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Abstract. We provide an overview of a number of results concerning the complexity of isomorphism
between separable Banach spaces. We also include some new results on the lattice structure of the
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1 Complexity of equivalence relations

A topic much in vogue in descriptive set theory for at least the last twenty years is the
study of the relative complexity of Borel and analytic equivalence relations on Polish,
i.e., completely metrisable separable spaces. The motivation comes from the general
mathematical problem of classifying one class of mathematical objects by another, that
is, given some classA of mathematical objects, e.g., separable Banach spaces, and
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a corresponding notion of isomorphism one tries to find complete invariants for the
objects inA up to isomorphism. More explicitly, one would like to assign to each
object inA an object in another categoryB, such that two objects inA are isomorphic
if and only if their assignments inB are isomorphic. If this can be done, one purports
to haveclassifiedthe elements ofA by the elements ofB up to isomorphism. Thus, for
example, the discrete spectrum theorem of Halmos–von Neumann is a classification of
the ergodic measure preserving transformations with discrete spectrum by their sets of
eigenvalues. Similarly, by Stone duality, boolean algebras can by classified by compact
spaces up to homeomorphism.

In descriptive set theory there has been an effort to systematise the notion of clas-
sification itself and to determine which classes of objects can properly be said to be
classifiable in terms of another. This is done by restricting attention to classes of ob-
jects that can readily be made into a standard Borel space (i.e., the measurable space
of a Polish, or separable completely metrisable space) and the corresponding equiv-
alence relation of isomorphism. For example, the class of separable Banach spaces
can be identified with the set of closed linear subspaces of some isometrically univer-
sal space, e.g.,C(2N), as we shall see later. However, as uncountable standard Borel
spaces are all Borel isomorphic, the perspective changes from the set of objects them-
selves to the equivalence relation that really encodes the complexity of the objects up
to isomorphism. The precise definition is as follows.

Definition 1. Let E andF be equivalence relations on standard Borel spacesX and
Y respectively. We say thatE is Borel reducibleto F if there is a Borel function
f : X → Y such that

xEy ↔ f(x)Ff(y)

for all x, y ∈ X. We denote this byE 6B F and informally say thatE less complex
than F . If both E 6B F and F 6B E, thenE and F are calledBorel bireducible,
writtenE ∼B F .

For example, if we letB be the standard Borel space of separable Banach spaces,
then we will see that the relation of isomorphism is analytic as a subset ofB2, i.e.,
is the image by a Borel function of a standard Borel space. Since most other natural
isomorphism relations are also analytic or even Borel one usually restricts the attention
to this subclass. Thus, if we have two classesA andB of mathematical objects, that
we have identified with standard Borel spacesA ∼ X andB ∼ Y , respectively, and
we denote byE andF the corresponding isomorphism relations onX andY , then a
reductionφ : X → Y of E to F can be viewed as a classification of the objects inA by
the objects inB. To sum up, one can say that the theory of complexity of equivalence
relations is the study of which invariants one can use for various mathematical objects.

We should also briefly mention a slightly other way of viewing Borel reducibility.
If φ : X → Y is a Borel reduction ofE to F , then it is easy to see thatφ induces an
injection φ̂ : X/E → Y/F and thus that the cardinality ofX/E is smaller than that of
Y/F . In fact, one can use this to define a notion ofeffective cardinalityfor quotient
spaces, a notion that refines Cantor’s concept of cardinality. Thus, for example, the
effective cardinals are not wellordered or even linearly ordered.
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A large part of the general theory on analytic equivalence relations has concerned
the structure of6B, i.e., the hierarchy of analytic equivalence relations under this or-
dering, and the place of naturally occurring isomorphism relations in the hierarchy. It
is now known that6B is extremely complex as an ordering, while, on the other hand,
most naturally occurring classification problems tend to be bireducible with a fairly
small class of equivalence relations for which there is also a nice structure theory. We
now proceed to describe some of these.

Apart from equivalence relations with only countable many classes the simplest
Borel equivalence relation is the relation(R,=) of equality of real numbers. In fact,
a result of Silver [46] implies that any Borel equivalence relation either has countably
many classes, and thus is just a countable partition of the underlying space into Borel
sets, or(R,=) is Borel reducible to it, and thus has continuum many classes. Equiv-
alence relations reducible to(R,=), calledsmooth, are simply those “isomorphism”
relations that admit real numbers as complete invariants. One outstanding example is
Ornstein’s theorem that entropy is a complete invariant for Bernoulli shifts.

A deep result due to Harrington, Kechris, and Louveau [28] shows that among non-
smooth Borel equivalence relations there is a minimum (with respect to6B) one, which
is calledE0. It is the relation of eventual agreement between infinite binary sequences,
i.e., forx, y ∈ 2N,

xE0y ↔ ∃n ∀m > n xm = ym.

Besides being minimum above(R,=), E0 is also characterised as being maximum for
hyperfiniteBorel equivalence relations, i.e., those that can be written as an increasing
union of countably many Borel equivalence relations with finite classes. All Borel
actions ofZ give rise to such orbit equivalence relations.

Of special interest among analytic equivalence relations are those that appear as the
orbit equivalence relation of a continuous action of a Polish group, i.e., a topological
group whose topology is Polish. Since any countable or locally compact second count-
able group is Polish, this class encompasses most of the orbit equivalence relations
usually studied in analysis. It turns out that for each Polish groupH there is a max-
imum, with respect to6B, orbit equivalence relation induced byH, and even among
all orbit equivalence relations induced by actions of countable (or what turns out to be
the same, locally compact second countable) groups there is a maximum one denoted
by E∞. It is characterised as the maximum Borel equivalence relation all of whose
classes are countable. Similarly, there is a maximum orbit equivalence relation among
all those induced by Polish groups, which we denote byEG.

We should also mention two other equivalence relations of complexity betweenE∞
andEG: the relation=+ on infinite sequences of complex numbers enumerating the
same sets, i.e., for(xn), (yn) ∈ CN,

(xn)n =+ (yn)n ↔ {xn}n = {yn}n,

and the6B-maximum orbit equivalenceES∞ induced by the infinite symmetric group
S∞. One easily sees that=+ is induced by an action ofS∞, which is Polish, and thus
alsoES∞ reduces toEG. And on the other hand, ifE is a Borel equivalence relation
with countable classes, then for eachz in the domain ofE, we can enumerate[z]E
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in some way depending onz, which will reduceE to =+. So alsoE∞ 6B=+. The
discrete spectrum theorem of Halmos and von Neumann says that two ergodic measure
preserving automorphismsT and S of Lebesgue spaces with discrete spectrum are
isomorphic if and only if they have the same countable set of eigenvalues,Λ(T ) and
Λ(S). Thus, if we fix a Borel functionφ that to eachT picks out an enumeration
(λn) of the set of eigenvaluesΛ(T ), then we see thatT andS are isomorphic if and
only if φ(T ) =+ φ(S) and hence isomorphism reduces to=+. On the other hand,
there is no way of constructingφ so that it makes the same choice of enumeration of
Λ(T ) andΛ(S) provided the twosetsare the same. This has to do with the fact that
the quotient spaceCN/=+ is not countably separated, or in our terminology that=+

is non-smooth. And in fact, isomorphism of measure preserving automorphisms with
discrete spectrum is Borel bireducible with=+ (see Foreman [21]).

An interesting discovery due to Kechris and Louveau [32] is that there are analytic
equivalence relations that are not reducible to orbit equivalence relations, or equiva-
lently, toEG. In fact, there is one, minimal among Borel equivalence relations having
this property, namelyE1, which is the relation of eventual agreement between infinite
sequences of real numbers. I.e., forx, y ∈ RN,

xE1y ↔ ∃n ∀m > n xm = ym.

To this moment,E1 is the only known obstruction for Borel equivalence relations to
being reducible to an orbit equivalence relation. As withE0, E1 is not only charac-
terised by its minimality property, but also by the fact that it is maximum among Borel
equivalence relations that can be written as a union of a countable increasing chain of
smooth equivalence relations, calledhypersmooth.

BeyondE1 there is the relationEKσ maximum among allKσ equivalence rela-
tions, i.e., those that can be written as an increasing union of compact sets. It is defined
on the space

∏∞
n=1{1, . . . , n} by the following formula

xEKσy ↔ ∃N ∀n |xn − yn| 6 N.

Another realisation of this important degree is, for example, a growth relation on func-
tionsf : N → N [43]. It is not too hard to see thatE∞ 6B EKσ , while, on the other
hand,=+ 66B EKσ .

As a last example we shall mention the most complex of all analytic equivalence
relations, namely thecomplete analytic equivalence relationEΣ1

1
. It is simply charac-

terised by being maximum among all analytic relations. Combinatorial realisations of
this relation may be found in [36] and [17].
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Simplified diagram of complexity of analytic equivalence relations.

