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ABSTRACT 

If a Banach  space  is s a t u r a t e d  wi th  subspaces  wi th  a Schauder  basis,  

which embed  into t he  l inear span  of any  subsequence  of thei r  basis,  t h e n  

it conta ins  a m i n i ma l  subspace .  It  follows t h a t  any  Banach  space  is e i ther  

ergodic or  con ta ins  a min imal  subspace .  

1. In troduct ion  

The starting point of this article is the solution to the Homogeneous Banach 

Space Problem given by W. T. Gowers [7] and R. Komorowski - -  N. Tomczak- 

Jaegermann [11]. A Banach space is said to be homogeneous if it is isomor- 

phic to its infinite-dimensional closed subspaces; these authors proved that  a 

homogeneous Banach space must be isomorphic t o /2 .  

Gowers proved that  any Banach space must either have a subspace with an 

unconditional basis or a hereditarily indecomposable subspace. By properties 

of hereditarily indecomposable Banach spaces, it follows that  a homogeneous 

Banach space must have an unconditional basis (see e.g. [7] for details about 

this). Komorowski and Tomczak-Jaegermann proved that  a Banach space with 

an unconditional basis must contain a copy of 12 or a subspace with a successive 

finite-dimensional decomposition on the basis (2-dimensional if the space has 
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finite cotype) which does not have an unconditional basis. It follows that  a 

homogeneous Banach space must be isomorphic to 62. 

While Gowers' dichotomy theorem is based on a general Ramsey-type theorem 

for block-sequences in a Banach space with a Schauder basis, the subspace with 

a finite-dimensional decomposition constructed in Komorowski and Tomczak- 

Jaegermann's theorem can never be isomorphic to a block-subspace. If one re- 

stricts one's attention to block-subspaces, the standard homogeneous examples 

become the sequence spaces co and ~p, 1 _< p < +c~, with their canonical bases; 

these spaces are well-known to be isomorphic to their block-subspaces. Further- 

more, there are classical theorems which characterize co and ~p, 1 < p < +c~ 

by means of their block-subspaces. An instance of this is Zippin's theorem ([12] 

Theorem 2.a.9): a normalized basic sequence is perfectly homogeneous (i.e. 

equivalent to all its normalized block-sequences) if and only if it is equivalent 

to the canonical basis of co or some ~?p. See also [12] Theorem 2.a.10. 

So it is very natural to ask what can be said on the subject of (isomor- 

phic) homogeneity restricted to block-subspaces of a given Banach space with 

a Schauder basis: 

QUESTION 1: If a Banach space X with a Schauder basis (en)n~r~ is iso- 

morphic to its block-subspaces, does it follow that X is isomorphic to Co or 

~p, 1 < p < +co? 

Note that  such a basis is not necessarily equivalent to the canonical basis of 

co or some gp; take 62 with a conditional basis. 

In the other direction, if a Banach space is not homogeneous, then how many 

non-isomorphic subspaces must it contain? This question may be asked in the 

setting of the classification of analytic equivalence relations on Polish spaces by 

Borel reducibility. This area of research originated from the works of H. Fried- 

man and L. Stanley [6] and independently from the works of L. A. Harrington, 

A. S. Kechris and A. Louveau [9], and may be thought of as an extension of 

the notion of cardinality in terms of complexity, when one compares equivalence 

relations. 

If R (resp. S) is an equivalence relation on a Polish space E (resp. F),  then 

it is said that  (E, R) is Borel reducible to (F, S) if there exists a Borel map 

f:  E --* F such that  Vx, y E E, xRy r f ( x )S f (y ) .  An important equivalence 

relation is the relation E0: it is defined on 2 ~ by 

aEo~ r 3m E NVn >_ m, a(n) =/3(n). 

The relation Eo is a Borel equivalence relation with 2 ~ classes and which, 
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furthermore, does not admit a Borel classification by real numbers, that  is, 

there is no Borel map f from 2 ~ into IR (equivalently, into a Polish space), such 

that  aE0Ct e* f ( a )  = / ( ~ ) ;  such a relation is said to be n o n - s m o o t h .  In fact 

E0 is the _<B minimal non-smooth Borel equivalence relation [9]. 

There is a natural way to equip the set of subspaces of a Banach space X with 

a Borel structure, and the relation of isomorphism is analytic in this setting 

[1]. The relation E0 appears to be a natural threshold for results about the 

relation of isomorphism between separable Banach spaces [31, [4], [51, [16]. A 

Banach space X is said to be e rgod ie  if E0 is Borel reducible to isomorphism 

between subspaces of X; in particular, an ergodic Banach space has continuum 

many non-isomorphic subspaces, and isomorphism between its subspaees is non- 

smooth. The results in [1], [3], [4], [5], [16] suggest that  every Banach space 

non-isomorphic to 62 should be ergodic, and we also refer to these articles for 

an introduction to the classification of analytic equivalence relations on Polish 

spaces by Borel reducibility, and more specifically to complexity of isomorphism 

between Banach spaces. 

