So by lettingp(i) = 0 if d(va, Fo) < d(vz;, F1) andp(i) = 1
otherwise, we see that and a(w,;) differ in finitely many coordinates. Moreover,
as different elements @p differ in infinitely many coordinatesy(wy;) is the unique
element ofP that differs fromp in finitely many coordinates and heneéw,; ) is Borel
in V. Also by the assumption ok > 0,

(v2i41) ~ (w2i+1),
and thus
(v2i42) %) ~ (wgipq) (2,
Now W € W, so
[wai1] & [(wzir2)*2)],
whence also
[vais1] Z [(vaipa) ™).

Renormalising the blockinguy; ,1)*(“2), we finally find all = (u;) < V such that
[v5] Z [ui]. Thus,p(V) = U works. 0
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The idea of coding with inevitable sets was originally used byapdz-Abad to give
a new proof of Gowers’ determinacy Theorem [35]. The import of its use here is to
impose a relationship between and ¢(Z). One is tempted to just apply Gowers'’
determinacy result directly to ge{Z) from Z, but Gowers’ Theorem only allows use
to force¢(Z) to belong to a certain set, not such thér) stands in a certain relation
to Z.

Now to finish the proof of the theorem, we can suppose Fhas$ quasiminimal,
but does not contain a minimal subspace. In that cdse,(X),C) is a downwards
o-directed analytic quasiorder without a minimal element. Moreover, by replacing
with a subspace, we can suppose that this latter fact is testified by a Borel fusction
that to eaclt” € bbg(X) picks out a subspace &f into whichY” does not embed.

The fact that non-minimality is witnessed by a Borel function allows us now to
reflect this property to a Borel quasiordBron bbg(X) such thaty’ C Z = YRZ.
But, asRk has no minimal element, it must have an uncountable Borel antichain, which
thus also is an uncountable Borel antichaindfor

This proves the result und@vlA +-CH), but additional work, again using Gowers’
determinacy result and coding with inevitable sets, allows us to show that the property
of having a minimal subspace is actually and not just its face valugl. Similarly,
having a continuum of incomparable subspaces is e33ilyand thus the statement
of the theorem is itselE}. By Shoenfield's absoluteness theorem, the additional set-
theoretical assumptions can thus be eliminated from the proof. a

Before we prove Theorem 13, we introduce some other notation. We denote by
Gq(X) the set of subspaces af spanned by elements g (X) and by Fing(X)
the set of subspaces spanned by elemenfdief(X). Standard notation will be used
concerning successive vectors (respectively finite dimensional subspadeg). dfor
L. M € Gq(X), L c* M means thal = [I;,: € N|, wherel; € M for all but finitely
manysi’s.

Sketch of the proof of Theorem 1Bet X be a space which is saturated with iso-
morphically homogeneous sequences.

By a standard use of Ramsey’s Theorem and a diagonalisation, we may assume
that there existé > 1 such that every block-sequencéiig (X ) has a further block-
sequence ihbg (X ) in which isK-isomorphically homogeneous. We fix sofie> K.

For L, M two block-subspaces ifiq (X ), define the infinite gamé&', ,, between
two players as follows; for each € N, my, n are integersgy, is a vector inDq, y, a
vector inD, andF}, belongs taFing (X).

1: ny<x1 €L, ng <x2 €L,
ma ma

2: nm m1 < F1 C M, mo < Fr C M,
y1 € F1,n2 y2 € F1+ F2,n3
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Player 2 wins the gam@y, s if (y,)nen is C-equivalent ta(z,, ) en.

We shall now provide a stabilising subspace on which Player 2 has “sufficiently
many” winning strategies in game&$;, ,,. The reader may look for more about this
type of proof in the survey by S. Todorcevic [5] where it is called “combinatorial forc-
ing”. A crucial point in the definition of7, », is that the moves of the players are
asymptotic, in the sense that one player can force the other to play “far enough” along
the basis, and this will allow the stabilisation; on the other hand, the use of finite-
dimensional spaceB; leaves enough room for Player 2 to pick vectggswvhich are
not necessarily successive on the basis. There are indeed some spaces with a basis,
such asr™*, where minimality cannot be proved by finding copies of the basis as suc-
cessive vectors, and therefore the apparent technicality of the definition is necessary (at
least in the case of the weaker hypothesis in Theorem 13).

