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Abstract

Let X be a Banach space with a Schauder basis (en)n∈N. The relation E0 is Borel reducible to permutative
equivalence between normalized block-sequences of (en)n∈N or X is c0 or �p saturated for some 1 �
p < +∞. If (en)n∈N is shrinking unconditional then either it is equivalent to the canonical basis of c0 or
�p , 1 < p < +∞, or the relation E0 is Borel reducible to permutative equivalence between sequences of
normalized disjoint blocks of X or of X∗. If (en)n∈N is unconditional, then either X is isomorphic to �2,
or X contains 2ω subspaces or 2ω quotients which are spanned by pairwise permutatively inequivalent
normalized unconditional bases.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

In the 1990s, W.T. Gowers and R. Komorowski–N. Tomczak-Jaegermann solved the so-called
Homogeneous Banach Space Problem. A Banach space is said to be homogeneous if it is iso-
morphic to its infinite-dimensional closed subspaces; it is a consequence of two theorems proved
by these authors that a homogeneous Banach space must be isomorphic to �2 [14,21].

It is then natural to ask how many non-isomorphic subspaces a given Banach space must
contain when it is not isomorphic to �2. This question was first asked the author by G. Godefroy,
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and not much was known until recently about it in the literature, even concerning the classical
spaces c0 and �p .

The correct setting for this question is the classification of analytic equivalence relations on
Polish spaces by Borel reducibility. This area of research originated from the works of H. Fried-
man and L. Stanley [13] and independently from the works of L.A. Harrington, A.S. Kechris and
A. Louveau [18]. It may be thought of as an extension of the notion of cardinality in terms of
complexity, when one counts equivalence classes.

A topological space is Polish if it is separable and its topology may be generated by a complete
metric. Its Borel subsets are those belonging to the smallest σ -algebra containing the open sets.
An analytic subset is the continuous image of a Polish space, or equivalently, of a Borel subset
of a Polish space.

If R (respectively S) is an equivalence relation on a Polish space E (respectively F ), then it
is said that (E,R) is Borel reducible to (F,S) if there exists a Borel map f :E → F such that
∀x, y ∈ E, xRy ⇔ f (x)Sf (y). An important equivalence relation is the relation E0: it is defined
on 2ω by

αE0β ⇔ ∃m ∈ N, ∀n � m, α(n) = β(n).

The relation E0 is a Borel equivalence relation with 2ω classes and which, furthermore, ad-
mits no Borel classification by real numbers, that is, there is no Borel map f from 2ω into R

(equivalently, into a Polish space), such that αE0β ⇔ f (α) = f (β); such a relation is said to be
non-smooth. In fact E0 is the �B minimum non-smooth Borel equivalence relation [18].

There is a natural way to equip the set of subspaces of a Banach space X with a Borel struc-
ture (see, e.g., [20]), and the relation of isomorphism is analytic in this setting [2]. The relation
E0 then appears as a natural threshold for results about isomorphism between separable Banach
spaces. A Banach space X was defined in [11] to be ergodic if E0 is Borel reducible to iso-
morphism between subspaces of X; in particular, an ergodic Banach space has continuum many
non-isomorphic subspaces, and isomorphism between its subspaces is non-smooth.

The question of the complexity of isomorphism between subspaces of a given Banach space
X is related to results and questions of Gowers about the structure of the relation of embedding
between subspaces of X [14]. In that article, Gowers proves the following structure theorem.

Theorem 1.1 (W.T. Gowers). Any Banach space contains a subspace Y satisfying one of the
following properties, which are mutually exclusive and all possible:

(a) Y is hereditarily indecomposable (i.e. contains no direct sum of infinite-dimensional sub-
spaces);

(b) Y has an unconditional basis and no disjointly supported subspaces of Y are isomorphic;
(c) Y has an unconditional basis and is strictly quasi-minimal (i.e. any two subspaces of Y have

further isomorphic subspaces, but Y contains no minimal subspace);
(d) Y has an unconditional basis and is minimal (i.e. Y embeds into any of its subspaces).

Note that these properties are preserved by passing to block-subspaces (in the associated nat-
ural basis). Furthermore, knowing that a space belongs to one of the classes (a)–(d) gives a lot of
informations about operators and isomorphisms defined on it (see [14] about this).
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C. Rosendal proved that any Banach space satisfying (a) is ergodic [30]. The author and
Rosendal noticed that a result of B. Bossard adapts easily to obtain that a space satisfying (b) is
ergodic [11]. Finally by [7], using a result of [30], a space with (c) must be ergodic as well.