Restricting our attention to block-subspaces, the natural question becomes 

the following: 

QUESTION 2: I f  X is a Banach space with a Sehauder basis, is it true that either 

X is isomorphic to its block-subspaces or Eo is Bore1 reducible to isomorphism 

between the block-subspaces of X ? 

Let us provide some ground for this conjecture by noting that,  if we replace 

isomorphism by equivalence of the corresponding basic sequences, it is com- 

pletely solved by a result of the author and C. Rosendal using the theorem of 

Zippin: if X is a Banach space with a normalized basis (en)nem then either 

(en)~eN is equivalent to the canonical basis of co or ~p, 1 _< p < +ec,  or E0 is 

Borel reducible to equivalence between normalized block-sequences of X. 

A. M. Pelczar has proved that  a Banach space which is saturated with sub- 

symmetric sequences contains a minimal subspace [15]. The aim of this article is 

to prove the isomorphic counterpart of her theorem. The natural generalization 

is to replace subsymmetric sequences by sequences which are i somorph iea l ly  

h o m o g e n e o u s ,  i.e. such that  all subspaces spanned by subsequences are iso- 

morphic. However, it will be enough and more natural with our methods to 

consider embeddings instead of isomorphisms, which leads us to a stronger re- 

sult: if a Banach space X is saturated with basic sequences whose linear span 

embeds in the linear span of any subsequenee, then X contains a minimal sub- 

space (Theorem 3). 
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In combination with a result of C. Rosendal [16], it follows that if X is a 

Banach space with a Schauder basis, then either E0 is Borel reducible to iso- 

morphism between block-subspaces of X, or X contains a block-subspace which 

is block-minimal (i.e. embeds as a block-subspace of any of its block-subspaces), 

Corollary 16. This improves a result of [5] which states that a Banach space 

contains continuum many non-isomorphic subspaces or a minimal subspace. 

We think that our methods also have an intrisic interest. They show how 

to combine non-trivial combinatorial results concerning subsequences (mainly 

the infinite Ramsey Theorem and its consequences), and combinatorial methods 

about block-sequences (mainly in the spirit of Gowers' Theorem). Given a basic 

sequence such that all subsequences satisfy some embedding property, we shall 

indeed use Silver's infinite Ramsey Theorem to pass to a subsequence for which 

there is a continuous map producing witnesses for these embeddings (Lemma 7). 

This will provide the first step of an induction, which, as in [15], or as Maurey's 

proof of Gowers' dichotomy theorem [14], is based on some stabilization process 

for block-subspaces. Our theorem will follow. 

Combinatorial methods about subsequences or about block-sequences are 

often used in Banach space theory; but they are less frequently combined. 

Hopefully, our methods could lead to other applications in that area. 

2. N o t a t i o n  

Let X be a Banach space with a Schauder basis (e~)~cN. If (xn)nej is a finite 

or infinite block-sequence of X then [Xn]~ej will stand for its closed linear span. 

We shall also use some standard notation about finitely supported vectors on 

(en)n~N, for example, we shall write x < y and say that x and y are successive 

when max(supp(x)) < min(supp(y)). The set of normalized block-sequences in 

X, i.e. sequences of successive blocks in X, is denoted bb(X). 
Let Q(X) be the set of non-zero blocks of the basis (i.e. finitely supported 

vectors) which have rational coordinates on (e~)~eN (or coordinates in Q + iQ if 

we deal with a complex Banach space). We denote by bbQ(X) the set of block- 

bases of vectors in Q(X), and by GQ(X) the corresponding set of block-subspaces 

of X. 

The notation bb~"~(X) (resp. bb~(X)) will be used for the set of finite (resp. 

length n) block-sequences with vectors in Q(X); the set of finite block-subspaces 

generated by block-sequences in bb~(X) will be denoted by FinQ(X). 
We shall consider bbQ(X) as a topological space, when equipped with the 

product of the discrete topology on Q(X). As Q(X) is countable, this turns 
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bbq(X) into a Polish space. Likewise, Q(X) ~ is a Polish space. 

For a finite block sequence & = (Xl , . . . ,  xn) e bb~(X), we denote by NQ(&) 

the set of elements of bbQ(X) whose first n vectors are (Xl, . . .  ,xn); this is the 

basic open set associated to ~. 

The set [w]~ is the set of increasing sequences of integers, which we some- 

times identify with infinite subsets of w. It is equipped with the product of the 

discrete topology on w. The set [w]<~ is the set of finite increasing sequences 

of integers. If a = ( a l , . . . , a k )  E [w] <~ then [a] stands for the basic open 

set associated to a, that  is the set of increasing sequences of integers of the 

form { a l , . . . ,  ak, nk+l, nk+2,.. .}- If A �9 [w] ~, then [A] ~ is the set of increasing 

sequences of integers in A (where A is seen as a subset of w). 

