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4 Some equivalence relations which are Borel

reducible to isomorphism between separable

Banach spaces

Valentin Ferenczi∗ and Elói Medina Galego

Abstract

We prove that the relation EKσ is Borel reducible to isomorphism

and complemented biembeddability between subspaces of c0 or lp with

1 ≤ p < 2. We also show that the relation EKσ⊗ =+ is Borel re-

ducible to isomorphism, complemented biembeddability, and Lipschitz

isomorphism between subspaces of Lp for 1 ≤ p < 2.

1. Introduction

In this paper, we are mainly interested in the complexity of the relation
of isomorphism between separable Banach spaces. The central notion in the
theory of classification of analytic equivalence relations on Polish spaces by
means of their relative complexity is the concept of Borel reducibility between
equivalence relations. This concept originated from the works of H. Friedman
and L. Stanley and independently from the works of L. A. Harrington, A. S.
Kechris and A. Louveau.1

1.1. Borel reducibility of equivalence relations on Polish spaces.
Let R (resp. R′) be an analytic equivalence relation on a Polish space E
(resp. E ′). We say that (E,R) is Borel reducible to (E ′, R′), and write
(E,R) ≤B (E ′, R′), if there exists a Borel map f from E to E ′, such that for
all x and y in E,

xRy ⇔ f(x)R′f(y).
∗This author was supported by FAPESP Grant 2002/09662-1.
12000 Mathematics Subject Classification. Primary 03E15, 46B03. Key words and

phrases: Analytic and Borel equivalence relations, Complexity of the relation of isomor-
phism between separable Banach spaces
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One may also restricts one’s attention to Borel, instead of analytic, equiv-
alence relations. Note also that the above definition is valid for general re-
lations. A theory of ≤B for quasi-orders has been recently developed by A.
Louveau and C. Rosendal [27].

Observe that if R and R′ are equivalence relations, then the induced
quotient map from E/R into E ′/R′ is an injection. In particular, E ′ has at
least as many R′-classes as E has R-classes. In fact, equivalence classes for
R′ provide invariants for the equivalence relation R, and furthermore this
can be obtained in a Borel way. So the order ≤B can be seen as a measure of
relative complexity between analytic equivalence relations on Polish spaces.

The relation (E,R) is Borel bireducible to (E ′, R′), (E,R) ∼B (E ′, R′),
whenever both (E,R) ≤B (E ′, R′) and (E ′, R′) ≤B (E,R) hold. Two rela-
tions which are Borel bireducible to each other are said to have the same
complexity. We write (E,R) <B (E ′, R′) when (E,R) ≤B (E ′, R′) but
(E,R) 6∼B (E ′, R′).

In the theory of classification of analytic equivalence relations on Polish
spaces, one tries to classify those relations up to Borel bireducibility. Even
for Borel relations, the situation is quite complicated, but there are a number
of natural milestones. They correspond to canonical equivalence relations on
some classical Polish spaces.

We thus have a scale of canonical relations, and given an equivalence
relation on a Polish space, we wish to locate it on this scale of complexity.

1.2. Complexity of analytic equivalence relations on Polish
spaces. We give some of these natural milestones and the relations between
them. The relation (n,=) of equality on n ∈ N is the canonical example of a
relation with n classes. We also define (ω,=) and (2ω,=). Because of their
cardinalities, it is clear that

(1) (1,=) <B ... <B (n,=) <B (ω,=) <B (2ω,=).

The next relation is (2ω, E0), or in short E0. It is defined on 2ω by

αE0β ⇔ ∃m ∀n ≥ m, α(n) = β(n),

and it is well-known and not difficult to see that it satisfies

(2) (2ω,=) <B E0.

By a theorem of Silver [32] and a theorem of Harrington-Kechris-Louveau
[16], this list is extensive for those Borel equivalence relations which are Borel
reducible to E0. This is false for analytic equivalence relations, see [29] for
more details.
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After E0, the order is no longer linear and the natural examples fall into
one of two groups.

A first family of milestones is given by Borel action of Polish groups on
Polish spaces. Given such an action of a Polish group G on a Polish space
X , the orbit relation EX

G on X , defined by xEX
G y ⇔ ∃g ∈ G : y = g.x, is

an equivalence relation on X . It is called a G-equivalence relation and it
is analytic. It turns out that given a Polish group G, there is always a G-
equivalence relation which is ≤B-maximum among all possible G-equivalence
relations on Polish spaces [2]. This equivalence relation is denoted by E∞

G ,
without explicit reference to the Polish space on which it is defined.

Of particular interest are E∞
F2

, where F2 is the free group with 2 genera-
tors, E∞

S∞
, where S∞ is the group of permutations of the integers, and E∞

G0
,

where G0 is the group of homeomorphisms of the Hilbert cube.
In fact, E∞

F2
is ≤B-maximal among Borel equivalence relations on Polish

spaces for which each equivalence class is countable or equivalently, among
G-equivalence relations for countable groups G [11], [13]. The relation E∞

G0
is

≤B-maximum among all G-equivalence relations for Polish groups G (Theo-
rem 9.18 in [21] and Theorem 2.3.5. in [2]). We have

(3) E0 <B E∞
F2

<B E∞
S∞

<B E∞
G0
.

On the other hand, not all Borel equivalence relations are Borel reducible
to equivalence relations associated to Borel actions of Polish groups. This is
the second family of milestones ”on the other side”.

The relation E1 [23] is defined on R
ω by

αE1β ⇔ ∃m ∀n ≥ m, α(n) = β(n).

It is not reducible to any G-equivalence relation for any Polish group G
[23].

There exists a ≤B-maximum equivalence relation EKσ
among Kσ equiv-

alence relations [31]. It is said to be Kσ-complete and satisfies

(4) E1 <B EKσ
.