It is furthermore known that a non-ergodic space Y satisfying (d) must be isomorphic to its
hyperplanes and to its square [30], must be reflexive, by [9] and the classical theorem of James,
and that it must contain a block-subspace Y0 such that Y0 	 Y0 ⊕ Z for any block-subspace Z

of Y [11].
Note that the class (d) contains the classical spaces c0 and �p,1 � p < +∞, the dual T ∗ of

Tsirelson’s space [6], and Schlumprecht’s space S [1]. Concerning those spaces, it is known that
c0 and �p , 1 � p < 2 [9] are ergodic. By [29], the space T is ergodic, and the proof holds to show
that T ∗ is ergodic as well. For 2 < p < +∞, it is only known that there exist ω1 non-isomorphic
subspaces of �p (see [23, Theorem 2.d.9]). The case of S is also unsolved.

These results suggest the following conjecture.

Conjecture 1.2. Every separable Banach space is either isomorphic to �2 or ergodic.

Now the spaces c0 or �p , p �= 2, are also very homogeneous in some sense, since they are
isomorphic to any of their block-subspaces (with respect to their canonical basis).

It also turns out that all the mentioned results about ergodic Banach spaces (except of course
[9]), as well as Gowers’ theorem, can be proved using block-subspaces of a given basis. So it
is natural to study the homogeneity question restricted to block-subspaces of a Banach space X

with a Schauder basis. Block-subspaces can be thought of as “regular” subspaces in this con-
text, for example, they will have a canonical unconditional basis, whenever the basis of X is
unconditional.

In fact, classical results show that we can get a lot of information about the properties of a
space with a basis from the properties of its block-subspaces. For example, recall that two basic
sequences (xn) and (yn) are said to be equivalent if the linear map T defined on the closed linear
span of (xn) by T xn = yn,∀n ∈ N, is an isomorphism onto the closed linear span of (yn). The
canonical bases of c0 and �p are characterized, up to equivalence of basis, by the property of be-
ing equivalent to all their normalized block-bases (this is Zippin’s theorem, [23, Theorem 2.a.9]).

If the basis is unconditional, it will also be natural to consider sequences of blocks (i.e. finitely
supported vectors) whose supports are disjoint, but not necessarily successive (equivalently,
block-sequences of permutations of the basis). This distinction is relevant as some classical re-
sults require considering such basic sequences instead of block-sequences: for example, [23,
Theorem 2.10], according to which c0 and �p are characterized by unconditionality and the
property that every subspace with a basis of disjointly supported blocks is complemented.

We also note that the theorem of Komorowski and Tomczak-Jaegermann [21] is totally ir-
relevant in this context: it shows the existence of an “exotic” subspace of a Banach space X

spanned by an unconditional basis, which has an unconditional finite-dimensional decomposi-
tion but which fails to have an unconditional basis, so it will give no information whatsoever on
block-sequences or disjointly supported blocks of X.

The natural question concerning the spaces c0 and �p is as follows.

Question 1.3. If X is a Banach space with an (unconditional) basis, is it true that either X is
isomorphic to its block-subspaces or E0 is Borel reducible to isomorphism between the block-
subspaces of X? Is it true that if X is isomorphic to its block-subspaces then X is isomorphic to
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c0 or �p? Are these assertions true when one replaces block-subspaces by subspaces supported
by disjointly supported blocks?

Note that by an easy result of [10] using the theorem of Zippin, the answer to our question is
positive if one replaces isomorphism by equivalence: if X is a Banach space with a normalized
basis (en)n∈N, then either (en)n∈N is equivalent to the canonical basis of c0 or �p,1 � p < +∞,
or E0 is Borel reducible to equivalence between normalized block-sequences of X.

Some remarks and partial answers to these conjectures may be found in [8]. As solving these
questions seems to be out of reach for the moment, in this paper we shall concentrate our efforts
on the corresponding conjectures obtained by replacing isomorphism by permutative equiva-
lence. As it turns out, we shall get results which are very close to positive answers in that case.
Two basic sequences (xn)n∈N and (yn)n∈N are said to be permutatively equivalent if there is
a permutation σ on N such that (xn)n∈N is equivalent to (yσ(n))n∈N, in which case we write
(xn) ∼perm (yn). Permutative equivalence between Schauder bases is implied by equivalence and
implies isomorphism of the closed linear spans.

It is common to study permutative equivalence between normalized unconditional basic se-
quences, since then any permutation of the basis is again a basic sequence. However some of
our results will concern the general case of permutative equivalence between normalized basic
sequences which are not necessarily unconditional.