We recall that  two basic sequences (Xn)neN and (Yn)neN are said to be equiv-  

a len t  if the map T: [xn]neN ~ [Yn]ner~ defined by T(xn) = Yn for all n �9 N 

is an isomorphism. For C > 1, they are C-equ iva len t  if [[T[[[IT-I[[ _< C. A 

basic sequence is said to be ( C - ) s u b s y m m e t r i c  if it is (C-)equivalent to all its 

subsequences. 

We shall sometimes use "standard perturbation arguments" without being 

explicit. This expression will refer to one of the following well-known facts 

about block-subspaces of a Banach space X with a Schauder basis. Any basic 

sequence (resp. block-basic sequence) in X is an arbitrarily small perturbation 

of a basic sequence in Q(X) ~ (resp. block-basic sequence in bbQ(Z)), and in 

particular is 1 + e-equivalent to it, for arbitrarily small e > 0. Any subspace of 

X has a subspace which is an arbitrarily small perturbation of a block-subspace 

of X (and in particular, with 1 + e-equivalence of the corresponding bases, for 

arbitrarily small e > 0). If X is reflexive, then any basic sequence in X has a 

subsequence which is a perturbation of a block-sequence of X (and, in particular, 

is 1 + e-equivalent to it, for arbitrarily small e > 0). 

We shall also use the fact that  any Banach space contains a basic sequence. 

Finally, we recall the definition of unconditionality for basic sequences: a 

Schauder basis (en)neN of a Banach space X is said to be unconditional if there 

is some C _> 1 such that  for any I C N, any norm 1 vector x = ~n~N anen �9 X, 

[[ ~-~-nEI anen[[ ~_ C. 

3. T h e  main  result  

We recall different notions of minimality for Banach spaces. A Banach space 

X is said to be ( C - ) m i n i m a l  if it (C-)embeds into any of its subspaces. If 

X has a Schauder basis (en),~eN, then it is said to be b l o c k - m i n i m a l  if every 
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block-subspace of X has a further block-subspace which is isomorphic to X, and 

is said to be e q u i v a l e n c e  b l o c k - m i n i m a l  if every block-sequence of (Xn)neN 

has a further block-sequence which is equivalent to (Xn)n~r~. 

The theorem of Pelczar [15] states that  a Banach space which is saturated with 

subsymmetric sequences must contain an equivalence block-minimal subspace 

with a Schauder basis. 

A basic sequence e m b e d s  ( resp .  C - e m b e d s )  in to  its s u b s e q u e n c e s  if 

its linear span embeds (resp. C-embeds) into the linear span of any of its sub- 

sequences. We may now state our isomorphic version of Pelczar's theorem: 

THEOREM 3: A Banach space which is saturated with basic sequences which 

embed into their subsequences contains a minimal subspace. 

We first prove two uniformity lemmas. For N C N let d~(N) denote an integer 

such that  if X is a Banach space with a basis (en)n~N with basis constant e, 

and (x~)ncN and (Y~)ncr~ are normalized block-basic sequences of X such that  

Xn : Yn for all n > N, then (Xn)n~N and (Yn)ncN are dc(N)-equivalent. We 

leave as an exercise to the reader to check that such an integer exists. 

LEMMA 4: Let (x~)~eN be a basic sequence in a Banach space which embeds 

into its subsequences. Then there exists C >_ 1 and a subsequence of (Xn)neN 

which C-embeds into its subsequences. 

Proo~ Let (Xn)ne N be a basic sequence which embeds into its subsequences, 

and let c be its basis constant. It is clearly enough to find a subsequence (Yn)ncN 

of (Xn)ner~ and C > 1 such that  (Xn)nE N C-embeds into any subsequence of 

(Yn)ncN (with the obvious definition). 

Assuming the conclusion is false, we construct by induction a sequence of sub- 
X k (Xn)neN is a subsequence sequences ( n)neN of (Xn)neN, such that  for all k e N, k 

of k-1 ( X n ) n e w  such that  (Xn)nE N does not kdc(k)-embed into k 

Let (Yn)nEN be the diagonal subsequence of (Xn)~eN defined by yn = x n. Then 

(Xn)neW does not kdc(k)-embed into (xk , . . .  x k ' k - l ' Y k ' Y k + l ' ' ' ' ) "  So (Xn)ne N 

does not k-embed in (Yn)nEN. Now k was arbitrary, so this contradicts our 

hypothesis. | 

LEMMA 5: Let X be a Banach space which is saturated with basic sequences 

which embed into their subsequences. Then there exists a subspace Y of X with 

a Schauder basis, and a constant C >_ 1 such that every block-sequence of Y 

(resp. in bbQ(Y) ) has a further block-sequence (resp. in bbQ(Y) ) which C-embeds 

into its subsequences. 
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Prod: A space which is spanned by a basic sequence which embeds into its 

subsequences must in particular embed into its hyperplanes, so is isomorphic to 

a proper subspace; by [8] Corollary 19 and Theorem 21, such a space cannot 

be hereditarily indecomposable. Thus X does not contain a hereditarily inde- 

composable subspace; otherwise, some further subspace would be hereditarily 

indecomposable (since the H.I. property is hereditary) and spanned by a basic 

sequence which embeds in its subsequences (by the saturation property). 