A stateis a couple(a, b) with a € fbbg(X) andb € (Fing(X) x D)<“ such that
la| = |b] or Ja|] = |b] + 1. The setS of states is countable, and corresponds to the
possible states of a gandg, 5, after a finite number of moves were made, restricted
to elements which do affect the outcome of the game from that state(iseandn;’s
are forgotten). Thus fos € S, we may define7, »/(s) as the game&,, 5, starting
from the states. For example, ifs = (a,b) with |a| = 2,|b] = 1, the game&7L y/(s)
will start with 1 playing some integer.,, then 2 playing >, y2, n3), etc.

We require a classical “stabilisation lemma” used by Maurey in [37].

Lemma 21. Let N be a countable setand Igt: Gq(X) — 2V be a(c*, c)-monotone
map. Then there exists a stabilising subspatee Gq(X), i.e., such thap(M) =
w(Mo) forany M c* M.

Let nowr : Gq(X) — 25 be defined by € (M) if there existsL ¢ M such
that Player 2 has a winning strategy for the gahe,(s). By the asymptotic nature
of the gamer is (C*, C)-increasing, and therefore there exi&fs which is stabilizing
for 7. We then define a map: Gq(X) — 2° by settings € p(L) if Player 2 has a
winning strategy for the gam@/, »;,(s). Thenp is (C*, C)-decreasing, and therefore
there exists a block-subspagg € Gq(X) of My which is stabilising forp. Finally,
we check thap(Lg) = 7(Lo) = 7(Mp). We may assume thdly = [f,,n € N], with
(f») K-isomorphically homogeneous.

We prove thatlg is minimal. Fix M a block subspace dfp. We use induction to
construct a subsequen¢g,, ). of (f.), and a sequendd’, yx ), such that for all,
Fk CM,yk €F1+"'+Fk,

Sk = ((fn1""7fnk)’(y17~-~ayk7F1a---7Fk)) € p(Lo).

Then we are done, sindg,.,, .-, fu,) ~° (y1,.--,yx) for all k, so (f,,)x is C-
equivalent tayx )x, andM contains aC' K -isomorphic copy of .
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Givensy = ((fugs -« fun)s W1y -+ Yk, F1, ..., Fi)) € p(Lo), Player 2 has a win-
ning strategy foiG 1, as,(sx), therefore if we pick some,1 > ny large enough, the
state

S = ((Fres- s Frnn)s W1, oo Yks F1y oo Fi))

belongs top(Lo) = 7(M), and 2 has a winning strategy f6f;, »(s},) for someL C
M. Therefore there exidt,.1 € M andy, 1 € F1 + -+ + Fri 1 C M, such that

Sk+1 = ((fn]_a ceey fnk+1)7 <y17 ey Yk+1, Fl» sy Fk+1))
belongs tor (M) = p(Lo).

It therefore only remains to initiate the induction, i.e. prove that the empty state
(@,0) belongs tgy(Lg). To obtain this result, one refines the notioreshomogeneity
in order to imitate the notion of subsymmetry of basic sequences.

Definition 22. A block-sequencér,,),en in X is C-continuously isomorphically ho-
mogeneoud there exists a continuous map [N]N — DY such for all4 € [N]¥, ¢(A)
is a sequence of vectors spanning],c 4 and isC-equivalent ta(z,, ) nen.

In this definition, the sed" is equipped with the product of the discrete topology
on D, which turns it into a Polish space. The following result is a consequence of
Ellentuck’s and Louveau’s proofs of the infinite-dimensional Ramsey theorem.

Lemma 23. Let (z,,),en € bbg(X) be a block-sequence which fs-isomorphically
homogeneous, and letbe positive. Then some subsequencéxr@f,.cy is K + e-
continuously isomorphically homogeneous.

The proof of Theorem 13 ends with the final observation:

Lemma 24. Assum€l,),en is a block-sequence ibg (X ), which isC-continuously
isomorphically homogeneous, and fet= [I,,,n € N]|. Then Player 2 has a winning
strategy in the gamé&', ., therefore((, ) € 7(L).

Therefore some subsequencé ff) is K +e-continuously isomorphically homoge-
neous, and if{ +¢ < C, spans a block-subspatg such that(, 0) € 7(Loo) = p(Lo).
O

6 On the Komorowski—-Tomczak-Jaegermann side

R. Anisca [3] developed the techniques of Komorowski—Tomczak-Jaegermann [33] to
define finite dimensional decomposition versions of the notion of local unconditional
structure and extracted the following consequence.