2 Standard Borel spaces

For us to consider the class of separable Banach spaces as a standard Borel space,
we notice that up to isometry they are all represented as closed subspaces of some
metrically universal separable space such asC(2N). We now use a by now standard
way to make the closed subspaces ofC(2N) into a standard Borel space. First we
denote byF (X) the set of all closed subsets ofX = C(2N) and equipF (X) with its so
called Effros–Borel structure, which is theσ-algebra generated by the sets on the form

{F ∈ F (X)
∣∣ F ∩ U 6= ∅},

whereU varies over open subsets ofX. Equipped with the Effros–Borel structure,
F (X) becomes a standard Borel space, i.e., isomorphic as a measure space withR
given its standard Borel algebra. One then easily checks that various relations on
F (X)2 andX × F (X) are Borel, e.g., forx ∈ X andF ∈ F (X),

x ∈ F ↔ ∀n (x ∈ Un → F ∩ Un 6= ∅),
where{Un} is a fixed basis for the topology onX. So the relation ‘∈’ is Borel in
X × F (X). We can now also verify that the setB of closedlinear subspaces ofX
form a Borel set inF (X). To do this, notice that forY ∈ F (X), Y is a linear subspace
if and only if

0 ∈ Y & ∀n,m ∀p, q ∈ Q
(
Y ∩ Un 6= ∅ & Y ∩ Um 6= ∅ → Y ∩ (p · Un + q · Um) 6= ∅).
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As all the quantifiers are over countable sets,B is a Borel set inF (X) and thus a
standard Borel space in its own right and we designate this asthestandard Borel space
of separable Banach spaces. One could of course have constructed this space in other
ways, e.g., as the set of norms on a countable set of vectors, but experience shows that
any other way of proceeding leads to equivalent results.

Let us now see that, e.g., isometry of separable Banach spaces is an analytic equiv-
alence relation.

Y ∼=i Z ↔∃(yn) ∈ XN ∃(zn) ∈ XN

∀m (
Y ∩ Um 6= ∅ → ∃n yn ∈ Um

)

& ∀m (
Z ∩ Um 6= ∅ → ∃n zn ∈ Um

)

& ∀n (
yn ∈ Y

)
& ∀n (

zn ∈ Z
)

& ∀n,m ‖yn − ym‖ = ‖zn − zm‖,

which simply expresses that two separable spaces are isometric if and only if they have
countable dense subsets which are isometric.

In many cases, we are not interested in all separable Banach spaces, but only in
a Borel set of spaces. The most common situation is when we consider only the sub-
spaces of a particular space. But it is not hard to see that ifX ∈ B, thenB(X) = {Y ∈
B

∣∣ Y ⊆ X} is Borel and we can thus talk about the complexity of the isomorphism
relation restricted to this set.

If we are interested in a relation between subsequences of a given basis(en)n of
a spaceX, e.g. isomorphism of the closed linear spans or equivalence of the subse-
quences, we identify the space[N]N of infinite subsets ofNwith the set of subsequences
of (en)n. The associated embedding of[N]N into B(X) is Borel and therefore we can
also compute the complexity of isomorphism etc. between subspaces spanned by sub-
sequences of the basis. The case of block-subspaces is more complicated and will be
developed later.

3 Relations between separable Banach spaces

Certainly among the relations of similarity between (infinite-dimensional) Banach spaces
a few stick out as being of outmost importance, namely, linear isomorphism, (linear)
isometry, Lipschitz isomorphism, and uniform homeomorphism. It is well-known that
the project of classifying separable Banach spaces up to isomorphism is essentially an
impossible task and the tendency nowadays is to settle for something less, namely to
find a “basis” for the class of separable Banach spaces, i.e., a list of recognisable spaces
such that every space contains a copy of some space in the list.

Another natural question however is also what the complexity of the various clas-
sification problems is in the hierarchy of analytic equivalence relations. For example,
if one can show that the relation of isomorphism is of high complexity then this lends
mathematical sense to the feeling that this relation remains intractable.
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Concerning these various relations, Gao and Kechris [22] have shown that isometry
between separable complete metric spaces is bireducible with the most complex orbit
equivalence relation,EG, and thus the relation of isometry between separable Banach
spaces is at most of this complexity. However, recently, Melleray [38] has been able to
show that isometry onB is itself Borel bireducible withEG. This should be contrasted
with the result in [36] saying that the relation of (linear) isometric biembeddability
between separable Banach spaces is a complete analytic equivalence relation.

Concerning the complexity of isomorphism, lower bounds were successively ob-
tained by Bossard (E0, [7]), Rosendal (E1, [41]), and Ferenczi-Galego (the product
EKσ⊗ =+, [15]). And the complexity was finally determined by a very recent and yet
unpublished result of Ferenczi, Louveau, and Rosendal [17].

Theorem 2(Ferenczi–Louveau–Rosendal [17]).The relations of isomorphism, Lips-
chitz isomorphism, (complemented) biembeddability, and Lipschitz biembeddability
between separable Banach spaces are analytic complete, i.e., are maximum among
analytic equivalence relations in the Borel reducibility ordering6B. The same holds
for the relation of permutative equivalence of unconditional basic sequences.

This result thus has the surprising consequence that it is possible to assign in a Borel
manner to each separable Banach spaceX an unconditional basic sequence(eX

i ) such
that two spacesX andY are isomorphic if and only if(eX

i ) and(eY
i ) are permutatively

equivalent. This seems to contradict the feeling that it is somehow easier to check
permutative equivalence rather than isomorphism. However, the proof of this result
gives no hint as to how this assignment could be computed and obviously the basis(eX

i )
does not itself has to be related to the spaceX. It would certainly be very interesting
to find an “explicit” such assignment which could potentially be of use in applications.

We shall not go into the proof of this result, but only mention that it relies on an
elaborate construction due to S. Argyros and P. Dodos [4] that allows one to construct
spaces containing any specified analytic set of`p’s as its minimal subspaces.

In the fundamental paper [24] W. T. Gowers proved his now famous dichotomy
theorem stating that any infinite-dimensional Banach space contains either an uncon-
ditional basic sequence or an HI subspace. This result, in combination with another
result of A. Komorowski–N. Tomczak-Jaegermann [33], also solved the homogeneous
space problem:̀2 is the only (infinite-dimensional) Banach space which is isomorphic
to all its infinite-dimensional closed subspaces.

Given a separable Banach spaceX which is not isomorphic tò2, the question
remains as to what the possible complexity of isomorphism (and also biembeddability
etc.) is on the set of subspaces ofX. This is in line with the general question of
Gowers concerning the structure of the set of subspaces of a separable Banach space
under the quasiorder of embeddability. Even for classical spaces these questions remain
unsolved, only lower bounds are obtained.

We shall say that a separable Banach space isanalytic completeif isomorphism
between its subspaces is analytic complete. It is said to beergodic[20] if isomorphism
between its subspaces reduces the relationE0. Analytic complete spaces are those
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spaces on which isomorphism between subspaces reflects the complexity of isomor-
phism between all separable Banach spaces (equivalently, of the most complex ana-
lytic equivalence relation). Ergodic spaces are such that isomorphism between their
subspaces is not smooth though it is not clear whether this is also sufficient for a space
to be ergodic.

Question 3. Let X be a separable Banach space which is not isomorphic to`2. Is X
ergodic? IsX analytic complete?

By the proof of [17], the universal unconditional basis of Pełczyński spans an ana-
lytic complete space. The spacesc0 and`p, 1 6 p < 2 are ergodic [15], and, in fact,
isomorphism between their subspaces has complexity at leastEKσ ; isomorphism be-
tween subspaces ofLp, 1 6 p < 2, has complexity at leastEKσ⊗ =+. Concerning
`p, p > 2, it is only known that there are uncountably many non-isomorphic subspaces
[34]. Isomorphism between subspaces of Tsirelson’s spaceT , as well as of its dualT ∗,
has complexity at leastE1 [41].

When the spaceX is equipped with a Schauder basis, it is natural to restrict the
question of complexity of isomorphism to the class of block-subspaces ofX. A natural
topological setting for this is the spacebb(X) of normalised block-sequences ofX,
seen as a subspace ofXN whereX is equipped with the norm topology. The relation
of isomorphism induces a relation denoted' on bb(X), and the canonical map from
bb(X) into B(X) is Borel.

In this setting, the spacesc0 and`p, 1 6 p < +∞, with their canonical bases, are
the natural homogeneous examples; their bases areblock-homogeneous, meaning that
all their block-subspaces are isomorphic.