So by Cowers' dichotomy theorem, we may assume X has an unconditional 

basis (let c be its basis constant). If co or gl embeds into X then we are done, 

so by the classical theorem of James, we may assume X is reflexive. Thus by 

standard perturbation arguments, every normalized block-sequence in X has 

a further normalized block-sequence in X which embeds into its subsequences 

(here we also used the obvious fact that  if a basic sequence (Xn)ne N embeds into 

its subsequences, then so does any subsequence of (Xn)neN). 
Assuming the conclusion is false, we construct by induction a sequence of 

block-sequences k (Xn)ne N of (Xn)neN, for k E 51, such that  for all k E N, 
k (Xn)neN is a block-sequence of (Xkn-1)ne~ such that  no block-sequence of (Xkn)neN 

kdc(k)2-embeds into its subsequenees. 

Let (Yn)n~N be the diagonal block-sequence of (xn)ncN defined by Yn = x~, 
and let (Zn)neN be an arbitrary block-sequence of (Yn)neN. 

Then (x~,..  k ., xk_ 1, zk, Zk+l,...) is a block-sequence of (Xkn)neN and so does 

not kdc(k)2-embed into its subsequences. So (z,)neN does not k-embed into its 

subsequences - -  this is true as well of its subsequences. As k was arbitrary, 

we deduce from Lemma 4 that  (Zn)ncN does not embed into its subsequences. 

As (zn)~cN was an arbitrary block-sequence of (Yn)n~N, this contradicts our 

hypothesis. 

By standard perturbation arguments, we deduce from this the stated result 

with block-sequences in bbQ(Y). | 

Recall that  Q(X) ~ is equipped with the product of the discrete topology on 

Q(X), which turns it into a Polish space. 

Definition 6: Let X be a Banach space with a Schauder basis, and let 

(Xn)nEN C Q(X) w. We shall say that  (Xn)n~N c o n t i n u o u s l y  e m b e d s  (resp.  

C - c o n t i n u o u s l y  embeds )  in to  i ts  subsequences  if there exists a continuous 

map r [w] ~ ~ Q(X) ~ such for all A e [w] ~, r is a sequence of vectors in 

[Xn]neA n Q(X) which is equivalent (resp. C-equivalent) to (Xn)neN. 

This definition depends on the Banach space X in which we pick the basic 
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sequence (Xn)neN; this will not cause us any problem, as it will always be clear 

which is the underlying space X. 

The interest of this notion stems from the following lemma, which was es- 

sentially obtained by Rosendal as part of the proof of [16], Theorem 11. To 

prove it, we shall need the following fact, which is well-known to descriptive 

set theoricians. The algebra a(E])  is the a-algebra generated by analytic sets. 

For any a(E~)-measurable function from [w] ~ into a metric space, there exists 

B E IT] ~ such that  the restriction of f to [B] ~ is continuous. 

Indeed, by Silver's Theorem 21.9 in [10], any analytic set in IT] ~ is completely 

Ramsey, and so any a(E~) set in [w] ~ is (completely) Ramsey as well (use, for 

example, [10] Theorem 19.14). One concludes using the proof of [13] Theorem 

9.10 which only uses the Ramsey-measurability of the function. 

LEMMA 7: Let X be a Banach space with a Schauder basis, let (Xn)nE N E 

bbQ(X) be a block-sequence which C-embeds into its subsequences, and let e be 

positive. Then some subsequence of (Xn)neN C + e-continuously embeds into its 

subsequences. 

Proof: By standard perturbation arguments, we may find for each A E [w] ~ 

a sequence (Yn)neN E Q(X)  w such that  Yn E [Xk]keA for all n E iN, and 

such that  the basic sequences (xn)neN and (yn)neN are C + e-equivalent. The 

set P c [w] ~ x Q(X) ~ of couples (A, (Y,0) with this property is Borel (even 

closed), so by the Jankov-von Neumann Uniformization Theorem (Theorem 18.1 

in [10]), there exists a C-measurable selector f :  [w] ~ --* Q(X) ~ for P. By 

the fact before this lemma, there exists B E [w] ~ such that  the restriction 

of f to [B] w is continuous. Write B = (bk)keN where (bk)k is increasing. 

By composing f with the obviously continuous maps Cs: [w] ~ ~ [B] ~, 

defined by CB((nk)keN) = (b,~k)keN, and #s :  ~(X)  ~ --* Q(X) ~, defined by 

#B((Y,~)neN) = (Yb~),~eN, we obtain a continuous map r [w]~ --* Q(X) ~ which 

indicates that  (Xn)ncBC ~- e-continuously embeds into its subsequences. | 

We now start the proof of Theorem 3. So we consider a Banach space X 

which is saturated with basic sequences which embed into their subsequences 

and wish to find a minimal subspace in X. 

By Lemma 5 and Lemma 7, we may assume that  X is a Banach space with 

a Schauder basis and that  there exists C > 1 such that  every block-sequence in 

bbQ(X) has a further block-sequence in bbQ(X) which C-continuously embeds 

into its subsequences. 