Theorem 25(Anisca [3]). Let X be a separable Banach space with finite cotype and
non-isomorphic td,. Then for eactt € N, there exists a subspacef®{ X ) which has
ak + 1-uniform FDD but not a-uniform FDD.
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Corollary 26. Let X be a separable Banach space non-isomorphi&tdhen,(X)
has infinitely many non-isomorphic subspaces.

Anisca actually obtains this corollary assumiiighas finite cotype. 1fX doesn’t
have finite cotype, thefy(X) contains, e.g., copies of the spa¢es.cnl;; )2, 1 < p <
~+00, Which are easily seen to be mutually non-isomorphigfor2 (see [9], Corollary
18), and therefore the result holds as well.

Using the techniques of [19, 42] in the case of spaces with unconditional finite
dimensional decomposition, Ferenczi and Galego obtain:

Theorem 27(Ferenczi—Galego [15])Let1l < p < +oo. LetX = (®penFn),, Where
the F,’s are finite dimensional. TheR is ergodic orX ~ ¢,(X). The similar result
holds forco-sums.

The following consequence was observed in [9]. A strongly asymptptDD is
the obvious generalization of a strongly asymptétibasis; examples ag-sums or
cp-sums, as well as Tsirelson sums, of finite dimensional spaces.

Corollary 28 (Dilworth—Ferenczi—Kutzarova—Odell [9]Let1 < p < +o0o. Let X be
a Banach space with a strongly asymptatjd=DD. ThenX is isomorphic to/, or X
contains infinitely many non-isomorphic subspaces.

Question 29. What is the exact complexity of isomorphism between subspaggarof
£,? 1s¢,, p > 2, ergodic?

Question 30. What is the exact complexity of isomorphism between subspaces of Tsirelson’s
spacel’? Between block-subspacesiot

Recall thatF; <p (b0(T),~) <p Ek,; computing the exact complexity ef on
bb(T) may not be out of reach.

Question 31. What is the exact complexity of isomorphism between subspaces of Schlumprecht’s
spaceS? Between block-subspaces3if Is S ergodic?

Schlumprecht’s space is a relevant example by its minimality and the facEghat
is Borel reducible to permutative equivalence between its normalised block-sequences
[13].

Question 32. Does there exist a space such that the complexity of isomorphism be-
tween its subspaces is exaclly? Is there a space with a Schauder basis such that the
complexity of isomorphism between its block-subspaces is exattly

Note that the complexity of isomorphism is exacHy between subspaces spanned
by subsequences of an unconditional basis with the strong Casazza property (i.e., a
space of type (2) in Gowers’ theorem).
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7 Homogeneity questions

From the solution of Gowers and Komorowski—Tomczak-Jaegermann to the homoge-
neous Banach space problem it is easy to deduce the slightly stronger statement that
a space with a Schauder basis which is isomorphic to all its subspaces spanned by
Schauder bases must be isomorphiétdSeveral questions remain open in that direc-
tion:

Question 33. If a Banach space has an unconditional basis and is isomorphic to all
its subspaces with an unconditional basis, must it be isomorphig?to

The next question was already mentioned in the introduction and concerns a stronger
statement, modulo the fact thatand?,, p # 2, contain a subspace with an uncondi-
tional basis which is not isomorphic to the whole space [34]:

Question 34. If a Banach space has an unconditional block-homogeneous basis, must
it be isomorphic ta, or £,?

Recall that a theorem of Zippin states that a basis which is perfectly homogeneous,
i.e., equivalent to all its normalised block-sequences, must be equivalent to the canoni-
cal basis otgor¢,, 1 < p < +oo, [47]. Bourgain, Casazza, Lindenstrauss, and Tzafriri
extended this result to permutative equivalence [8]. Ferenczi and Rosendal proved that
if a normalised Schauder basis is not equivalent to the canonical basjsoof/,,,

1 < p < 40, thenEy reduces to equivalence between its normalised block-sequences
[19]. Ferenczi [13] obtained that X has an unconditional basis, thé&p is Borel re-
ducible to permutative equivalence di{ X') or every normalised block-sequence has

a subsequence equivalent to the unit vector basis of somedfjx@d:.

Some apparently weaker properties turn out to be equivalent to block homogeneity.