We list several reasons for which studying permutative equivalence is relevant. First, some
classical results which are false or unknown for isomorphism can be proved for permutative
equivalence. The theorem of Zippin admits a generalization to permutative equivalence, due to
Bourgain et al. [3]: if an unconditional basis is permutatively equivalent to all its normalized
block-sequences, then it must be equivalent to the canonical basis of c0 or �p [3, Proposi-
tion 6.2]. Also, a Cantor–Bernstein result is valid for permutative equivalence: if (xn)n∈N and
(yn)n∈N are unconditional basic sequences such that each one is permutatively equivalent to a
subsequence of the other, then (xn)n∈N and (yn)n∈N are permutatively equivalent (apparently
first proved by Mityagin [26], and [32,33]). Note that this is false without the unconditionality
assumption, by the example of Gowers and Maurey of a space isomorphic to its subspaces of
codimension 2, by a double shift of its natural basis, but not isomorphic to its hyperplanes [17].
The Schroeder–Bernstein problem for Banach spaces, which asks whether two Banach spaces
which are isomorphic to complemented subspaces of each other must be isomorphic, is unsolved
in the case of them having an unconditional basis, and solved by the negative in the general case,
by Gowers [15] and the examples of [17].

On the other hand, permutative equivalence is already a complex relation. As isomorphism, it
is analytic non-Borel, as we shall prove in Proposition 1.5, while equivalence of basic sequences
is only Kσ [31]. In fact, as far as we know, permutative equivalence between basic sequences
could well be as complex as isomorphism between Banach spaces with a Schauder basis, or
between separable Banach spaces in general.

Also, some results of uniqueness of unconditional bases (see [3–5,19]) make it possible, in
some special cases, to deduce permutative equivalence of basic sequences from isomorphism
of the Banach spaces they span. For example, the results of [9] about the complexity of iso-
morphism, are essentially results about the complexity of permutative equivalence: indeed, their
constructions always realize a reduction of equivalence relations to isomorphism between sub-
spaces equipped with canonical unconditional bases, and these subspaces are isomorphic exactly
when these canonical bases are permutatively equivalent [9, Theorems 2.6, 3.3]. The same holds
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in [29], where it is used that subsequences of the basis of Tsirelson’s space are (permutatively)
equivalent if and only if they span isomorphic subspaces.

In this article, we investigate the complexity of permutative equivalence between normalized
basic sequences of a given Banach space; in particular, if a Schauder basis is not equivalent to c0
or �p , we ask how many permutatively inequivalent normalized block-sequences (respectively
sequences of disjointly supported blocks) it must contain.

Conjecture 1.4. Let X be a Banach space with a (respectively unconditional) basis which is not
equivalent to the canonical basis of c0 or �p,1 � p < +∞. Then E0 is Borel reducible to per-
mutative equivalence between normalized block-sequences (respectively sequences of disjointly
supported blocks) of X.

In Section 1, we extend the results of [2] to prove that the relation of permutative equivalence
is non-Borel, and the results of [9] to show that it reduces the relation EKσ , and thus is not
reducible to the orbit equivalence relation induced by the Borel action of a Polish group on a
Polish space (Proposition 1.5).

In Section 2, we prove several lemmas to obtain a result which is very close to a positive
answer to Conjecture 1.4. If X is a Banach space with a Schauder basis such that E0 is not
Borel reducible to permutative equivalence between normalized block-sequences of X, then there
exists p ∈ [1,+∞] such that X is �p-saturated (or c0-saturated if p = +∞), Theorem 2.8. If
the basis is unconditional, then in fact any normalized block-sequence of X has a subsequence
which is equivalent to the canonical basis of �p (or c0 if p = +∞), Theorem 2.9. If the basis
is unconditional and E0 not Borel reducible to permutative equivalence between normalized
sequences of disjointly supported blocks, then we also have that p is unique such that lp is
finitely disjointly representable on X, and that X satisfies an upper p estimate, Theorem 2.9.

Our main tools for this result are a technical lemma (Lemma 2.1); a result of Rosendal about
reductions of E0 to equivalence relations between subsequences of a given basis [30, Proposi-
tion 22], which uses the result of Bourgain et al. [3, Proposition 6.2]; Krivine’s theorem [22]
about finite block representability of the spaces �p , and a result of stabilization of Lipschitz
functions, by Odell et al. [27].

In Section 3, we deduce that if X is a Banach space with a shrinking normalized unconditional
basis (en), then either (en) is equivalent to the canonical basis of c0 or some �p,1 < p < +∞,
or E0 is Borel reducible to permutative equivalence between normalized disjointly supported
sequences of blocks on X, or on X∗ (Theorem 3.1). It follows that if X is a Banach space with an
unconditional basis, then either X is isomorphic to �2, or X contains 2ω subspaces or 2ω quotients
spanned by unconditional bases which are mutually permutatively inequivalent (Theorem 3.2).