For the rest of the proof X and C _> 1 are fixed with this property. Recall 
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that  the set of block-subspaces of X which are generated by block-sequences 

in bbQ(X) is denoted by ~Q(X); the set of finite block-subspaces which are 

generated by block-sequences in b b ~ ( X )  is denoted by FinQ(X). If n �9 N and 

F �9 Finq(X) ,  we write n _< F to mean that  n < min(supp(x)) for all x E F. 

We first express the notion of continuous embedding in terms of a game. For 

L = [/n],~eN with (ln)neN �9 bbQ(X), we define an "asymptotic" game HL as 
follows. A k-th move for Player 1 is some nk �9 N. A k-th move for Player 2 is 

k some (Fk, Yk) �9 FinQ(X) • Q(X), with nk <_ Fk C L and Yk �9 ~j=IFj. 

Player 2 wins the game HL if (Y~)~eN is C-equivalent to (ln)neN. 

We claim the following: 

LEMMA 8: Let X be a Banach space with a Schauder basis, and let (In)heN �9 
bbQ( X) be a block-sequence which C-continuously embeds into its subsequences. 

Let L = [In]heN. Then Player 2 has a winning strategy in the game HL. 

Proof: Let r be the continuous map in Definition 6. We describe a winning 

strategy for Player 2 by induction. 

We assume that  Player l 's  moves were (ni)i<k-1 and that  the k - 1  first moves 

prescribed by the winning strategy for Player 2 were (Fi,yi)i<k-1, with Fi of 

the form [/n~,... ,lm~], ni <_ mi, for all i < k - 1; letting 

ak-1  = [ n l , m l ]  U . .  U [nk-l,m _l] �9 

we also assume that  r C NQ(yl, . . .  ,Yk-1). We now describe the k-th 

move of the winning strategy for Player 2. 

Let nk be a k-th move for Player 1. We may clearly assume that  nk > ink-1. 
Let Ak = Ui<k_l[ni,m~] U [nk,+oc) E [w] ~. The sequence r is of the 

form (Yl , . . . ,  Yk-1, Yk, zk+l . . . .  ) for some Yk, Zk+l, . . .  in Q(X). By continuity 

of r in Ak there exists mk > nk such that,  if ak = [nl, ml] U . . .  U Ink, ink] C 
[w] <~, then r C NQ(yl , . . .  ,Yk). We may assume that  max(supp(lmk)) >_ 

k max(supp(yk)); so as Yk e [/i]ieAk, we have that  Yk �9 ~j=l[li]ie[nj,mj]. So 

(Fk, Yk) = ( [ /~k , ' " ,  link], Yk) is an admissible k-th move for Player 2 for which 

the induction hypotheses are satisfied. 

Repeating this by induction we obtain a sequence (Yn)neN which is equal to 

r where A = UkeN[nk, ink], and so which is, in particular, C-equivalent to 

Definition 9: Given L , M  two block-subspaces in GQ(X), define the game 

GL,M as follows. A k-th move for Player 1 is some (xk,nk) e Q(X) x N, 
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with xk c L, and xk > Xk-1 if k > 2. A k-th move for Player 2 is some 

(Fk,yk) E FinQ(X) • Q(X) with nk _< Fk C M and Yk E F1 |  |  for all 

k E N .  
1 : X l , n  1 x 2 , n 2  " "  

GL,M 
2 : FI,yl F2,y2 "'" 

Player 2 wins GL,M if (Yn)neN is C-equivalent to (Xn)~eN. 

The following easy fact will be needed in the next lemma: if (Xn)ncN and 

(Yn)neN are C-equivalent basic sequences, then any block-sequence of (X~)n~r~ 

of the form (~ieI~ Aix~)neN is C-equivalent to (~-~ieIn AiYi)~eN. 

LEMMA 10: Assume (ln)neN is a block-sequence in bbQ(X) which C-continously 
embeds into its subsequences, and let L = [ln, n E N]. Then Player 2 has a 
winning strategy in the game GL,L. 

Proof." Assume the first move of Player 1 was (Xl, nl); write xl = ~j<kl /~jlj. 

Letting in the game HL Player 1 play the integer nl, kl times, the winning 

strategy of Lemma 8 provides moves (F~, Z l ) , . . . ,  (F~ 1 , zkl ) for Player 2 in that  

game. We let Yl = ~j<_k~ Ajzj, and F1 = ~kl_ 1 F~. In particular, nl _< F1 C L 

and Yl E F1. 

We describe the choice of Fp and yp at step p. Assuming the p-th move of 

Player 1 was (Xp,np), we write Xp = Ekp_l<j<<_kv /~jlj. Letting in the game HL 
Player 1 play kp - kp-1 times the integer np, the winning strategy of Lemma 

8 provides moves (Fp kp-l+l, zkp_l+l) , . . . ,  (Fp kp, Zkp) for Player 2 in that game. 