ConcerningT with its canonical basis, it follows from [41] and [43] that

E1 6B (bb(T ),') 6B EKσ ,

but the exact complexity of(bb(T ),') remains unknown. Note that the basis ofT is
strongly asymptotic̀1, where a basis(ei) is strongly asymptotic̀p if for someC < ∞
and some increasing functionf : N → N, every normalised sequence(xi)n

i=1 (n ∈ N)
of disjointly supported vectors from[(ei)∞i=f(n)] is C-equivalent to the unit vector basis
of `n

p . For example, the convexificationTp of Tsirelson’s space, 1< p < +∞, has a
strongly asymptotic̀p basis, andT ∗ has a strongly asymptotic̀∞ basis. It is more
generally proved in [9] that for any spaceX with a strongly asymptotic̀p basis (16
p 6 +∞), that is not equivalent to the canonical basis ofc0 or `p, E0 is Borel reducible
to isomorphism between block-subspaces ofX (even to isomorphism between spaces
spanned by subsequences of the basis).

It is unknown whetherc0 and`p, 1 6 p < +∞, are the only spaces with a block-
homogeneous basis. This would be a natural generalisation of Zippin’s theorem about
perfectly homogeneous bases [47]. Note that a positive answer would imply the ho-
mogeneous Banach space theorem of Gowers and Komorowski–Tomczak-Jaegermann,
via the fact that every Banach space contains a basic sequence and the non-trivial fact
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that the spacesc0 and`p, p 6= 2, are not homogeneous. The following question could
be easier to solve than the first part of Question 3.

Question 4. Let X be a separable Banach space with a Schauder basis which is not
isomorphic toc0 or `p, 1 6 p < +∞. Does it follow thatE0 6B (bb(X),')?

4 Isomorphism and spaces with an unconditional basis

The general idea of this section is that spaces with an unconditional basis which are
not ergodic must satisfy some algebraic properties (isomorphism with their square,
their hyperplanes etc.). They therefore resemble Hilbert space more than a generic
separable Banach space. Quite similar ideas in the context of the Schröder-Bernstein
property for Banach spaces were first developed by N. Kalton [30].

4.1 Subspaces spanned by subsequences of the basis

Given a spaceX with a Schauder basis(ei), we first look at the spacess(ei) of sub-
sequences of the basis, which we identify with the space[N]N of infinite subsets ofN
considered as a subset of 2N with its induced topology. The relation induced by iso-
morphism of the corresponding linear spans will be denoted', and forK > 1, 'K

denotes the relation induced by isomorphism with constant at mostK.

Theorem 5. Let X be a Banach space with an unconditional basis(ei). ThenE0 6B

(ss(ei),'), or X is uniformly isomorphic toX ⊕ Y , for all Y generated by a finite
or infinite subsequence of the basis - and therefore isomorphic to its square and to its
hyperplanes - and, moreover, isomorphic to an infinite direct sum of uniformly isomor-
phic copies of itself.

Proof. The proof uses the following lemma. We need to define the relationE′
0 between

infinite subsets ofN: two setsA, B ⊆ N areE′
0 equivalent if|(A ∪ B) \ A| = |(A ∪

B) \ B| < ∞, i.e., if A andB have the same finite co-cardinality inA ∪ B. If (ei) is
a basic sequence and we identify a subsetA ⊆ N with the subsequence it generates,
then one easily sees that the relation of equivalence between subsequences of(ei) is
E′

0-invariant.

Lemma 6 (cf. [42]). Let E be an analytic equivalence relation on[N]N that is E′
0-

invariant. Then eitherE0 6B E or E has a comeagre class. In the latter case there
areA,B ∈ [N]N such thatAE(∼ A) andBE(B \minB).

Proof. If E is meagre as a subset of[N]N × [N]N, then it is not difficult to build finite
successive subsetsa0

n anda1
n of N such that|a0

n| = |a1
n| and such that the mapT :

2N → [N]N defined byT (α) =
⋃

k∈N a
α(k)
k Borel reducesE0 to'. If on the other hand

E is non-meagre, then by a classical result of Kuratowski–Ulam, [31] Theorem 8.41,
someE-classA is non-meagre. ThereforeA∩U is comeagre inU for some basic open
setU . By E′

0-invariance it follows thatA is comeagre.
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Now the mapc : 2N → 2N defined byc(A) = ∼ A is a homeomorphism of 2N and
as[N]N is comeagre in 2N, alsoA is comeagre in 2N. But then alsoc(A) is comeagre
in 2N and henceA ∩ c(A) is comeagre too. So pick someA ∈ A ∩ c(A) which is
co-infinite. ThenAE(∼ A).

Similarly, for eachn ∈ N, the mapC ∈ [N]N 7→ C4{n} ∈ [N]N is an involution
homeomorphism of[N]N and thus there must be someB ∈ A such that for alln,
B4{n} ∈ A. In particular,BE(B \minB).

Going back to the proof of Theorem 5, assumingE0 is not Borel reducible to' on
[N]N, we apply Lemma 6 and obtain a comeagre'-classA. Classical Banach space
arguments about perturbation by finite-dimensional subspaces then ensure that the set
AK = {A ∈ [N]N : A 'K A0} is comeagre for some fixedA0 ∈ A and someK > 1.

If a andb are non empty subsets ofN anda is finite, recall thata andb are suc-
cessive,a < b, whenmax(a) < min(b). If b is a finite subset ofN, say thatA ∈ [N]N
passes throughb if A = a ∪ b ∪ C for some finite subseta of N and someC ∈ [N]N
such thata < b < C. We now use the following classical characterization of comeagre
subsets of[N]N, see, e.g., [19].

Lemma 7. LetA be a subset of[N]N. ThenA is comeagre if and only if there exists
a countable family{ak, k ∈ N} of finite successive subsets ofN such that whenever
A ∈ [N]N passes throughak for infinitely manyk’s, thenA belongs toA.

Choose such a family{ak, k ∈ N} for our setA. To conclude the proof of Theorem
5, we fixA0 ∈ AK such that(∼ A0) ∈ AK , and we obtain by unconditionality of the
basis(en)n∈N of X,

X ' [en, n ∈ A0]⊕ [en, n /∈ A0] ' [en, n ∈ A0]2,

and

[en, n ∈ A0] ' [en, n ∈ ak, k ∈ N] = [en, n ∈ a2k, k ∈ N]⊕ [en, n ∈ a2k+1, k ∈ N],

therefore[en, n ∈ A0] ' [en, n ∈ A0]2 ' X.
Fix k0 ∈ N, then{1, . . . , k0} ∪

⋃
k>k0

ak and
⋃

k>k0
ak belong toAK . Therefore

[en, n ∈
⋃

k>k0

ak] ' [e1, . . . , ek0]⊕ [en, n ∈
⋃

k>k0

ak],

and by taking a direct sum with the appropriate subspace, we obtain

X ' [en, n > k0].

WheneverI is a subset ofN andY = [en, n ∈ I], we may find a partition{I1, I2} of
I and two infinite disjoint subsetsN1 andN2 ofN such thatI1∩(

⋃
k∈N2

[minak, maxak]) =
∅ and I2 ∩ (

⋃
k∈N1

[minak, maxak]) = ∅. It follows that I1 ∪ (
⋃

k∈N2
ak) and I2 ∪⋃

k∈N2
ak belong toAK and therefore

X ' X ⊕ [en, n ∈ I1]
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and
X ' X ⊕ [en, n ∈ I2].

Thus
X ' X ⊕ [en, n ∈ I1]⊕ [en, n ∈ I2] ' X ⊕ Y.

Finally, let {Bi, i ∈ N} be a partition ofN in infinite subsets and let fori ∈ N,
Ci =

⋃
k∈Bi

ak. ThenCi ∈ AK for all i, while also
⋃

i∈N Ci ∈ AK . Therefore

X ' [en, n ∈
⋃

i∈N
Ci] ' ⊕i∈N[en, n ∈ Ci],

with [en, n ∈ Ci] ' X, for all i ∈ N.
All the isomorphisms are obtained with uniform constants depending only onK

and the unconditional constant of the basis.

Note that these results may be generalized to spaces with unconditional decompo-
sitions in the same spirit as in [30], see [16].

4.2 Subspaces spanned by block-sequences of the basis

We consider here a spaceX with a Schauder basis(ei) and the class of subspaces
generated by block-bases, i.e., sequences of vectors with successive supports (called
successive vectors). Rather thanbb(X), the correct setting for the main theorem here
(Theorem 8) seems to be the space denotedbbQ(X) defined as follows. Let firstQ be
a countable subfield ofR such that any finiteQ-linear combination of the basis vectors
has norm inQ and letD be the set of non-zero blocks with coefficients inQ, D1 be the
set of norm 1 vectors inD. The assumption onQ allows us to normalise while staying
in Q. The setbbQ(X) is then the set of block-bases of vectors inD1, equipped with the
product topology of the discrete topology onD1. The relation of isomorphism induces
a relation' onbbQ(X). AsD1 is countable, this topology is Polish and epsilon matters
may be forgotten until the applications. When we deal with isomorphism classes, they
are not relevant since a small enough perturbation preserves the class. Note that the
canonical map ofbbQ(X) into B(X) is Borel, and this allows us to forget about the
Effros-Borel structure when computing the complexity on block-subspaces. Note also
that the reduction ofE0 to ' on bbQ(X) in Theorem 8 will provide a reduction to'
on bb(X) as well.