Rosendal [31] has found useful representations of this equivalence relation,
we will use the following one, which was actually the starting point for this
paper. Let X0 be the set Πn≥1n. The relation H0 on X0 is defined by

αH0β ⇔ ∃N ∀k, |α(k) − β(k)| ≤ N.

In [31] it was proved that the relation H0 is Kσ-complete, that is, Borel
bireducible with EKσ

.
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We may add canonical examples to our list using the operation + defined
as follows, see e.g. [12]. Let E be an analytic equivalence relation on a Polish
space X . Then E+ is the (also analytic) equivalence relation defined on Xω

by
(xn)E+(yn) ⇔ ∀n ∃m, p : (xnEym) ∧ (ynExp).

For example, (2ω,=)+, also written =+, is the relation of equality of
countable subsets of 2ω. By properties of E∞

S∞
and the ’jump’ properties of

+, see [12], or [18] (where =+ is called Ecountable), it satisfies

(5) E∞
F2

<B=+<B E∞
S∞

Finally, it is also known that there exists a ≤B-maximal element among
analytic equivalence relations on Polish space, it is denoted by EΣ1

1
[27].

Representations of this relation are for example isometric biembeddability
between separable Banach spaces or isometric biembeddability between met-
ric Polish spaces [27].

The ≤B-relations (1), (2), (3), (4) and (5) can be summarized as follows:
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(n,=)

(ω,=)

(2ω ,=)
E0

E∞

F2

=+

E∞

S∞

E∞

G0

EΣ1

1

EKσ

E1

(1,=)

Figure 1: simplified diagram of complexity of analytic equivalence relations on Polish spaces.

1.3. Complexity of isomorphism of separable Banach spaces.
Now if one is interested in Banach space theory, there are two possible di-
rections in relation with the theory of classification of analytic equivalence
relations up to Borel bireducibility.

The first one is to determinate the general ≤B complexity of isomor-
phism between separable Banach spaces, or at least a lower bound for this
complexity. In other words, to show that isomorphism between separable
Banach spaces reduces rather complex equivalence relations.
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The question is also asked for other natural equivalence relations of inter-
est in Banach space theory, such as Lipschitz isomorphism, biembeddability,
complemented biembeddability, isometry and so on.

There is a natural setting for this question. All separable Banach spaces
can be seen as subspaces of an isometrically universal Banach space such as
C([0, 1]). The set of such subspaces can be equipped with the Effros-Borel
structure, see e.g. [3], which turns it into a standard Borel space.

However in practice, one deals with particular examples, like subspaces
generated by subsequences of a given basis, or block-subspaces of a given
basis, and uses an ad-hoc topology associated to the set of Banach spaces
used for the reduction. For example, all Schauder bases can be seen as
subsequences of the universal basis of Pe lczyński [25], and thus a Banach
space with a basis can be represented as an equivalence class on 2ω.

There are only a few results in that direction, and they are recent. B.
Bossard [3] proved that isomorphism between Banach spaces is analytic non-
Borel, and Borel reduces E0. Using Tsirelson’s space, Rosendal [29] improved
the result to E1, which implies that isomorphism between separable Banach
spaces is not associated to the Borel action of a Polish group on a Polish
space.

The other direction of research is to try to relate the complexity of the
relation of isomorphism between subspaces of a given separable Banach space
X to geometrical properties of X .

Indeed, by the solution to the homogeneous Banach space problem, given
by W. T. Gowers [15] and R. A. Komorowski, N. Tomczak-Jaegermann [35],
if a Banach space X has only one class of isomorphism of subspaces, then X
must be isomorphic to l2. But it is not known if, for example, there exists
a Banach space, other than l2, with at most 2, or even at most ω classes of
isomorphism of subspaces. The following question, asked by G. Godefroy, is
then natural: if the complexity of isomorphism between subspace of X is low
(in the sense of cardinality or more interestingly in the sense of ≤B), then
what geometrical, regularity properties must X satisfy?

It turns out that a first natural threshold for this question is the relation
E0. Indeed, recently the first named author and Rosendal [10] have defined a
Banach space X to be ergodic if E0 is Borel reducible to isomorphism between
subspaces of X and have obtained various results about ergodic spaces.

Rosendal [30] noticed that hereditarily indecomposable Banach spaces
are ergodic, and also proved that an unconditional basis of a non-ergodic
Banach space must have a subsequence such that all further subsequences
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span isomorphic susbpaces. In [9] and [30] it is proved that a non-ergodic
Banach space X with an unconditional basis must be isomorphic to its square,
its hyperplanes and more generally to X ⊕ Y for any subspace Y generated
by a subsequence of the basis. This was already obtained by Kalton [20] for
spaces with an unconditional basis and only countably many classes. Finally,
in [10] it is proved that a non-ergodic Banach space must contain a subspace
X with an unconditional basis which is isomorphic to X ⊕ Y for all block-
subspaces Y of X .

In this paper, we work with the classical Banach spaces c0, lp and Lp,
1 ≤ p < 2, to provide new results concerning the two directions of research.

1.4. Organization of the paper. In the next section we Borel reduce
the relation EKσ

to isomorphism between subspaces of lp, 1 ≤ p < 2 (Theorem
2.6). Our main tool for this is a theorem of P. G. Casazza and N. Kalton
about uniqueness of unconditional structure for Banach spaces, see Theorem
2.3. This result will allow us to prove that certain spaces with unconditional
bases are isomorphic if and only if their canonical bases are equivalent. It was
Kalton who suggested that this paper contained an answer to the problem
of the number of non-isomorphic subspaces of lp.