We let yp = ~kp_~<j<k, Ajzj, and Fp = ~-~kp_~<j<_kp F3p �9 In particular, np < 
p Fp C L and yp E }-~-j=l Fj. 

Finally, by construction, (Zn)neN is C-equivalent to (ln)neN. It follows that  

(Yp)peN is C-equivalent t o  (Xp)pE N. | 

The non-trivial Lemma 10 will serve as the first step of a final induction which 

is on the model of the demonstration of Pelczar in [15] (note that  there, the first 

step of the induction was straightforward). The rest of our reasoning will now 

be along the lines of her work, with the difference that  we chose to express the 

proof in terms of games instead of using trees, and that  we needed the moves 

of Player 2 to include the choice of finite-dimensional subspaces Fn's in which 

to pick the vectors yn's. This is due to the fact that  the basic sequence which 

witnesses the embedding of X into a given subspace generated by a subsequence 

is not necessarily successive on the basis of X. 



Vol. 156, 2 0 0 6  SUBSPACES AND SEQUENCES IN A BANACH SPACE 135 

Let L, M be block-subspaces in GQ(X). Let 

a �9 bb~(X)  and b �9 (FinQ(X) x Q(X))  <~~ 

be such that  ]a[ = [b I or lal -- Ibl (9 1 (here Ix] denotes as usual the length of the 

finite sequence x). Such a couple (a, b) will be called a s t a t e  of the game GL,M 
and the set of states will be written St(X).  It is important  to note that  St(X) 
is countable. The empty sequence in bb~(X)  (resp. (FinQ(X) x Q(X))  <~~ will 

be denoted by 0. 

We define GL,M(a, b) intuitively as "the game GL,M starting from the state 

(a,b)". Precisely, if lal = Ibl, then write a = ( a l , . . . , a p )  and b = (bl,.. . ,bp), 
with bi = (Bi,/3i) for i < p. 

A k-th move for Player 1 is (Xk,nk) �9 Q(X) x N, with xk �9 L, xl > ap if 

k = 1 and a ~ 0, and xk > xk-1 i lk  > 2. A k-th move for Player 2 is (Fk,yk) �9 

FinQ(X) x Q(X) with nk < Fk C M and Yk �9 B1 (9". .  (9 Bp �9 F1 (9 . . .  (9 Fk 

for all k. 

1 : Xl ,nl  x2, ?t2 . . .  
GL,M(a, b), 

lal = Ibl 
2 : FI,yl F2,y2 "'" 

Player 2 wins GL,M (a, b) if the sequence (/31,.. �9 Yl, Y2,...) is C-equivalent 

to the sequence ( a l , . . . ,  ap, Xl, x2,.. .).  
Now if lal = Ib] + 1, then write a = ( a l , . . . , a p + l )  and b = (bl,... ,bp), with 

b~ = (Bi,/3~) for i < p. 

A first move for Player 1 is nl E N. A first move for Player 2 is (FI ,y l )  E 

FinQ(X) • Q(X) with nl _< F1 C M and Yl C B1 (9".. (9 Bp (9 F1. 
For k > 2, a k-th move for Player 1 is (xk,nk) C Q(X)  • N, with xk E L, 

x2 > ap+l if k = 2, and xk > xk-1 if k > 2; a k-th move for Player 2 is (Fk, Yk) E 
FinQ(X) • Q(X) with nk < Fk C M and Yk �9 B1 (9"" (9 By (9 F1 (9. ' .  (9 Fk. 

GL,M(a, b), 
lal = ]b I + 1 

1 : rt 1 x2 ,n  2 

2:  FI,Yl F2, y2 "'" 

Player 2 wins GL,M (a, b) if the sequence (/31,...,/3p, Yl, Y2,...) is C-equivalent 

to the sequence ( a l , . . . ,  ap, %+1, x2,. . .) .  
We shall use the following classical stabilization process, called "zawada" 

in [15]; see also the proof by B. Maurey of Gowers' dichotomy theorem [14]. 

We define the following order relation on GQ(X): for M , N  C 6Q(X), with 
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M = [milieu, (mi)ier~ �9 bbQ(X), write M C* N if there exists p �9 N such that  

mi �9 N for all i _> p. 

Let T be a map defined on GQ(X) with values in the set 2 ~ of subsets of some 

countable set ~. Assume the map ~- is monotonous with respect to C* on ~Q(X) 

and to inclusion on 2 ~. Then by [15] Lemma 2.1, there exists a block-subspace 

M �9 ~Q(X) which is stabilizing for % i.e. T(N) = T(M) for every N C* M. 

We now define a map T: GQ(X) ~ 2 s*(x) by (a, b) �9 T(M) iff there exists 

L C* M such that  Player 2 has a winning strategy for the game GL,M(a, b). 

LEMMA 11: Let M' and M be in GQ(X). If M' C* M then T(M') C 7(M). 