The setfbbQ(X) denotes the set of finite successive sequences of blocks inD1.
The supportsupp(a) of such a sequencea is the union of the supports of the blocks
composing the sequence.

Theorem 8(Ferenczi–Rosendal [20]).Let X be a Banach space with an uncondi-
tional basis. ThenE0 is Borel reducible to(bbQ(X),') or there exists a block-
subspaceX0 of X which is uniformly isomorphic toX0⊕ Y for all block-subspacesY
of X.
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Proof. The argument being similar to the case of subsequences, we shall just sketch
the proof. IfE0 is not Borel reducible to(bbQ(X),'), then there exists a comeagre
'-classA ⊂ bbQ(X). Now comeagre subsets ofbbQ(X) may be characterized up to
small perturbations by the next lemma from [20]. Fora a finite block-sequence andb
a finite or infinite block-sequence such thatsupp(a) < supp(b), a_b denotes the finite
or infinite block-sequence which is the concatenation ofa andb. If b ∈ fbbQ(X), and
A ∈ bbQ(X), thenA passes throughb if A = a_b_C for somea ∈ fbbQ(X) and
someC ∈ bbQ(X). If A is a subset ofbbQ(X) and∆ = (δn)n∈N is a sequence of
strictly positive real numbers, written∆ > 0, we denote byA∆ the ∆-expansion ofA
in bbQ(X), that isx = (xn) ∈ A∆ if and only if there existsy = (yn) ∈ A such that
‖yn − xn‖ < δn, ∀n ∈ N.

Lemma 9. LetA be comeagre inbbQ(X). Then for all∆ > 0, there exist successive
finite block-sequencesan, n ∈ N in fbbQ(X) such that any element ofbbQ(X) passing
trough infinitely many of thean’s is inA∆.

By classical perturbation arguments,A = A∆ for some∆ small enough. Letan =
(a1

n, . . . , amn
n ), n ∈ N be given by Lemma 9 and letX0 = [A0], for someA0 ∈ A.

Fix Y = (yn)n∈N in bbQ(X). We may find a partition(Ik)k∈N of N in successive
intervals and an increasing sequence(nk) of integers such that for allk in N,

supp(yn, n ∈ Ik) < supp(ank+1) < supp(yn, n ∈ Ik+2).

Therefore the block sequenceA = (zn)n∈N defined by

{zn, n ∈ N} =
⋃

k∈N
{yn, n ∈ I2k+1}

⋃ ⋃

k∈N
{a1

n2k
, . . . , am2k

n2k
},

belongs toA. It follows that

X0 ' X0 ⊕ [yn, n ∈
⋃

k∈N
I2k+1],

and likewise
X0 ' X0 ⊕ [yn, n ∈

⋃

k∈N
I2k],

whence finally
X0 ' X0 ⊕ Y.

Additional care in the proof guarantees uniformity.

5 Embeddability, biembeddability, and isomorphism

In the paper [24] W.T. Gowers proved his dichotomy theorem stating that any infinite-
dimensional Banach space contains either an unconditional basic sequence or an HI
subspace. Actually Gowers proved more refined structure results that set the stage for
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a detailed list of inevitable classes of subspaces. To simplify notation in the following
we shall useX v Y to denote that a spaceX embeds isomorphically intoY . Moreover,
we shall assume all spaces considered are infinite-dimensional.

A space is said to beminimalif it is v-minimal among its subspaces,quasi-minimal
if any two subspaces have a commonv-minorant, andstrictly quasi-minimalif it is
quasi-minimal but does not contain a minimal subspace. On the other hand, we shall
say that a space with a Schauder basis has thestrong Casazza property(in reference to
a property defined by Casazza, see [23]) if no two disjointly supported block-subspaces
are isomorphic. Two spaces are said to beincomparablein case neither of them embeds
into the other, andtotally incomparableif no space embeds into both of them.

Theorem 10(Gowers [24]).Let X be an infinite dimensional Banach space. ThenX
contains a subspaceY with one of the following properties, which are all possible and
mutually exclusive.

1. Y is hereditarily indecomposable,

2. Y has an unconditional basis with the strong Casazza property,

3. Y has an unconditional basis and is strictly quasi-minimal,

4. Y has an unconditional basis and is minimal.

Type (1) spaces were discovered by Gowers and Maurey [25] in 1991, and a type
(2) space was constructed by Gowers in [23] and further analysed in [26]. Tsirelson’s
spaceT , the precursor of Banach spaces with “exotic” properties such as Gowers and
Maurey’s examples is a typical example of a type (3) space. The spacesc0, `p for
1 6 p < +∞, the dualT ∗ of Tsirelson’s space, and Schlumprecht’s spaceS [2] are the
main known examples of spaces of type (4).

In each case one can ask what the structure of the relations of embeddability,v,
biembeddability,≡, and isomorphism,∼=, is on the subspace in question. In his paper
[24] Gowers had asked the question of what quasiorders could be realised as the set of
subspaces of a separable Banach space ordered byv.

Theorem 11. Let X be a separable infinite-dimensional Banach space belonging to
one of the four types given by Gowers’ Theorem 10. Then for each of the relationsv,
≡, and∼=, we have lower bounds on the complexity as given in the following diagram.

Type v ≡ ∼=
(1) R, ω1, andω∗1-chains, uncountable Borel antichain E0 E0

(2) R, ω1, andω∗1-chains, E0 E0

uncountable Borel set of totally incomparable spaces

(3) ω∗1-chain, uncountable Borel antichain E0 E0

(4) trivial trivial none
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We should mention that by classical results, all uncountable Borel sets are of the size of
the continuum, so we get, for example, continuum size antichains in the case of strictly
quasiminimal spaces.

Proof. In order to prove this result, we will show how to get it from, in each case,
stronger and more refined results that also have somewhat larger scopes.

We may first deduce the results for≡ and∼= for type (1) and (2) from Lemma 6.
For if we are given a Schauder basis(ei), we can for≡ and∼= consider the correspond-
ing analytic equivalence relation on[N]N obtained by identifyingA ∈ [N]N with the
subspace[ei]i∈A. As an HI space is non-isomorphic with all of its proper subspaces,
we thus see that for(ei) of type (1) there is noB ∈ [N]N such thatB ≡ B \minB or
B ∼= B \ minB, whenceE0 must reduce to both≡ and∼=. Similarly, in case of type
(2), there is noA such thatA ≡ ∼ A or A ∼= ∼ A, and thus againE0 reduces to both≡
and∼=.

In the case of type (2), there is also an explicit reduction by the mapα ∈ 2N 7→
[e2n+α(n), n ∈ N].

Consider now the chains in the case of type (1) and type (2). Fix first a basic
sequence either spanning an HI space or such that any two disjointly supported spaces
are totally incomparable.

Assume now that for infinite setsA,B ⊆ N we have|A\B| < ∞, but |B \A| = ∞,
which we denote byA (∗ B. Then we can find someB′E′

0B such thatA ⊆ B′ and
|B′ \ A| = ∞, whence[ei]i∈A v [ei]i∈B′

∼= [ei]i∈B. On the other hand, in the case of
HI spaces,[ei]i∈B

∼= [ei]i∈B′ 6v [ei]i∈A, and in case of type (2),[ei]i∈A and[ei]i∈B′\A
are totally incomparable and hence[ei]i∈B

∼= [ei]i∈B′ 6v [ei]i∈A again. In any case,

A (∗ B ⇒ [ei]i∈A v [ei]i∈B & [ei]i∈B 6v [ei]i∈A.

By simple diagonalisation it is now easy to construct a sequence(Aξ)ξ<ω1 such that
if ξ < ζ < ω1, thenAξ (∗ Aζ , whence([ei]i∈Aξ

)ξ<ω1 gives aω1-chain in the ordering
v. Similarly for anω∗1-chain. Now to construct theR-chain, we identifyQ with N and
R with the left parts of the corresponding Dedekind cuts. Thus, ifr < s belong toR,
then they correspond to subsetsAr (∗ As of N. Thus,([ei]i∈Ar)r∈R forms anR-chain
in v.

To get an uncountable Borel set of totally incomparable subspaces, i.e. such that
no subspace of one embeds into the other, in the case of type (2), we simply pick
an uncountable Borel set of almost disjoint subsets ofN and notice that ifA andB
are almost disjoint, i.e., they are both infinite with finite intersection, then[ei]i∈A and
[ei]i∈B are totally incomparable.