In the third section we also reduce the relation EKσ
to isomorphism be-

tween subspaces of c0 (Theorem 3.3). There we use another theorem of P.
G. Casazza and N. Kalton (Theorem 3.1) which is a strengthening of The-
orem 2.3 in the case of c0-sums. In particular, our results show that c0
and lp, 1 ≤ p < 2 are ergodic. This extends to Banach spaces with an un-
conditional basis with the shift property and satisfying a lower p-estimate,
1 ≤ p < 2 (Theorem 2.7).

In the fourth section, using more simple techniques, we reduce the relation
=+ to isomorphism between subspaces of Lp, 1 ≤ p < 2 (Theorem 4.1). In
combination with Theorem 2.6, we deduce that EKσ

⊗ =+ is Borel reducible
to isomorphism between subspaces of Lp, 1 ≤ p < 2. Thus isomorphism
between separable Banach spaces is not reducible to the equivalence relation
associated to the Borel action of a Polish group, but reduces G-equivalence
relations for non-trivial actions of such groups G.

Finally, in the last section we present a diagram (figure 2) containing
known facts about complexity of isomorphism between subspaces of a Banach
space. Then, we point out some open problems and a conjecture related to
our results.
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1.5. Notation. We shall write X ≃ Y to mean that two Banach spaces

X and Y are isomorphic, X
L
≃ Y to mean that they are Lipschitz isomorphic,

X
c
→֒ Y to mean that X is isomorphic to a complemented subspace of Y ,

and X
c
≃ Y to mean that X

c
→֒ Y and Y

c
→֒ X . For Banach spaces X and Y

written as c0-sums or lp-sums of lnq spaces, we shall abuse notation by writing
X ∼ Y to mean that the canonical bases are equivalent.

If (Xn)n∈N is a sequence of Banach spaces, we will denote the lp-sum
(
∑

n∈N
⊕Xn)lp of the Xn’s by lp(Xn)n∈N. The lp-sum of infinitely many copies

of a Banach space X is denoted as usual lp(X). If the Banach spaces Xn,
n ∈ N, are given with canonical bases, then lp(Xn)n∈N has a corresponding
canonical basis associated to a given bijection between N and N

2. We use the
similar notation for c0-sums.

2. Reductions of EKσ
to isomorphism between subspaces of lp,

1 ≤ p < 2.

Rosendal [30] proved that EKσ
is Borel reducible to equivalence between

Schauder basis in Banach spaces. We start by rephrasing his proof in a
slightly higher generality (Lemma 2.1 and Corollary 2.2).

Lemma 2.1: Let (Kn)n∈N be a sequence of integers, (pn)n∈N, (qn)n∈N be

bounded sequences of reals larger than 1 and 1 ≤ p < +∞. Then

lp(l
Kn

pn )n∈N ∼ lp(l
Kn

qn )n∈N ⇔ ∃C > 0, ∀n ∈ N, |pn − qn| ≤
C

logKn
,

and the similar result is valid for c0-sums.

Proof. By a classical consequence of Hölder’s inequality, the constant of
equivalence cn between the canonical bases of lKn

pn and lKn
qn is K |1/pn−1/qn|

n [34].
Let c be an upper bound for the sequences (pn)n∈N and (qn)n∈N, then

e|pn−qn| logKn/c2 ≤ cn ≤ e|pn−qn| logKn.

It follows that if the canonical bases of lp(l
Kn
pn )n∈N and lp(l

Kn
qn )n∈N (resp.

c0(l
Kn
pn )n∈N and c0(l

Kn
qn )n∈N) are C-equivalent, then for all n, |pn − qn| ≤

c2 logC/logKn.
Conversely, if for all n, |pn − qn| ≤ M/logKn, then the canonical bases

of lp(l
Kn
pn )n∈N and lp(l

Kn
qn )n∈N (resp. c0(l

Kn
pn )n∈N and c0(l

Kn
qn )n∈N) are (eM)2-

equivalent.

Let (Kn)n∈N be a sequence of integers, (pn)n∈N be a sequence of real
numbers greater than 1 and 1 ≤ p < +∞. We recall that X0 denotes the set

7



Πn≥1n, and that the relation H0 on X0 is defined by

αH0β ⇔ ∃N ∀k, |α(k) − β(k)| ≤ N.

For α ∈ X0, we denote by lp(l
Kn
pn (α)) the Banach space

lp(l
Kn

pn (α)) = (
∑

n

⊕lKn

pn+
α(n)

logKn

)lp,

and we use the similar definition for c0-sums.

Corollary 2.2: Let (Kn)n∈N be a sequence of integers, (pn)n∈N be a

sequence of reals larger than 1 such that (pn + n
logKn

)n∈N is bounded and

1 ≤ p < +∞. Then for all α and β in X0,

αH0β ⇔ lp(l
Kn

pn (α)) ∼ lp(l
Kn

pn (β)),

and the similar result is valid for c0-sums.

It is known that for 1 ≤ p ≤ r ≤ 2 and ǫ > 0, lp contains 1+ ǫ-isomorphic
copies of lnr , in fact Lr is isometric to some subspace of Lp, see e.g. [25]. It
follows that for any sequence (pn)n∈N of reals such that for all n, p ≤ pn ≤ 2
and any sequence of integers (Kn)n∈N, the space lp(l

Kn
pn )n∈N is isomorphic to

a subspace of lp.
Our main ingredient will be the following theorem of Casazza and Kalton

[6], which can be thought of as a first step towards uniqueness of uncondi-
tional structure for Banach spaces which are sufficiently far from l2.