Proof: Let M'  C* M, let (a, b) �9 T(M'),  and let L C* M'  be such that  Player 

2 has a winning strategy in GL,M,(a, b). Let m be an integer such that  for any 

x �9 Q(X),  x �9 M'  and min(supp(x)) >_ m implies x �9 M. We describe a 

winning strategy for Player 2 in the game GL,M(a,b): assume Player l 's  p-th 

move was (np, Xp) (or just nl if it was the first move and ]a I = ]b[ + 1); without 

loss of generality np >_ m. Let (Fp, yp) be the move prescribed by the winning 

strategy for Player 2 in GL,M,(a,b). Then Fp > n p  >_ m and Fp C M', so 

Fp C M. The other conditions are satisfied to ensure that  we have described 

the p-th move of a winning strategy for Player 2 in the game GL,M(a, b). It 

remains to note that  L C* M as well as to conclude that  (a, b) �9 T(M). I 

By the stabilization lemma, there exists a block-subspace M0 �9 GQ(X) such 

that  for any M C* M0, T(M) = T(Mo). 
For L, M �9 ~Q(X) we write L =* M if L C* M and M C* L. 

We now define a map p: GQ(X) ~ 2 St(x) by (a, b) �9 p(M) iff there exists 

L =* M such that  Player 2 has a winning strategy for the game GL,Mo (a, b). 

LEMMA 12: Let M' and M be in gQ(X). If M' C* M then p(M') D p(M). 

Proof: Let M'  C* M, let (a, b) E p(M), and let L --* M be such that  Player 2 

has a winning strategy in GL,Mo(a, b). Define L ~ = M~NL. As L ~ C L, it follows 

immediately that  Player 2 has a winning strategy in the game GL',Mo (a, b). It 

is also clear that L' =* M', so (a, b) �9 p(M'). | 

So there exists a block-subspace Moo �9 GQ(X) of Mo which is stabilizing for 

p, i.e. for any M C* Moo, p(M) = p(Moo). 

LEMMA 13: p(Moo) = T(Moo) = 7-(Mo). 

Proof: First it is obvious by definition of M0 that  T(Moo) = ~-(Mo). 
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Let (a, b) E p(Moo). There exists L =* Moo such that  Player 2 has a winning 

strategy in GL,Mo(a,b); as L C* Mo, this implies that  (a,b) E T(Mo). 
Let (a, b) E T(Moo). There exists L C* Moo such that  Player 2 has a win- 

ning strategy in GL,Moo(a,b). As Moo C Mo, this is a winning strategy for 

GL,Mo(a,b) as well. This implies that  (a,b) E p(L) and, by the stablization 

property for p, (a, b) E p(Moo). | 

We now turn to the concluding part of the proof of Theorem 3. By our as- 

sumption about X just before Definition 9, there exists a block-sequence (ln)neN 
of bbQ(X) which is contained in Moo, and C-continuously embeds into its sub- 

sequences, and without loss of generality assume that  Lo := [ln, n E N] = Moo. 

We fix an arbitrary block-subspace M of Lo generated by a block-sequence in 

bbQ(X) and we shall prove that  L0 embeds into M. By standard perturbation 

arguments this implies that  Lo is minimal. 

We construct by induction a subsequence (an)ner~ of (In)nerO, a sequence 

bn = (Fn, yn) E (FinQ(X) x Q(X)) ~ such that  Fn C M and Yn E F1 •"" G Fn 
for all n E N, and such that  ((an)n<_p,(Fn,Yn)n<_p) E p(Lo) for a l lp  E N. 

By Lemma 10, Player 2 has a winning strategy in GLo,Lo, and so in particular 

(0, 0) E p(Lo) (recall that  ~ denotes the empty sequence in the sets correspond- 

ing to the first and second coordinates). This takes care of the first step of the 

induction. 

Assume (a, b) = ((an)n<p-1, (Fn, Yn)n<_p-1) is a state such that  (an)n<p- 1 i s  

a finite subsequence of (In)nErO, such that  Fn C M and yn E F1 @ " "  @ Fn for 

all n < p - 1, and such that  (a, b) E p(Lo). 
As (a, b) belongs to p(Lo), there exists L =* L0 such that  Player 2 has a 

winning strategy in the game GL,Mo(a, b). In particular, L0 C* L so we may 

choose mp large enough such that  lmp > ap-1 and lmp E L; we let Player 1 

play ap -~ Imp. Player 2 has a winning strategy in the game GL,Mo (a I, b), where 

a' = (an)n<_p. In other words, (a',b) belongs to p(Lo). Now p(Lo) = T(M), 

so there exists L C* M such that  Player 2 has a winning strategy in the game 

GL,M(a',b). Let Player 1 play any integer np, and (Fp,yp) with Fp C M and 

yp E F1 �9 . "  �9 Fp be a move for Player 2 prescribed by that  winning strategy 

in response to np. Once again, Player 2 has a winning strategy in GL,M(a I, bl), 

with b' = (Fn, Yn)n<p; i.e. (a', b') E ~-(M) = p(Lo). 
To conclude, note that  (an, bn)n<p E p(Lo) implies in particular that  (an)n<p 

and (Yn)n<p are C-equivalent, and this is true for any p E N, so (an)nEr~ and 

(Yn)nEr~ are C-equivalent. Hence [an]ner~ C-embeds into M. Now (an)nEN is 

a subsequence of (ln)neN, so by our hypothesis, Lo C-embeds into Jan]heN and 
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thus C2-embeds in M, and this concludes the proof of Theorem 3. 