The last fairly simple part of the picture is the existence of theω∗1-chain in the case
of type (3). Again this is a direct set theoretical diagonalisation. We use here the
well-known fact that the embeddability relation on quasiminimal spaces is downwards
σ-directed, i.e., that any countable family of subspaces have a common subspace up
to isomorphism. This is easy to see, for ifX is quasiminimal and(Ym) is a countable
family of infinite dimensional subspaces, where we supposeY0 has a basis(ei), then
by quasiminimality, we can inductively pick block sequences(x(m)

n ) such that(x(m+1)
n )
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is a block of(x(m)
n ), [x(m)

n ] v Ym and then take the diagonal sequence(x(n)
2n )n. Then

[x(n)
2n ]n v [x(m)

n ]n v Ym for all m. By diagonalisation and using the fact that no
subspace is minimal one now constructs anω∗1 sequence in the orderingv.

The final four results, namely the existence of uncountable Borel antichains in type
(1) and (3) and the reduction ofE0 to≡ and∼= in type (3), however, seems to necessitate
more advanced techniques, in particular, metamathematics and methods of effective
descriptive set theory. Moreover, also the determinacy result of Gowers [24] is here
used in its full force, i.e., for analytic sets. To our knowledge, this is one of the only
known applications of his result other than for closed/open sets.

To begin, let us first state a general Ramsey principle for equivalence relations that
is specifically adapted for the geometry of Banach spaces.

Theorem 12(Rosendal [42]).Let E be an analytic equivalence relation on[N]N that
is E′

0-invariant, i.e.,E′
0 ⊆ E. Then eitherE0 6 E or for some infinite subsetA ⊆ N,

the set[A]N is contained in a singleE-class.

For example, if(ei) is a basis andE the induced relation on[N]N of isomorphism
between spaces spanned by subsequences of the basis, thenE is easilyE′

0-invariant.
We should mention that the only known proof of Theorem 12 uses metamathematical
methods and it would be interesting to find a more topological proof of this. Probably,
one would have to find some uniformity that could allow for standard methods. As an
application of the statement, we see that ifE0 does not reduce to isomorphism on the set
of subspaces of[ei], then(ei) has an isomorphically homogeneous subsequence, i.e., a
subsequence all of whose further subsequences span isomorphic spaces. Nevertheless,
this principle does not in itself appear to be enough to getE0 in type (3). For that we
will need a better result due to Ferenczi, relying on the one hand on Theorem 12 and on
the other hand on the methods of Pelczar [40], who herself was inspired by the closed
case of Gowers’ determinacy result.

Theorem 13(Ferenczi [14]).Let X be a separable Banach space saturated with iso-
morphically homogeneous basic sequences. ThenX contains a minimal space. In fact,
it is enough to suppose thatX is saturated with basic sequences whose closed span
embed into the closed span of any of their subsequences.

Pelczar’s original result was quite similar, but had a considerably stronger hypothesis,
namely, thatX was saturated with subsymmetric basic sequences.

Consider now the case of spaces of type (3). IfX is a space of type (3), andE0

does not reduce to isomorphism between its subspaces, then any basic sequence inX
has an isomorphically homogeneous subsequence and henceX is saturated by such se-
quences. By Theorem 13,X contains a minimal space, which is impossible. Similarly,
if E0 does not reduce to biembeddability between the subspaces ofX, thenX is sat-
urated by sequences embeddable into all of the spaces spanned by their subsequences
and againX must contain a minimal space, which is a contradiction. Therefore,E0

reduces in each case.
For the record, we spell out the argument in the following corollary.
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Corollary 14. Let X be a separable infinite-dimensional Banach space. Then either
E0 Borel reduces to isomorphism between its subspaces orX contains a minimal
space.

The result we need for the existence of antichains is quite similar, but differs rather
by its proof. Again it does not rely heavily on geometric properties of Banach spaces,
but mostly on methods of combinatorics and descriptive set theory, and, in particu-
lar, not only Gowers’ determinacy theorem, but also on the solution to the distortion
problem by Odell and Schlumprecht [39].

Theorem 15(Rosendal [42]).LetX be an infinite-dimensional separable Banach space.
EitherX contains a minimal space or there is an uncountable Borel set of incompara-
ble subspaces.

This immediately implies the existence of uncountable Borel antichains in type (1)
and type (3) spaces and thus finishes the proof.

The remaining case is that of minimal spaces. The structures ofv and≡ are trivial
on such spaces. Concerning∼=, there is of course no general result saying that there are
many non-isomorphic subspaces in this case, as the space could be Hilbertian, but if
the space is not homogeneous, it seems plausible that there must be many isomorphism
classes. Indeed,c0 and`p, 1 6 p < 2, [15], as well as Tsirelson’s dual spaceT ∗ (by
the method of [41]) are ergodic. Note also that any non-reflexive minimal space must
containc0 or `1 and therefore be ergodic, and that Theorem 5 and Theorem 8 may
provide other classes of minimal ergodic spaces.

Question 16. Does there exist an analytic complete minimal Banach space?

We end this section by sketching the proofs of Theorem 15 and of Theorem 13 in
the∼=-homogeneous case. In each case we may assume that the spaceX has a Schauder
basis(ei). All vectors will belong to the setD of non-zero finiteQ-linear combinations
of the basis vectors(ei), whereQ is a countable subfield ofR closed under computing
norms. We recall thatD1 denotes the set of normalized blocks inD, that the space of
infinite D1-block bases is denoted bybbQ(X) and the set of finiteD1-block bases is
denotedfbbQ(X).

Sketch of the proof of Theorem 15: We notice first thatv restricted to the standard
Borel space of subspaces ofX is an analytic quasiorder. So Theorem 15 amounts to
saying that eitherv has a minimal element or an uncountable Borel antichain. The
idea of the proof is to replacev by aBorelquasiorderR containingv and sufficiently
reflecting the properties of the latter. Then one can employ the analysis by Harrington,
Marker, and Shelah [29, 27] of Borel quasiorders to deduce the result. The exact result
we need can be deduced from [27].

Theorem 17(Harrington–Marker–Shelah [27]).If R is a downwardsσ-directed Borel
quasiorder on a standard Borel space, then eitherR has an uncountable Borel an-
tichain or a minimal element.
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HereR is downwardsσ-directed if any countable family inP has a common mino-
rant. We have the following standard observation.

Lemma 18. SupposeX is quasi-minimal. Thenv is downwardsσ-directed onbbQ(X).

For Y = (yi), Z = (zi) ∈ bbQ(X), let Y 6 Z if Y is a blocking ofZ and put
Y 6∗ Z if for somek, (yi)i>k 6 Z. Also, if ∆ = (δi) is an infinite sequence of strictly
positive reals, writed(Y, Z) < ∆ if ∀i ‖yi−zi‖ < δi. SetY =∗ Z if ∃k ∀i > k yi = zi.
Evidently,Y =∗ Z impliesY ∼ Z.

For a subsetA ⊆ bbQ(X) let A∗ = {Y ∈ bbQ(X)
∣∣ ∃Z ∈ A Z =∗ Y } and

A∆ = {Y ∈ bbQ(X)
∣∣ ∃Z ∈ A d(Z, Y ) < ∆}. Notice that ifA is analytic so are both

A∗ andA∆. We also set[Y ] = {Z ∈ bbQ(X)
∣∣ Z 6 Y } and notice that[Y ] is a Borel

subset ofbbQ(X). A is said to belarge in [Y ] if for any Z ∈ [Y ] we have[Z] ∩ A 6= ∅.
ForA ⊆ bbQ(X) andY ∈ bbQ(X), the Bagaria–Gowers–López-Abad gameaAY is

defined as follows: Player I plays in thek’th move of the game a vectorzk ∈ D1 such
thatzk−1 < zk. Player II responds by either doing nothing or playing a vectorv ∈ D1

such thatv ∈ [zl+1, . . . , zk] wherel was the last move where II played a vector. We say
that player II wins the game if in the end she has produced a block-basisV = (vi) ∈ A.
A slight variant of this game is shown in [6] to be equivalent to the game studied by
Gowers in [24]. It follows from Gowers’ determinacy result in [24] that ifA ⊆ bbQ(X)
is analytic, large in[Y ] and∆ is given, then for someZ ∈ [Y ], II has a winning strategy
in the gameaA∆

Z . However, due to the complexity of the sets we are dealing with, we
need to have a stronger determinacy result, which holds under stronger set-theoretical
assumptions.

Lemma 19. (MA + ¬CH) SupposeW ⊆ bbQ(X) is a Σ1
2 set, large in some[Y ] and

∆ > 0. Then II has a winning strategy inaW
∗
∆

Z for someZ ∈ [Y ].