We refer to [25], [19] for the definition of and background about Banach
lattices. If X and Y are Banach lattices, a bounded linear operator V :
X → Y is called a lattice homomorphism if V (x1 ∨ x2) = V x1 ∨ V x2 for
all x1, x2 ∈ X . Following [6], define a Banach lattice X to be sufficiently

lattice-euclidean if there exists C ≥ 1 such thar for all n ∈ N, there exist
operators S : X → ln2 and T : ln2 → X such that ST = Iln2 , ‖S‖‖T‖ ≤ C and
such that S is a lattice homomorphism. This is equivalent to saying that l2
is finitely representable as a complemented sublattice of X .

A Banach space with a 1-unconditional basis (xn)n∈N is naturally consid-
ered as a Banach lattice by defining

∑

n∈N

anxn ≥ 0 ⇔ ∀n ∈ N, an ≥ 0.

It is classical to consider a Banach space X with a C-unconditional basis,
C ≥ 1, as a Banach lattice as well, with the same definition of ≤ and with the
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restriction of having to add a constant in some inequalities; alternatively, one
may equip X with an equivalent norm which turns (xn)n∈N 1-unconditional,
and the results concerning the Banach lattice structure of X can be transfered
back to the initial norm, up to to the constant of equivalence.

For an unconditional basis (xn)n∈N of a Banach space (seen as a Banach
lattice), being sufficiently lattice-euclidean is the same as having, for some
C ≥ 1 and every n ∈ N, a C-complemented, C-isomorphic copy of ln2 whose
basis is disjointly supported on (xn)n∈N.

Theorem 2.3: (Casazza -Kalton [6]) Let X be a Banach space with

an unconditional basis and (yn)n∈N be an unconditional basic sequence in X
which is not sufficiently lattice-euclidean and spans a complemented subspace

of X. Then (yn)n∈N is equivalent to a sequence of disjointly supported vectors

which spans a complemented subspace in XN for some N .

Let X be a Banach space with a Schauder decomposition X =
∑+∞

i=1 ⊕Xi.
We shall say that vectors x and y in X are successive and write x < y
if there exists intervals of integers E and F such that max(E) < min(F ),
x ∈

∑
i∈E Xi, and y ∈

∑
i∈F Xi.

We say that the Schauder decomposition of X satisfies a lower p-estimate

with constant C ≥ 1 if for any successive vectors x1 < · · · < xn in X ,
(
∑n

i=1 ‖xi‖
p)1/p ≤ C‖

∑n
i=1 xi‖. For 1 ≤ p ≤ +∞, the conjugate p′ of p is as

usual defined by 1
p

+ 1
p′

= 1 (with 1
+∞

= 0).

Lemma 2.4: Fix 1 ≤ p < 2, (Kn)n∈N a sequence of integers and (pn)n∈N a

sequence of real numbers which is bounded below by p. Let r = supn∈N
pn and

r′ be the conjugate of r. SupposeX =
∑+∞

n=1⊕lKn
pn is a Schauder decomposition

of X satisfying a lower p-estimate with constant C ≥ 1. Then for all k ∈ N,

for all vectors y1, . . . , yk in X which are disjointly supported on its canonical

basis, k∑

i=1

‖yi‖ ≤ Ck1/r′‖
∑k

i=1 yi‖.

Proof. We may assume that r < +∞. Let y1, . . . , yk be as above. For
each 1 ≤ i ≤ k, we write yi =

∑+∞
n=1 yin, where yin is the projection of yi onto

the lKn
pn summand. Then

C‖
∑k

i=1 yi‖ = C‖
∑+∞

n=1

∑k
i=1 yin‖ ≥ (

+∞∑

n=1

(
k∑

i=1

‖yin‖
pn)

p

pn )
1
p .

Denote ain = ‖yin‖
p and α = r/p, αn = pn/p. Then

9



Cp‖
∑k

i=1 yi‖
p
≥

+∞∑

n=1

(
k∑

i=1

aαn

in )
1

αn ≥
+∞∑

n=1

k−1/αn
′

k∑

i=1

ain,

by Hölder’s inequality, since αn ≥ 1. Now for every n ∈ N, α ≥ αn, so

Cp‖
∑k

i=1 yi‖
p
≥ k−1/α′

+∞∑

n=1

k∑

i=1

ain.

On the other hand,

(
k∑

i=1

‖yi‖)p = (
k∑

i=1

(
+∞∑

n=1

ain)
1
p )p ≤ k

p

p′

k∑

i=1

(
+∞∑

n=1

ain),

once again by Hölder’s inequality, since p ≥ 1. Finally,

(
k∑

i=1

‖yi‖)p ≤ Cpk
p

p′
+ 1

α′ ‖
∑k

i=1 yi‖
p
,

so k∑

i=1

‖yi‖ ≤ Ck
1
p′
+ 1

pα′ ‖
∑k

i=1 yi‖,

and the fact that 1
p′

+ 1
pα′

= 1
r′

concludes the proof.

To prove the next proposition we need to recall that two unconditional
sequences (un)n∈N and (vn)n∈N in a Banach space X are said to be permuta-

tively equivalent if there is a permutation π of N so that (un)n∈N and (vπ(n))n∈N

are equivalent.

Proposition 2.5: Let (Kn)n∈N be a sequence of integers, (pn)n∈N, (qn)n∈N

sequences of real numbers and 1 ≤ p < 2. Assume

(1) p < pn < 2 and p < qn < 2, for all n ∈ N;

(2) (pn)n∈N and (qn)n∈N are decreasing sequences:

(3) K1 ≥ 4 and Kn ≥ n2Kn−1, for all n ≥ 2.

Then whenever lp(l
Kn
pn )n∈N

c
→֒ lp(l

Kn
qn )n∈N ⊕F , for some finite-dimensional

space F , there exists C > 0 such that pn − qn ≤ C/ logKn, for all n ∈ N.