As a consequence of our proof we obtain a uniform version of Theorem 3: 

THEOREM 14: Let C >_ 1 and let c > O. I f  a Banach space is satlzrated with 

basic sequences which C-embed into their subsequences, then it contains a C 2 + 

e-minimal subspace. 

4. Coro l la r ies  a n d  r e m a r k s  

D. Kutzarova drew our attention to the dual T* of Tsirelson's space; it is mini- 

mal [2], but contains no block-minimal block-subspace (use, e.g., [2] Proposition 

2.4 and Corollary 7.b.3 in their T* versions, with Remark 1 after [2] Proposi- 

tion 1.16). So Theorem 3 applies to situations where Pelczar's theorem does 

not. On the other hand, we do have (recall that  a basic sequence (Xn)ncN is iso- 

morphically homogeneous if all snbspaces spanned by subsequences of (Xn)neN 

are isomorphic): 

COROLLARY 15: A Banach space with a Schauder basis which is saturated with 

isomorphically homogeneous basic sequences contains a block-minimal block- 

subspace. 

Proof." Let X have a Schauder basis and be saturated with isomorphically ho- 

mogeneous basic sequences. By the beginning of the proof of Lemma 5, we may 

assume X is reflexive. By Theorem 3, there exists a minimal subspace Y in 

X, which is a block-subspace if you wish; passing to a further block-subspace 

assume furthermore that  Y has an isomorphically homogeneous basis. Take 

any block-subspace Z of Y = [Yn]neN; then Y embeds into Z. By reflexivity 

and standard perturbation results, some subsequence of (Yn)neN spans a sub- 

space which embeds as a block-subspace of Z. As (Yn)n~N is isomorphically 

homogeneous, this means that  Y embeds as a block-subspace of Z. | 

We recall that  a Banach space is said to be ergodic if the relation E0 is Borel 

reducible to the relation of isomorphism between its subspaces. 

COROLLARY 16: A Banach space is ergodic or contains a minimal subspace. 

Proof: We prove the stronger result that  if X is a Banach space with a Schauder 

basis, then either E0 is Borel reducible to isomorphism between block-subspaces 

of X or X contains a block-minimal block-subspace. 

Assume E0 is not Borel reducible to isomorphism between block-subspaces 

of X. By [16] Theorem 19, any block-sequence in X has an isomorphically 



Vol. 156, 2 0 0 6  SUBSPACES AND SEQUENCES IN A BANACH SPACE 139 

homogeneous subsequence. In particular, X is saturated with isomorphically 

homogeneous sequences, so apply Corollary 15. | 

COROLLARY 17: A Banach space X contains a minimal subspace or the relation 
Eo is Bore1 reducible to the relation of biembeddability between subspaces of 
X. 

Proof: Note that  the relation ~.~erab of biembeddability between subspaces 

of X is analytic. By [16] Theorem 15, if E0 is not Borel reducible to biem- 

beddability between subspaces of X, then every basic sequence in X has a 

subsequence (Xn)ne~ which is homogeneous for the relation between subse- 

quences corresponding to ~mb, that  is, for any subsequence (Xn)neI of (xn)~N, 

[Xn]nE I ~..~emb [Xn]nEN. This means that  (xn)n~N embeds into its subsequences. 

So X is saturated with basic sequences which embed into their subsequences. 
| 

We conclude with a remark about the proof of Theorem 3. The sequences 

(mp)p~N e [w] ~ (associated to a subsequence of (In)ncN) and b~ = (Fp, yp) e 
(FinQ(X) • Q(X)) ~ (with (Yp)peN C-equivalent to (Imp)p~N) in our final induc- 

tion may clearly be chosen with Fp C Mp for all p, for an arbitrary sequence 

(Mp)pe~ of block-subspaces of L0. Also, (ln)ne~ C-continuously embeds into its 

subsequences, i.e. there is a continuous map f :  [w]~ ~ bbQ(X) such that  f(A) 
is C-equivalent to (ln)neN for all A C bbQ(X). 

By combining these two facts, it is easy to see that Player 2 has a winning 

strategy to produce a sequence (Yn)neN which is C2-equivalent to (/~)ne~, in a 

"modified" Gowers' game, where a p-th move for Player 1 is a block-subspace 

Yp C GQ(X) with Yp C Lo, and a p-th move for Player 2 is a couple (Fp, yp) E 
(FinQ(X) • Q(X)) ~ with Fp C Yp and yp �9 F1 |  | Fp. 

This is an instance of a result with a Cowers-type game where Player 2 

is allowed to play sequences of vectors which are not necessarily block-basic 

sequences. 
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