Lemma 20. (MA +¬CH) Suppose thatX does not contain a minimal subspace. Then
for anyW ∈ bbQ(X) there isY ∈ [W ] and a Borel functionφ : [Y ] → [Y ] such that
for all Z ∈ [Y ],

φ(Z) 6 Z

and
Z 6v φ(Z).

Proof. We can assume thatW = X. Also, asc0 is minimal,X does not containc0 and
therefore, by the solution to the distortion problem by Odell and Schlumprecht [39], we
can by replacingX by a block-subspace suppose that we have two positively separated
setsF0, F1 of the unit sphere, such that for anyY ∈ bbQ(X) there arex, y ∈ D1 such
thatx ∈ F0, y ∈ F1, andx, y ∈ Y . We call such setsinevitable.

Let now
A = {Y = (yi) ∈ bbQ(X)

∣∣ ∀i yi ∈ F0 ∪ F1}
and forY ∈ A let α(Y ) ∈ 2N be defined by

α(Y )(i) = 0⇔ yi ∈ F0.
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Thenα : A → 2N is continuous. Fix an uncountable closed setP ⊆ 2N of almost
disjoint subsets ofN and let

B = {Y ∈ A
∣∣ α(Y ) ∈ P}.

As P is closed, so isB and by the inevitability ofF0 andF1, B is large in every[Y ].
By fixing a Borel bijection betweenP and the set of infinite sequences of finite

non-zeroQ-tuples, we can see eachp ∈ P as coding a way to construct an infinite
Q-block sequence of anyY ∈ bbQ(X). Denote this infinite block sequence byY p and
notice thatY p is a blocking ofY though not necessarily normalised.

Consider now the set

W = {Y = (yi) ∈ bbQ(X)
∣∣ (y2i) ∈ B ∧ [y2i+1] 6v

[
(y2i+1)α(y2i)

]}.
SoW consists of the blocks(yi) ∈ bbQ(X) such that(y2i) codes a subspace of[y2i+1]
into which [y2i+1] does not embed. First of all,W is clearly coanalytic, and again,
using the inevitability ofF0 andF1 and the fact thatX contains no minimal subspace,
one can verify thatW is large inbbQ(X).

Take now some∆ = (δi) depending on the basis constant such thatd(Y, Y ′) < ∆
impliesY ∼ Y ′, and, moreover, such thatδi < 1

2d(F0, F1). By Lemma 19 we can find

aY ∈ bbQ(X) such that II has a winning strategyσ in the gameaW
∗
∆

Y .
We shall now show how the functionφ : [Y ] → [Y ] is defined. For this, letZ ∈ [Y ]

be given and suppose I plays the sequence(zi) = Z in the gameaW
∗
∆

Y . Then using the
strategyσ, II will respond toZ by playing someV = (vi) 6 Z, V ∈ W∗

∆. There is
therefore someW = (wi) ∈ W such thatV ∈ {W}∗∆. ThisW might not, however, be
Borel inV . Nevertheless, we can in a Borel manner computeα(w2i) ∈ P , because for
almost alli

d(v2i, w2i) < δ2i <
1
2
d(F0, F1)

andw2i ∈ F0 ∪ F1. So by lettingp(i) = 0 if d(v2i, F0) 6 d(v2i, F1) andp(i) = 1
otherwise, we see thatp andα(w2i) differ in finitely many coordinates. Moreover,
as different elements ofP differ in infinitely many coordinates,α(w2i) is the unique
element ofP that differs fromp in finitely many coordinates and henceα(w2i) is Borel
in V . Also by the assumption on∆ > 0,

(v2i+1) ∼ (w2i+1),

and thus
(v2i+1)α(w2i) ∼ (w2i+1)α(w2i).

Now W ∈W, so
[w2i+1] 6v

[
(w2i+1)α(w2i)

]
,

whence also
[v2i+1] 6v

[
(v2i+1)α(w2i)

]
.

Renormalising the blocking(v2i+1)α(w2i), we finally find aU = (ui) 6 V such that
[vi] 6v [ui]. Thus,φ(V ) = U works.
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The idea of coding with inevitable sets was originally used by J. López-Abad to give
a new proof of Gowers’ determinacy Theorem [35]. The import of its use here is to
impose a relationship betweenZ and φ(Z). One is tempted to just apply Gowers’
determinacy result directly to getφ(Z) from Z, but Gowers’ Theorem only allows use
to forceφ(Z) to belong to a certain set, not such thatφ(Z) stands in a certain relation
to Z.

Now to finish the proof of the theorem, we can suppose thatX is quasiminimal,
but does not contain a minimal subspace. In that case,(bbQ(X),v) is a downwards
σ-directed analytic quasiorder without a minimal element. Moreover, by replacingX
with a subspace, we can suppose that this latter fact is testified by a Borel functionφ
that to eachY ∈ bbQ(X) picks out a subspace ofY into whichY does not embed.

The fact that non-minimality is witnessed by a Borel function allows us now to
reflect this property to a Borel quasiorderR on bbQ(X) such thatY v Z ⇒ Y RZ.
But, asR has no minimal element, it must have an uncountable Borel antichain, which
thus also is an uncountable Borel antichain forv.

This proves the result under(MA+¬CH), but additional work, again using Gowers’
determinacy result and coding with inevitable sets, allows us to show that the property
of having a minimal subspace is actuallyΣ1

2 and not just its face valueΣ1
3. Similarly,

having a continuum of incomparable subspaces is easilyΣ1
2, and thus the statement

of the theorem is itselfΣ1
2. By Shoenfield’s absoluteness theorem, the additional set-

theoretical assumptions can thus be eliminated from the proof. 2

Before we prove Theorem 13, we introduce some other notation. We denote by
GQ(X) the set of subspaces ofX spanned by elements ofbbQ(X) and byFinQ(X)
the set of subspaces spanned by elements offbbQ(X). Standard notation will be used
concerning successive vectors (respectively finite dimensional subspaces) on(ei). For
L,M ∈ GQ(X), L ⊂∗ M means thatL = [li, i ∈ N], whereli ∈ M for all but finitely
manyi’s.

Sketch of the proof of Theorem 13:Let X be a space which is saturated with iso-
morphically homogeneous sequences.

By a standard use of Ramsey’s Theorem and a diagonalisation, we may assume
that there existsK > 1 such that every block-sequence inbbQ(X) has a further block-
sequence inbbQ(X) in which isK-isomorphically homogeneous. We fix someC > K.

For L,M two block-subspaces inGQ(X), define the infinite gameGL,M between
two players as follows; for eachk ∈ N, mk, nk are integers,xk is a vector inD1, yk a
vector inD, andFk belongs toFinQ(X).

1 : n1 < x1 ∈ L, n2 < x2 ∈ L, . . .

m1 m2

2 : n1 m1 < F1 ⊆ M, m2 < F2 ⊆ M, . . .

y1 ∈ F1, n2 y2 ∈ F1 + F2, n3
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Player 2 wins the gameGL,M if (yn)n∈N is C-equivalent to(xn)n∈N.

We shall now provide a stabilising subspace on which Player 2 has “sufficiently
many” winning strategies in gamesGL,M . The reader may look for more about this
type of proof in the survey by S. Todorcevic [5] where it is called “combinatorial forc-
ing”. A crucial point in the definition ofGL,M is that the moves of the players are
asymptotic, in the sense that one player can force the other to play “far enough” along
the basis, and this will allow the stabilisation; on the other hand, the use of finite-
dimensional spacesFk leaves enough room for Player 2 to pick vectorsyk which are
not necessarily successive on the basis. There are indeed some spaces with a basis,
such asT ∗, where minimality cannot be proved by finding copies of the basis as suc-
cessive vectors, and therefore the apparent technicality of the definition is necessary (at
least in the case of the weaker hypothesis in Theorem 13).

A stateis a couple(a, b) with a ∈ fbbQ(X) andb ∈ (FinQ(X) × D)<ω such that
|a| = |b| or |a| = |b| + 1. The setS of states is countable, and corresponds to the
possible states of a gameGL,M after a finite number of moves were made, restricted
to elements which do affect the outcome of the game from that state (i.emk’s andnk’s
are forgotten). Thus fors ∈ S, we may defineGL,M (s) as the gameGL,M starting
from the states. For example, ifs = (a, b) with |a| = 2, |b| = 1, the gameGL,M (s)
will start with 1 playing some integerm2, then 2 playing(F2, y2, n3), etc.

We require a classical “stabilisation lemma” used by Maurey in [37].

Lemma 21. LetN be a countable set and letµ : GQ(X) → 2N be a(⊂∗,⊂)-monotone
map. Then there exists a stabilising subspaceM0 ∈ GQ(X), i.e., such thatµ(M) =
µ(M0) for anyM ⊂∗ M0.