Proof. Note that by Lemma 2.4, any disjointly supported sequence of
vectors x1, . . . , xk in lp(l

Kn
pn )n∈N satisfies

k∑

i=1

‖xi‖ ≤ k1/q′1‖
∑k

i=1 xi‖,

and q1
′ > 2. So lp(l

Kn
pn )n∈N is not sufficiently lattice-euclidean. By Theo-

rem 2.3, for some N , the canonical basis of lp(l
Kn
pn )n∈N is C-equivalent to

a disjointly supported sequence in (lp(l
Kn
qn )n∈N ⊕ F )N . Modifying N and C

we may assume F = {0}. Then without loss of generality we may write this
space as lp(l

NKn
qn )n∈N (the canonical bases are permutatively equivalent). Take

10



k ≥ k(N), where k(N) is such that this condition ensures Kk

2
≥

∑k−1
i=1 NKi;

it exists by condition (3). The canonical basis of lKk
pk

is C-equivalent to a
disjointly supported sequence in lp(l

NKn
qn )n∈N. By the condition on Kk, we

see that the canonical basis (ei)i∈N of lKk/2
pk

is C-equivalent to a disjointly
supported sequence (fi)i∈N in (

∑
n≥k ⊕lNKn

qn )lp. We may now apply Lemma
2.4 to the sequence (fi)i∈N. As qk = max{qn, n ≥ k},

C(Kk/2)1/pk ≥ ‖
∑Kk/2

i=1 fi‖ ≥ (Kk/2)−1/qk
′

Kk/2∑

i=1

‖fi‖ ≥ (Kk/2)1/qk/C.

Consequently
(Kk/2)1/qk−1/pk ≤ C2,

and

pk − qk ≤ 4(1/qk − 1/pk) ≤ 8 logC/ log(Kk/2) ≤ 16 logC/ logKk.

This is true for any k ≥ k(N), so the proposition is proved.

Theorem 2.6: Suppose 1 ≤ p < 2. Then the relation EKσ
is Borel

reducible to isomorphism, to Lipschitz isomorphism and to complemented

biembeddability between subspaces of lp. Indeed, there exist a sequence of

integers (Kn)n∈N, a sequence of reals (pn)n∈N with p < pn < 2 for all n, such
that the following are equivalent for all α and β in X0:

(1) αH0β.
(2) lp(l

Kn
pn (α)) ∼ lp(l

Kn
pn (β)).

(3) lp(l
Kn
pn (α)) ≃ lp(l

Kn
pn (β)).

(4) lp(l
Kn
pn (α))

L
≃ lp(l

Kn
pn (β)).

(5) lp(l
Kn
pn (α))

c
≃ lp(l

Kn
pn (β)).

Proof. We choose (Kn)n∈N satisfying (3) of Proposition 2.5, and (pn)n∈N

such that p1 + 1/ logK1 < 2, p < pn < 2 for all n, and n+1
logKn+1

≤ pn − pn+1.

This is certainly possible if
∑+∞

n+1
n

logKn
is small enough. Then it is clear that

the conditions of Proposition 2.5 are satisfied for any two sequences (pn +
α(n)
logKn

)n∈N and (pn+ β(n)
logKn

)n∈N. It follows that (5) implies (1). That (4) implies

(5), that is, Lispchitz isomorphism implies complemented biembeddability,
comes from the fact that the spaces considered are separable dual spaces
(Theorem 2.4 in [17]). (1) implies (2) by Lemma 2.1 and Corollary 2.2 and
the rest is obvious.

Using a similar proof as in the previous theorem we get the following
result. An unconditional basis for a Banach space X is said to have the
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shift property if any normalized block-sequence (xn)n∈N in X is equivalent to
(xn+1)n∈N.

Theorem 2.7: Let X be a Banach space with an unconditional basis with

the shift property, which satisfies a lower p-estimate for some 1 ≤ p < 2.
Then X is ergodic.

Proof. Let X be such a space. By Krivine’s theorem (see e.g. [28]), lr
is block-finitely represented in X for some r, and by the lower estimate, we
have that r ≤ p. But then all lr′ for r ≤ r′ ≤ 2, and in particular p ≤ r′ ≤ 2
are finitely represented in X (with constant 2 say). We may then associate to
each α ∈ X0 a subspace X(α) of X which is a direct sum on the basis of lKn

pn s
for some pns in ]p, 2[ as previously. The canonical Schauder decomposition of
the space X(α) satisfies a lower p-estimate and is unconditional. Also each
lKn
pn has a canonical 1-unconditional basis and X satisfies the shift property, so

by [5], Proposition 2.3, the canonical basis of X(α) is unconditional. We may
thus follow the proof of Proposition 2.5 (note that if X =

∑
⊕lKn

qn satisfies
a lower p-estimate with constant C, then XN ≃

∑
⊕lNKn

qn satisfies a lower
p-estimate as well, with a constant depending on C, N and p). We get that

X(α) ≃ X(β) ⇒ αH0β.

It doesn’t seem easy to get the converse without more information on the
norm on X . We shall in fact reduce E0 instead of EKσ

. For this, consider 2ω

as a subset of X0 by j((α(n))n∈N) = (0, α(1), 2α(2), 3α(3), . . .). Then clearly,
for any α, β ∈ 2ω, αE0β if and only if j(α)H0j(β), so from the above,

X(j(α)) ≃ X(j(β)) ⇒ αE0β.

But we also have

αE0β ⇒ X(j(α)) ≃ X(j(β)),

because if αE0β then X(j(α)) and X(j(β)) have canonical bases which differ
by only a finite number of vectors. So E0 is Borel reducible to isomorphism
between subspaces of X .