Theorem 35(Ferenczi [12]).LetY be a Banach space and &t be a space with an
unconditional basis such that every sequence of successive finite block-sequences has
a subsequence whose concatenation spans a space isomorphid@tenX is block-
homogeneous.

The techniques used for this result are similar to the one used for Theorem 8. They
are based on Lemma 9 and the fact that isomorphism classeg (i) verify a topo-
logical 0-1 law, i.e., they are either meagre or comeagtédt.X).

Theorem 36(Rosendal [44], Assuming Projective Determinacgt X be a Banach
space which is nat;-saturated and such that every weakly null tree has a branch which
spans a subspace isomorphicXo ThenX has a block-homogeneous basis.

Here aweakly-null treeén X is a sequence of normalised vect@rs) ,cn<n indexed
by N<N such that for alk € N<N, the sequencér,—,, ),cn is weakly-null.

Uniformity results might be necessary to answer Questions 33 or 34. Thisis in line
with the question by Gowers whether there exists a direct proof that a homogeneous
Banach space must be uniformly homogeneous.
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Question 37. Let X be a space with a block-homogeneous basis. Must it be uniformly
block-homogeneous?

An extremely partial answer was obtained in [12].

Theorem 38(Ferenczi [12]).If X has a block-homogeneous unconditional bésj$
andX isisomorphictagoré,, 1 < p < +oo, then(e;) is uniformly block-homogeneous.

8 Spreading models

A fundamental notion in the geometry of Banach spaces is that of a spreading model.
We recall that a normalised basic sequeficg is said to generate a spreading model

if for all r1,...,7, € Rthere ist € R such that for any > 0 there existsV with the
following property: for anyNV < i1 < ... < I, we have

lrazy, + ...+ ez —t | <e

A more intuitive way of expressing this is by saying that

lim lrizey, + ...+ rrxy, ||
<. <lg, lj—oc0
exists for allry, ..., 7. In this case, we can define a 1-subsymmetric basic sequence
(Z;) by the formula

||T1.%1+ ...+Tk£‘k|| = lim ||7“1$11 +...+r;€xlk\|,
h<..<lg, h—oo

and say thatz;) generates thepreading mode{z;). Though the basic sequencg)
is very closely related to the spake] it does not necessarily have to be present there,
and indeed this is one of the reasons for its interest.

Presumabily, the right notion of isomorphism for spreading models is equivalence
and the most natural ordering is majoration. Here a basic sequeyamajorisesa
basic sequencg;) if there is a constank” such that for alry, ..., r,

lries + ... +ropen| < Kljrafi+ ..o+ rofall-

Some of the major problems about spreading models concern the possible sets of
spreading models generated by basic sequences of a given space and the structure of
this set of spreading models under the quasiorder of majoration. One particular ques-
tion that has motivated some research, in particular [1], is the following question of S.
Argyros.

Question 39(Argyros [1]). Let X be a Banach space such that all spreading models
in X are equivalent. Must these spreading models be equivalent to the unit vector basis
of ¢p or ¢, for somep > 1?
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This question is of course motivated by the fact that the spgceave a unique
spreading model up to equivalence. FokXifis a reflexive space, then any spreading
model is generated by a weakly null sequence, and hence in the dasé ef p < oo,
by a normalised block that is itself equivalent with And, in¢1, any spreading model
is, by Rosenthal’¢;-theorem, generated by either Arsequence or a weakly Cauchy
sequence. In the case of a weakly Cauchy sequénge the difference sequence
(z2i+1 — 2;) 1S weakly null and thus generatésagain. This argument, however, does
not generalise tap unless one restricts the attention to spreading models generated by
weakly null sequences.

Another version of this question had previously been formulated by H. P. Rosenthal
in another disguise, namely, as a question concerning characterisations of the standard
basis of,,.

Question 40(Rosenthal).Supposéde;) is a basic sequence such that any normalised
block-sequence has a subsequence equivalénf)tals (e;) then equivalent to the unit
vector basis of somg, or cp?

Itis a fact, shown in [18], that a positive question to Argyros’ question leads also to
a positive answer to Rosenthal’s question. The question of Rosenthal may also open a
direction to answer Question 34. For example:

Question 41. If a normalised unconditional basis is block-homogeneous, does it have
a block-sequence, or even a subsequence, with the property defined by Rosenthal?