Let now τ : GQ(X) → 2S be defined bys ∈ τ(M) if there existsL ⊂ M such
that Player 2 has a winning strategy for the gameGL,M (s). By the asymptotic nature
of the game,τ is (⊂∗,⊂)-increasing, and therefore there existsM0 which is stabilizing
for τ . We then define a mapρ : GQ(X) → 2S by settings ∈ ρ(L) if Player 2 has a
winning strategy for the gameGL,M0(s). Thenρ is (⊂∗,⊂)-decreasing, and therefore
there exists a block-subspaceL0 ∈ GQ(X) of M0 which is stabilising forρ. Finally,
we check thatρ(L0) = τ(L0) = τ(M0). We may assume thatL0 = [fn, n ∈ N], with
(fn) K-isomorphically homogeneous.

We prove thatL0 is minimal. FixM a block subspace ofL0. We use induction to
construct a subsequence(fnk

)k of (fn), and a sequence(Fk, yk)k such that for allk,
Fk ⊂ M,yk ∈ F1 + · · ·+ Fk,

sk = ((fn1, . . . , fnk
), (y1, . . . , yk, F1, . . . , Fk)) ∈ ρ(L0).

Then we are done, since(fn1, . . . , fnk
) ∼C (y1, . . . , yk) for all k, so (fnk

)k is C-
equivalent to(yk)k, andM contains aCK-isomorphic copy ofL0.
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Givensk = ((fn1, . . . , fnk
), (y1, . . . , yk, F1, . . . , Fk)) ∈ ρ(L0), Player 2 has a win-

ning strategy forGL0,M0(sk), therefore if we pick somenk+1 > nk large enough, the
state

s′k = ((fn1, . . . , fnk+1), (y1, . . . , yk, F1, . . . , Fk))

belongs toρ(L0) = τ(M), and 2 has a winning strategy forGL,M (s′k) for someL ⊂
M . Therefore there existFk+1 ⊂ M andyk+1 ∈ F1 + · · ·+ Fk+1 ⊂ M , such that

sk+1 = ((fn1, . . . , fnk+1), (y1, . . . , yk+1, F1, . . . , Fk+1))

belongs toτ(M) = ρ(L0).

It therefore only remains to initiate the induction, i.e. prove that the empty state
(∅, ∅) belongs toρ(L0). To obtain this result, one refines the notion of∼=-homogeneity
in order to imitate the notion of subsymmetry of basic sequences.

Definition 22. A block-sequence(xn)n∈N in X is C-continuously isomorphically ho-
mogeneousif there exists a continuous mapφ : [N]N → DN such for allA ∈ [N]N, φ(A)
is a sequence of vectors spanning[xn]n∈A and isC-equivalent to(xn)n∈N.

In this definition, the setDN is equipped with the product of the discrete topology
on D, which turns it into a Polish space. The following result is a consequence of
Ellentuck’s and Louveau’s proofs of the infinite-dimensional Ramsey theorem.

Lemma 23. Let (xn)n∈N ∈ bbQ(X) be a block-sequence which isK-isomorphically
homogeneous, and letε be positive. Then some subsequence of(xn)n∈N is K + ε-
continuously isomorphically homogeneous.

The proof of Theorem 13 ends with the final observation:

Lemma 24. Assume(ln)n∈N is a block-sequence inbbQ(X), which isC-continuously
isomorphically homogeneous, and letL = [ln, n ∈ N]. Then Player 2 has a winning
strategy in the gameGL,L, therefore(∅, ∅) ∈ τ(L).

Therefore some subsequence of(fn) isK+ε-continuously isomorphically homoge-
neous, and ifK+ε < C, spans a block-subspaceL00 such that(∅, ∅) ∈ τ(L00) = ρ(L0).
2

6 On the Komorowski–Tomczak-Jaegermann side

R. Anisca [3] developed the techniques of Komorowski–Tomczak-Jaegermann [33] to
define finite dimensional decomposition versions of the notion of local unconditional
structure and extracted the following consequence.

Theorem 25(Anisca [3]). Let X be a separable Banach space with finite cotype and
non-isomorphic tò2. Then for eachk ∈ N, there exists a subspace of`2(X) which has
a k + 1-uniform FDD but not ak-uniform FDD.
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Corollary 26. LetX be a separable Banach space non-isomorphic to`2. Then`2(X)
has infinitely many non-isomorphic subspaces.

Anisca actually obtains this corollary assumingX has finite cotype. IfX doesn’t
have finite cotype, theǹ2(X) contains, e.g., copies of the spaces(⊕n∈Nlnp )2, 1 6 p 6
+∞, which are easily seen to be mutually non-isomorphic forp > 2 (see [9], Corollary
18), and therefore the result holds as well.

Using the techniques of [19, 42] in the case of spaces with unconditional finite
dimensional decomposition, Ferenczi and Galego obtain:

Theorem 27(Ferenczi–Galego [15]).Let 1 6 p < +∞. LetX = (⊕n∈NFn)p, where
theFn’s are finite dimensional. ThenX is ergodic orX ' `p(X). The similar result
holds forc0-sums.

The following consequence was observed in [9]. A strongly asymptotic`p FDD is
the obvious generalization of a strongly asymptotic`p basis; examples arèp-sums or
c0-sums, as well as Tsirelson sums, of finite dimensional spaces.

Corollary 28 (Dilworth–Ferenczi–Kutzarova–Odell [9]).Let 1 6 p 6 +∞. LetX be
a Banach space with a strongly asymptotic`p FDD. ThenX is isomorphic tò 2 or X
contains infinitely many non-isomorphic subspaces.

Question 29. What is the exact complexity of isomorphism between subspaces ofc0 or
`p? Is `p, p > 2, ergodic?

Question 30. What is the exact complexity of isomorphism between subspaces of Tsirelson’s
spaceT? Between block-subspaces ofT?

Recall thatE1 6B (bb(T ),') 6B EKσ ; computing the exact complexity of' on
bb(T ) may not be out of reach.

Question 31. What is the exact complexity of isomorphism between subspaces of Schlumprecht’s
spaceS? Between block-subspaces ofS? IsS ergodic?

Schlumprecht’s space is a relevant example by its minimality and the fact thatE0

is Borel reducible to permutative equivalence between its normalised block-sequences
[13].

Question 32. Does there exist a space such that the complexity of isomorphism be-
tween its subspaces is exactlyE0? Is there a space with a Schauder basis such that the
complexity of isomorphism between its block-subspaces is exactlyE0?

Note that the complexity of isomorphism is exactlyE0 between subspaces spanned
by subsequences of an unconditional basis with the strong Casazza property (i.e., a
space of type (2) in Gowers’ theorem).
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7 Homogeneity questions

From the solution of Gowers and Komorowski–Tomczak-Jaegermann to the homoge-
neous Banach space problem it is easy to deduce the slightly stronger statement that
a space with a Schauder basis which is isomorphic to all its subspaces spanned by
Schauder bases must be isomorphic to`2. Several questions remain open in that direc-
tion:

Question 33. If a Banach space has an unconditional basis and is isomorphic to all
its subspaces with an unconditional basis, must it be isomorphic to`2?

The next question was already mentioned in the introduction and concerns a stronger
statement, modulo the fact thatc0 and`p, p 6= 2, contain a subspace with an uncondi-
tional basis which is not isomorphic to the whole space [34]:

Question 34. If a Banach space has an unconditional block-homogeneous basis, must
it be isomorphic toc0 or `p?

Recall that a theorem of Zippin states that a basis which is perfectly homogeneous,
i.e., equivalent to all its normalised block-sequences, must be equivalent to the canoni-
cal basis ofc0 or `p, 1 6 p < +∞, [47]. Bourgain, Casazza, Lindenstrauss, and Tzafriri
extended this result to permutative equivalence [8]. Ferenczi and Rosendal proved that
if a normalised Schauder basis is not equivalent to the canonical basis ofc0 or `p,
1 6 p < +∞, thenE0 reduces to equivalence between its normalised block-sequences
[19]. Ferenczi [13] obtained that ifX has an unconditional basis, thenE0 is Borel re-
ducible to permutative equivalence onbb(X) or every normalised block-sequence has
a subsequence equivalent to the unit vector basis of some fixed`p or c0.

Some apparently weaker properties turn out to be equivalent to block homogeneity.

Theorem 35(Ferenczi [12]).Let Y be a Banach space and letX be a space with an
unconditional basis such that every sequence of successive finite block-sequences has
a subsequence whose concatenation spans a space isomorphic toY . ThenX is block-
homogeneous.

The techniques used for this result are similar to the one used for Theorem 8. They
are based on Lemma 9 and the fact that isomorphism classes inbbQ(X) verify a topo-
logical 0-1 law, i.e., they are either meagre or comeagre inbbQ(X).