3. Reductions of EKσ
to isomorphism between subspaces of c0.

We now turn our attention to spaces of the form c0(l
Kn
pn (α)). Note that as

a c0-sum of finite-dimensional spaces, every such space is isomorphic to a sub-
space of c0. The previous results concerning isomorphism and complemented
biembeddability between subspaces of lp, 1 ≤ p < 2 extend by duality to
quotients of lp, p > 2 and c0, and thus by a classical theorem (Theorem 2.f.6

12



in [25]), also to subspaces of c0. However, we shall improve these results by
also reducing EKσ

to complemented embeddability between subspaces of c0.
We recall that the definition of ≤B still makes sense when the relation

is not an equivalence relation. In particular, the ≤B-classification of quasi-
orders has consequences in the ≤B-classification of equivalence relations, see
[27].

Theorem 3.1: (Casazza-Kalton [7]) Let (Kn)n∈N be a sequence of

integers and (qn)n∈N a decreasing sequence of reals converging to 1. Then any

unconditional basis of a complemented subspace of c0(l
Kn
qn )n∈N is permutatively

equivalent to the canonical basis of c0(l
Mn
qn )n∈N, for some sequence (Mn)n∈N

such that Mn/Kn is bounded.

Since it is only implicit in their paper, we sketch how this theorem follows
from their results. We also refer to their paper for some definitions which we
would not use afterwards.

Proof of Theorem 3.1. Let (uk)k∈N be an unconditional basis of a com-
plemented subspace of c0(l

Kn
qn )n∈N. According to [7] Corollary 2.5 and [7]

Theorem 1.1 we may assume that the (uk)’s are disjointly supported. By [7]
Theorem 3.2 we may assume that for all n and k, ‖uk(n)‖lKn

qn
= 0 or 1, and

that there exists a partition N = ∪n∈ABn of N, such that the space spanned
by (uk)k∈N is a c0-sum of the spaces spanned by (uk)k∈Bn

, and a C such that
for each n, (uk)k∈Bn

is C-complemented, C-tempered (see the definition in
[7]). By the Claim in [7] Theorem 3.4, we see that for some K, each (uk)k∈Bn

must be K permutatively equivalent to the canonical basis of (
∑

k∈Dn
⊕lPk

qk
)c0 ,

with |Dn| ≤ K and Pk/Kk ≤ K. Furthermore, by (3) of [7] Theorem 3.2,
for any k, the number of n’s such that k ∈ Dn is uniformly bounded. The
theorem follows.

Proposition 3.2: Let (Kn)n∈N be a sequence of integers and (pn)n∈N,

(qn)n∈N be sequences of reals. Assume

(1) The sequences (pn)n∈N and (qn)n∈N are decreasing to 1;
(2) 1 < pn + n

logKn
< 2 and 1 < qn + n

logKn
< 2, for all n ∈ N;

(3) The sequence ( n
logKn

)n∈N is decreasing;

(4) |qn − pm| ≥ min(m,n)/ logKmin(m,n), for all m 6= n.

Then whenever c0(l
Kn
pn )n∈N

c
→֒ c0(l

Kn
qn )n∈N, it follows that c0(l

Kn
pn )n∈N ∼

c0(l
Kn
qn )n∈N.

Proof. By Theorem 3.1, the canonical basis of c0(l
Kn
pn )n∈N, being equivalent
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to an unconditional basis of a complemented subspace of c0(l
Kn
qn )n∈N, must be

C-permutatively equivalent to the canonical basis of a space c0(l
Mn
qn )n∈N, for

some constant C and some sequence (Mn)n∈N of integers.
Let us now fix n ∈ N. Thus by the above, and using the symmetry of

the canonical bases of spaces lp, there exists for i = 1, . . . , k integers Ai,
such that Kn =

∑k
i=1Ai, and an increasing sequence of integers ni, i ≤ k,

such that the canonical basis of lKn
pn is C-equivalent to the canonical basis of

(
∑

1≤i≤k ⊕lAi
qni

)c0.

We first note that in particular the canonical basis of lk∞ is C-equivalent
to the canonical basis of lkpn, from which it follows that

k1/pn ≤ C,

therefore k ≤ Cpn ≤ C2.
It follows that maxiAi ≥ Kn/C

2. Let i be an integer where this maximum
is attained and let N = ni. From the fact that the canonical bases of lAi

pn and
lAi
qN

are C-equivalent, it follows that

A
| 1
pn

− 1
qN

|

i ≤ C,

so by condition (2),
1/4|pn − qN | logAi ≤ logC.

We now assume that n > 8 logC, it follows from (2) that logKn > 4 logC,
and therefore

|pn − qN | ≤ 4 logC/(logKn − 2 logC) ≤ 8 logC/ logKn.

Now if N 6= n, then by conditions (3) and (4),

|pn − qN | ≥ min(n,N)/ logKmin(n,N) ≥ n/ logKn.

But this contradicts the assumption that n > 8 logC. It follows that
N = n. In particular in the previous inequality, we get

|pn − qn| ≤ 8 logC/ logKn.

Finally, for all n > 8 logC, |pn − qn| ≤ 8 logC/ logKn, and by Corollary
2.2, this means that c0(l

Kn
pn )n∈N ∼ c0(l

Kn
qn )n∈N.

Theorem 3.3: The relation EKσ
is Borel reducible to isomorphism and

to complemented embeddability between subspaces of c0. Indeed there exist a

sequence of integers (Kn)n∈N and a sequence of reals (pn)n∈N such that for α
and β in X0, the following statements are equivalent:

(1) αH0β.
(2) c0(l

Kn
pn (α)) ∼ c0(l

Kn
pn (β)).

14



(3) c0(l
Kn
pn (α)) ≃ c0(l

Kn
pn (β)).

(4) c0(l
Kn
pn (α))

c
→֒ c0(l

Kn
pn (β)).