Going back to the structure theory of the set of spreading models under the relation
of majoration, we shall here show that under the supposition that there is ho uncount-
able Borel antichain, one can prove quite strong structural results at leastXvhisn
separable. In the following, it will be assumed that all spaces in question are infinite-
dimensional.

Definition 42. Let X be separable infinite-dimensional Banach space andjebe
the set of weakly-null, normalised basic sequeriegsgenerating a spreading model
(%;). For (z;) and (y;) in S, we set(x;) < (y;) if (Z;) is majorised by(g;). Simi-
larly, we let(z;) =~ (y;) if both (z;) < (y;) and (v;) < (=), i.e, if (Z;) and (g;) are
equivalent.

We notice thak is a quasiorder o08,,. It seems perhaps more natural to work directly

with the set of spreading models, or even the set of spreading models up to equivalence,
instead of the set of sequences generating the spreading models. However, the latter is
a standard Borel space whéit is separable, which is not necessarily the case for the
former. ThusS,, lends itself to the methods of descriptive set theory.

In the fundamental paper [1] by Androulakis, Odell, Schlumprecht, and Tomzcak-
Jaegermann it was proved th&,, <) is an upper semi-lattice, i.e., any two elements
have a common least upper bound. Moreover, it was proved that any countable family
has an upper bound, though not necessarily a least upper bound. This line of research
was continued by B. Sari, who proved the following result.
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Theorem 43(Sari [45]). SupposeX is a separable Banach space such tSgthas an
infinite increasing sequence with respecttoThen it has an increasing;-chain.

This result puts us in a position where we are able to pursue the analysis lying behind
Theorem 15, except that, as the relation of majorisation between bases is Borel and not
only analytic, the analysis is completely straightforward.

Theorem 44. Let X be a Banach space with separable dual. Then

« either (i) S,,/ = is countable or (ii) there is a continuum size antichain(#,, <),

- either (iii) there is a continuum size antichain and also an increasipghain in
(Sw, =) or (iv) (Sw, <) is inversely well-founded with a maximal element and for
some ordinak < w; there are no decreasing-chains.

Proof. There are two cases. By Sari's result, eithgy, <) is inversely well-founded
or has an increasing; -chain.

In the first case, we have by the Kunen-Martin theorem that there is some countable
bound on the length of decreasing sequencdsin <) and hence for some < w;
there are no decreasingchains in(S,, <). Moreover, by the results of [1]S,,, <)
is an upper semi-lattice and hence if inversely well-founded it must have a maximal
element or otherwise one could construct an infinite increasing sequence.

In the second case, we can apply the results of Harrington, Marker, and Shelah
[29, 27] on Borel quasiorderings as follows. They prove that if a Borel quasiorder on
a standard Borel space haswachain, then it also has a perfect antichain. This thus
shows the dichotomy between (iii) and (iv).

Now to see the dichotomy between (i) and (i), suppose(that <) does not admit
an uncountable Borel set of pairwise incomparable elements. (fier) is inversely
well-founded and for some < w; there are no decreasingchains. Moreover, we
again have by the results of Harrington, Marker, and Shelah that there is a partition of
the space into countably many Borel séts each of which is linearly ordered by.
Therefore, eacliX,,, <) is an inverse prewellordering of countable length and hence
eachX,,/ = is countable, whence alsfy,/ =~ is countable. 0

We notice that P. Dodos [11] has independently arrived at the same result by es-
sentially the same argument, though his setup is slightly different. He also notices that
one can discard of the hypothesis ttiat is separable by applying a result of H. P.
Rosenthal [5]. The following is a reformulation of Dodos’ argument in our language:

Let (z,) be a sequence in a Banach spate We say that(z,) is a Brunel-
Suchestosequence if

+ (w,)is Cesaro summable,
» (=z,)is a normalised basic sequence,
o« forallkandk <ni<...<np, k<mi<...<my, We have

(xnlv cee 7x71k) ~1+1/k (Imlv e al'mk)
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Dodos then notices that, by the result of Rosentha, i§ a Banach space, then, apart
from possibly/1, the spreading models generated by normalised weakly-null sequences
of X are exactly those generated by Brunel-Sucheston sequen&eshitoreover, as
the set of Brunel-Sucheston sequences is clearly Borel, one can just work with this set
instead ofS,, .

We should mention that Theorem 44 is in response to a question of Dilworth, Odell,
and Sari from [10].
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