Theorem 36(Rosendal [44], Assuming Projective Determinacy).Let X be a Banach
space which is not̀1-saturated and such that every weakly null tree has a branch which
spans a subspace isomorphic toX. ThenX has a block-homogeneous basis.

Here aweakly-null treein X is a sequence of normalised vectors(xs)s∈N<N indexed
byN<N such that for alls ∈ N<N, the sequence(xs_n)n∈N is weakly-null.

Uniformity results might be necessary to answer Questions 33 or 34. This is in line
with the question by Gowers whether there exists a direct proof that a homogeneous
Banach space must be uniformly homogeneous.
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Question 37. LetX be a space with a block-homogeneous basis. Must it be uniformly
block-homogeneous?

An extremely partial answer was obtained in [12].

Theorem 38(Ferenczi [12]).If X has a block-homogeneous unconditional basis(ei)
andX is isomorphic toc0 or `p, 1 6 p < +∞, then(ei) is uniformly block-homogeneous.

8 Spreading models

A fundamental notion in the geometry of Banach spaces is that of a spreading model.
We recall that a normalised basic sequence(xi) is said to generate a spreading model
if for all r1, . . . , rk ∈ R there ist ∈ R such that for anyε > 0 there existsN with the
following property: for anyN < l1 < . . . < lk, we have

∣∣∣ ‖r1xl1 + . . . + rkxlk‖ − t
∣∣∣ < ε.

A more intuitive way of expressing this is by saying that

lim
l1<...<lk, l1→∞

‖r1xl1 + . . . + rkxlk‖

exists for allr1, . . . , rk. In this case, we can define a 1-subsymmetric basic sequence
(x̃i) by the formula

‖r1x̃1 + . . . + rkx̃k‖ = lim
l1<...<lk, l1→∞

‖r1xl1 + . . . + rkxlk‖,

and say that(xi) generates thespreading model(x̃i). Though the basic sequence(x̃i)
is very closely related to the space[xi] it does not necessarily have to be present there,
and indeed this is one of the reasons for its interest.

Presumably, the right notion of isomorphism for spreading models is equivalence
and the most natural ordering is majoration. Here a basic sequence(ei) majorisesa
basic sequence(fi) if there is a constantK such that for allr1, . . . , rn

‖r1e1 + . . . + rnen‖ 6 K‖r1f1 + . . . + rnfn‖.

Some of the major problems about spreading models concern the possible sets of
spreading models generated by basic sequences of a given space and the structure of
this set of spreading models under the quasiorder of majoration. One particular ques-
tion that has motivated some research, in particular [1], is the following question of S.
Argyros.

Question 39(Argyros [1]). Let X be a Banach space such that all spreading models
in X are equivalent. Must these spreading models be equivalent to the unit vector basis
of c0 or `p for somep > 1?
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This question is of course motivated by the fact that the spaces`p have a unique
spreading model up to equivalence. For ifX is a reflexive space, then any spreading
model is generated by a weakly null sequence, and hence in the case of`p, 1 < p < ∞,
by a normalised block that is itself equivalent with`p. And, in `1, any spreading model
is, by Rosenthal’s̀1-theorem, generated by either an`1 sequence or a weakly Cauchy
sequence. In the case of a weakly Cauchy sequence(xi), the difference sequence
(x2i+1−x2i) is weakly null and thus generates`1 again. This argument, however, does
not generalise toc0 unless one restricts the attention to spreading models generated by
weakly null sequences.

Another version of this question had previously been formulated by H. P. Rosenthal
in another disguise, namely, as a question concerning characterisations of the standard
basis of̀ p.

Question 40(Rosenthal).Suppose(ei) is a basic sequence such that any normalised
block-sequence has a subsequence equivalent to(ei). Is (ei) then equivalent to the unit
vector basis of somèp or c0?

It is a fact, shown in [18], that a positive question to Argyros’ question leads also to
a positive answer to Rosenthal’s question. The question of Rosenthal may also open a
direction to answer Question 34. For example:

Question 41. If a normalised unconditional basis is block-homogeneous, does it have
a block-sequence, or even a subsequence, with the property defined by Rosenthal?

Going back to the structure theory of the set of spreading models under the relation
of majoration, we shall here show that under the supposition that there is no uncount-
able Borel antichain, one can prove quite strong structural results at least whenX∗ is
separable. In the following, it will be assumed that all spaces in question are infinite-
dimensional.

Definition 42. Let X be separable infinite-dimensional Banach space and letSw be
the set of weakly-null, normalised basic sequences(xi) generating a spreading model
(x̃i). For (xi) and (yi) in Sw, we set(xi) 4 (yi) if (x̃i) is majorised by(ỹi). Simi-
larly, we let(xi) ≈ (yi) if both (xi) 4 (yi) and (yi) 4 (xi), i.e, if (x̃i) and (ỹi) are
equivalent.

We notice that4 is a quasiorder onSw. It seems perhaps more natural to work directly
with the set of spreading models, or even the set of spreading models up to equivalence,
instead of the set of sequences generating the spreading models. However, the latter is
a standard Borel space whenX∗ is separable, which is not necessarily the case for the
former. Thus,Sw lends itself to the methods of descriptive set theory.

In the fundamental paper [1] by Androulakis, Odell, Schlumprecht, and Tomzcak-
Jaegermann it was proved that(Sw, 4) is an upper semi-lattice, i.e., any two elements
have a common least upper bound. Moreover, it was proved that any countable family
has an upper bound, though not necessarily a least upper bound. This line of research
was continued by B. Sari, who proved the following result.
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Theorem 43(Sari [45]). SupposeX is a separable Banach space such thatSw has an
infinite increasing sequence with respect to4. Then it has an increasingω1-chain.

This result puts us in a position where we are able to pursue the analysis lying behind
Theorem 15, except that, as the relation of majorisation between bases is Borel and not
only analytic, the analysis is completely straightforward.

Theorem 44. LetX be a Banach space with separable dual. Then

• either (i)Sw/ ≈ is countable or (ii) there is a continuum size antichain in(Sw, 4),
• either (iii) there is a continuum size antichain and also an increasingω1-chain in

(Sw, 4) or (iv) (Sw, 4) is inversely well-founded with a maximal element and for
some ordinalα < ω1 there are no decreasingα-chains.

Proof. There are two cases. By Sari’s result, either(Sw,4) is inversely well-founded
or has an increasingω1-chain.

In the first case, we have by the Kunen-Martin theorem that there is some countable
bound on the length of decreasing sequences in(Sw, 4) and hence for someα < ω1

there are no decreasingα-chains in(Sw, 4). Moreover, by the results of [1],(Sw,4)
is an upper semi-lattice and hence if inversely well-founded it must have a maximal
element or otherwise one could construct an infinite increasing sequence.

In the second case, we can apply the results of Harrington, Marker, and Shelah
[29, 27] on Borel quasiorderings as follows. They prove that if a Borel quasiorder on
a standard Borel space has anω1-chain, then it also has a perfect antichain. This thus
shows the dichotomy between (iii) and (iv).

Now to see the dichotomy between (i) and (ii), suppose that(Sw,4) does not admit
an uncountable Borel set of pairwise incomparable elements. Then(Sw, 4) is inversely
well-founded and for someα < ω1 there are no decreasingα-chains. Moreover, we
again have by the results of Harrington, Marker, and Shelah that there is a partition of
the space into countably many Borel setsXn each of which is linearly ordered by4.
Therefore, each(Xn, 4) is an inverse prewellordering of countable length and hence
eachXn/ ≈ is countable, whence alsoSw/ ≈ is countable.

We notice that P. Dodos [11] has independently arrived at the same result by es-
sentially the same argument, though his setup is slightly different. He also notices that
one can discard of the hypothesis thatX∗ is separable by applying a result of H. P.
Rosenthal [5]. The following is a reformulation of Dodos’ argument in our language:

Let (xn) be a sequence in a Banach spaceX. We say that(xn) is a Brunel-
Suchestonsequence if

• (xn) is Cesaro summable,
• (xn) is a normalised basic sequence,
• for all k andk 6 n1 < . . . < nk, k 6 m1 < . . . < mk, we have

(xn1, . . . , xnk
) ∼1+1/k (xm1, . . . , xmk

).
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Dodos then notices that, by the result of Rosenthal, ifX is a Banach space, then, apart
from possiblỳ 1, the spreading models generated by normalised weakly-null sequences
of X are exactly those generated by Brunel-Sucheston sequences inX. Moreover, as
the set of Brunel-Sucheston sequences is clearly Borel, one can just work with this set
instead ofSw.

We should mention that Theorem 44 is in response to a question of Dilworth, Odell,
and Sari from [10].
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