Proof. We choose (Kn)n∈N and (pn)n∈N such that p1 + 1/ logK1 < 2, pn is
decreasing to 1, n/ logKn is decreasing, and for all n, pn−pn+1 ≥ 2n/logKn.
This is possible if

∑+∞
n=1

n
logKn

is small enough. Then conditions (1), (2), (3)

and (4) of Proposition 3.2 are achieved for any two sequences (pn + α(n)
logKn

)n∈N

and (pn + β(n)
logKn

)n∈N. Corollary 2.2 gives that (1) implies (2). Finally, (4)

implies (1) comes from Proposition 3.2.

Remark 3.4: Observe that we cannot use Pe lczyński’s decomposition
method here to show that isomorphism and complemented bi-embeddability
coincide, because the conditions we need to impose on (pn)n∈N and (Kn)n∈N

prevent the sequence ((pn − pn+1) logKn)n∈N from being bounded; that con-
dition is needed to prove that a c0-sum of lKn

pn ’s is isomorphic to its square.
We only used Banach spaces with unconditional bases. The crucial point

in our method is that the spaces considered are isomorphic if and only if
their canonical bases are equivalent. As Rosendal proved that equivalence
of Schauder bases is Kσ-complete [30], we cannot hope to go further up in
the hierarchy of complexity than Kσ with this method. So we now turn to a
situation where isomorphism corresponds to permutative equivalence of the
canonical bases.

4. Reducing G-equivalence relations to isomorphism between
separable Banach spaces

It is well-known that if (Yi)i∈N is a sequence of Banach spaces, and if a
Banach space X is isomorphic to a subspace of lp(Yi)i∈N for some p ∈ [1,+∞),
then X is isomorphic to a subspace of

∑n
i=1⊕Yi for some n ∈ N or lp is

isomorphic to a subspace of X . In particular, if for some p ∈ [1,+∞), the
space lp is isomorphic to a subspace of lp0(lpn)n∈N, where pn ∈ [1,+∞) for all
n ∈ N ∪ {0}, then there exists n ∈ N ∪ {0} such that p = pn. For a proof of
these facts, see for example [4] Theorem 1.1.

If (Xn)n∈N is a sequence of Banach spaces, we shall define l∞p (Xn)n∈N as
an lp-sum where each Xn appears in infinitely many summands. In other
words, l∞p (Xn)n∈N ≃ lp(lp(Xn))n∈N, where for each n ∈ N, lp(Xn) denotes the
lp-sum of infinitely many copies of Xn, with permutative equivalence of the
canonical bases.
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Theorem 4.1: The relation =+ is Borel reducible to isomorphism, to

Lipschitz isomorphism, to biembeddability and to complemented biembeddabil-

ity between subspaces of Lp, 1 ≤ p < 2.

Proof. Fixing 1 ≤ p < 2, we let P be a perfect subset of the interval ]p, 2[.
We define for α = (αn)n∈N ∈ P ω, the Banach space

X(α) = l∞p (lαn
)n∈N.

This defines a Borel map and we show that it reduces =+ on P ω to isomor-
phism between subspaces of Lp. Indeed, first note that X(α) is isomorphic
to a subspace of Lp as an lp-sum of subspaces of Lp. Now if α =+ β, then
every summand in the lp-sum X(α) (resp. X(β)) is a summand in X(β)
(resp. X(α)), and both appear infinitely many times as summands. So X(α)
is isometric to X(β) (in fact its canonical basis is permutatively equivalent
to the canonical basis of X(β)).

Conversely, assume X(α) embeds in X(β). Let n ∈ N, we see that lαn
is

isomorphic to some subspace of the lp-sum X(β). As αn 6= p, it follows that
there exists m, such that αn = βm for some m. Assuming X(β) embeds in
X(α), we get that βn = αq for some q. As n was arbitrary, we conclude that
α =+ β.

Finally we conclude that for α and β in P ω, α =+ β if and only if X(α)
is isometric to X(β), resp. isomorphic to, Lipschitz isomorphic to, com-
plementably beimbeddable in, beimbeddable in X(β). Once again we used
[17] Theorem 2.4, together with reflexivity, to see that Lipschitz equivalence
implies complemented biembeddability.

Before the next result we recall that an operator T from a Banach space X
into a Banach space Y is strictly singular if there exists no infinite dimensional
subspace Z of X such that the restriction of T to Z is an isomorphism onto
the image. Two Banach spaces X and Y are said to be totally incomparable
if X and Y have no isomorphic closed subspaces of infinite dimension.

Theorem 4.2: (Wojtasczyk [36]) Assume that X1 and X2 are Banach

spaces such that any operator from X1 to X2 is strictly singular. Let X be a

complemented subspace of X1⊕X2. Then X is isomorphic to Y1⊕Y2, where

Yi is a complemented subspace of Xi for i = 1, 2.

Given R (resp. R′) an equivalence relation on a set E (resp. E ′), the
product R⊗R′ is defined on E × E ′ by

(x, x′) R⊗ R′ (y, y′) ⇔ xRx′ ∧ yRy′.
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Theorem 4.3: The relation EKσ
⊗ =+ is Borel reducible to isomorphism,

Lipschitz isomorphism and complemented biembeddability between subspaces

of Lp, 1 ≤ p < 2.

Proof. Fix 1 ≤ p < 2. Let f be a map given by Theorem 2.6 which
Borel reduces EKσ

to isomorphism between subspaces of l(p+1)/2. Let P be a
perfect subset of ](p + 1)/2, 2[ and g be a map given by Theorem 4.1 which
Borel reduces =+ on P ω to isomorphism between lp-sums of lqn-spaces for
sequences (qn) in P . By the result at the beginning of this section, l(p+1)/2 is
totally incomparable with such lp-sums. Using Theorem 4.2, we check that
the direct sum h of the two maps (defined by h(α, β) = f(α) ⊕ g(β)) Borel
reduces EKσ

⊗ =+ to isomorphism between subspaces of Lp.
Indeed, first note that by construction h(α, β) is a subspace of Lp, for

α in X0 and β in P ω. Then assume α and α′ in X0 are H0-related, and β
and β ′ in P ω satisfy β =+ β ′; then h(α, β) ≃ h(α′, β ′). Conversely, assume

h(α, β)
c
≃ h(α′, β ′). Then in particular, g(β) is isomorphic to a complemented

subspace of f(α′)⊕g(β ′). By Theorem 4.2, it follows that g(β) ≃ U⊕V , with

U
c
→֒ f(α′) and V

c
→֒ g(β ′). By total incomparability of g(β) and f(α′), U is

finite dimensional. It follows that g(β)
c
→֒ U ⊕ g(β ′) ≃ g(β ′). Symmetrically

g(β ′)
c
→֒ g(β) and by Theorem 4.1, we deduce that β =+ β ′.

Similarly we get that f(α)
c
→֒ f(α′) ⊕ F , where F is finite-dimensional,

as well as the complemented embedding in the other direction. We may then
apply Proposition 2.5 and finally get that αH0α

′.
The claimed result is then obtained as before by circular implications and

[17].

5. Final remarks, open problems and a conjecture.

Remark 5.1: Note that a Banach space not containing l2 and without
type p for some 1 ≤ p < 2 (resp. without cotype q for some q > 2) has at
least 3 mutually non-isomorphic subspaces. Indeed: by Gowers’ dichotomy
theorem [15] and the fact that H.I. spaces are ergodic [30], we may assume
that there exists a subspace X1 with an unconditional basis. By the pre-
viously mentioned theorem of Komorowski and Tomczak-Jaegermann [24],
some subspace X2 of X1 does not have an unconditional basis, but has a
basis (or at least a FDD in the case when X does not have non-trivial co-
type), from which it follows that it has the approximation property [25].
Finally the assumption about the type (resp. the cotype) and the results of
A. Szankowski [33] imply the existence of a subspace X3 without the approx-
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imation property.
As a consequence of a study of subspaces of a Banach space with k-

dimensional unconditional structure, for k ∈ N, R. Anisca proved that for X
non isomorphic to l2 and with finite cotype, l2(X) has countably mutually
non-isomorphic subspaces [1].

Finally it is proved in [10] that every Banach space contains a subspace
which is a minimal space (that is, embeds in any of its subspaces) or contains
continuum many mutually non isomorphic subspaces.

With Remark 5.1, our results and those mentioned in 1.3 of the introduc-
tion, known facts about complexity of isomorphism between subspaces of a
given Banach space may be seen in Figure 2. For each equivalence relation E,
we write the Banach spaces X for which we know that E is Borel reducible
to isomorphism between subspaces of X .
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PSfrag replacements

(1,=): l2.

(2,=): spaces not isomorphic to l2.

(3,=): spaces not containing l2, without cotype q, for some
q > 2 or without type p, for some 1 ≤ p < 2.

(ω,=): l2(X) for X 6≃ l2 with finite cotype.

(2ω ,=): spaces without a minimal subspace.

E0: HI spaces, spaces with an unconditional basis
not isomorphic to their squares
(resp. to their hyperplanes),...

E∞

F2

=+

E∞

S∞

E∞

G0

EΣ1

1

EKσ
: c0 and lp, 1 ≤ p < 2.

E1: Tsirelson’s space T .

EKσ
⊗ =+: Lp, 1 ≤ p < 2.

Figure 2: diagram of complexity of isomorphism between subspaces of a separable Banach space.

Remark 5.2: A problem we left open is whether we may extend our
results to prove that spaces lp are ergodic for p > 2. Our results about c0 and
lp, 1 ≤ p < 2 suggest the conjecture that l2 is the only non-ergodic Banach
space. It is also of interest to restrict the question to particular subspaces,
such as block-subspaces of a given basis. As any normalized block-basis
of the canonical basis of c0 or lp is equivalent to the original basis, these
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spaces would be, as is maybe natural, of the lowest complexity possible. We
conjecture the following.

Conjecture 5.3: Let X be a Banach space with an unconditional basis.
Then either the relation E0 is Borel reducible to isomorphism between block-
subspaces of X , or X is isomorphic to c0 or lp, 1 ≤ p < +∞.

Remark 5.4: The question of the exact complexity of isomorphism be-
tween separable Banach spaces (seen as subspaces of C([0, 1]) with the Effros-
Borel structure), or even between Banach spaces with Schauder bases (seen
as subsequences of the universal basis of Pe lczyński) is quite open. It could
be Σ1

1-complete, that is, ≤B-maximum among analytic equivalence relations.
The limitation for our methods might come from the fact that our ex-

amples are isomorphic exactly when their canonical bases are permutatively
equivalent. If the complexity of permutative equivalence of basic sequences
is too low, it will be necessary to find quite different types of reductions. It
could be interesting to work with general Banach lattices instead of discrete
ones.

Remark 5.5: Gowers [14] solved the so-called Schroeder-Bernstein prob-
lem for Banach spaces, by proving that complemented biembeddability and
isomorphism between Banach spaces need not coincide in general. We no-
tice that for our examples, they do coincide. This is probably because many
techniques known about isomorphic spaces concern, more generally, comple-
mented subspaces. We may wonder how far these two properties are from
each other from a point of view of complexity. In this direction, we show
in [8] how to construct a continuum of mutually non-isomorphic subspaces
which are however complemented in each other.
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