1.1. Notation

Let us fix or recall some notation. For the reader interested in more details, we refer to [23].
A sequence (en)n∈N with closed linear span X is said to be basic (or a Schauder basis of X)

if for any x ∈ X, there exists a unique scalar sequence (λn)n∈N such that x = ∑
n∈N

λnen. This
is equivalent to saying that there exists C � 1 such that for any x = ∑

n∈N
λnen, any integer m,

‖∑
n�m λnen‖ � C‖x‖. An interval of integers E is the intersection of an interval of R with N;

it will also denote the canonical projection on the span of (en)n∈E , called interval projection.
A Schauder basis is said to be bimonotone if every non-zero interval projection on its span is
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of norm 1. A Banach space with a Schauder basis may always be renormed with an equivalent
norm so that the basis is bimonotone in the new norm.

Let X be a Banach space with a Schauder basis (en)n∈N. We shall use some standard notation
about blocks on (en)n∈N, i.e. finitely supported non-zero vectors, for example, we shall write
x < y and say that x and y are successive when max(supp(x)) < min(supp(y)).

The set of normalized block-sequences, i.e. infinite sequences of successive normalized
blocks, in X is denoted bb(X). The set of normalized sequences of disjointly supported blocks
in X is denoted dsb(X). Both are seen here as metric spaces as subspaces of Xω with the product
of the norm topology, and this turns them into Polish spaces.

If (xn)n∈I is a finite or infinite sequence in X then [xn]n∈I will stand for its closed linear span.
We recall that two basic sequences (xn)n∈N and (yn)n∈N are said to be equivalent if the map
T : [xn]n∈N → [yn]n∈N defined by T (xn) = yn for all n ∈ N is an isomorphism, in which case we
write (xn) ∼ (yn); if ‖T ‖‖T −1‖ � C, then they are C-equivalent, and we write (xn) ∼C (yn).
A basic sequence is said to be (C-)subsymmetric if it is (C-)equivalent to all its subsequences.
Note that a subsymmetric sequence need not be unconditional. A Banach space with a subsym-
metric Schauder basis may always be renormed to become 1-subsymmetric. Two basic sequences
(xn)n∈N and (yn)n∈N are said to be permutatively equivalent if there is a permutation σ of N such
that (xn)n∈N is equivalent to (yσ(n))n∈N, in which case we write (xn) ∼perm (yn).

Let c00 denote the set of eventually null scalar sequences. If (xn)n∈I and (yn)n∈I are finite
or infinite basic sequences, we shall say that (yn) C-dominates (xn), and write (xn) �C (yn), to
mean that for all (λi)i∈I in c00, ∥∥∥∥∑

i∈I

λixi

∥∥∥∥ � C

∥∥∥∥∑
i∈I

λiyi

∥∥∥∥.

A basic sequence (ui)i∈N is said to be C-unconditional if for any sequence of signs (εi)i∈N ∈
{−1,1}ω, any sequence (λi)i∈N ∈ c00, we have∥∥∥∥∑

i∈N

εiλiui

∥∥∥∥ � C

∥∥∥∥∑
i∈N

λiui

∥∥∥∥.

In particular, any canonical projection on the closed linear span of some subsequence of a 1-
unconditional basis is of norm 1. We may always assume by renorming that an unconditional
basis is 1-unconditional. If in addition the basis is subsymmetric, we may ensure that it is also
1-subsymmetric in the new norm.

1.2. General results about permutative equivalence

In this section, we recall the setting defined by B. Bossard for studying the complexity of
equivalence relations between basic sequences, and notice that his results about isomorphism
easily extend to permutative equivalence [2].

Let u be the normalized universal basic sequence of Pełczyński [28] and U be its closed
linear span. The sequence u is defined by the following property: any normalized basic sequence
in Banach space is equivalent to a subsequence u′ of u such that the canonical projection from
U onto the span of u′ is bounded.

Bossard defined a natural coding of basic sequences by considering the subsequences of u

(identified with infinite subsets of N). Thus a property of basic sequences is Borel (respectively
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analytic. . . ) if the set of subsequences of N, canonically identified with subsequences of u, with
this property is a Borel (respectively analytic. . . ) subset of [ω]ω (the set of increasing sequences
of integers).

The sequence u also has an unconditional version v = (vn)n∈N, i.e. v is a normalized uncon-
ditional basic sequence and any normalized unconditional basic sequence in a Banach space is
equivalent to a subsequence of v. We may represent v as a subsequence of u.

The relation EKσ is defined as the maximum Kσ relation on a Polish space for the order �B

of Borel reducibility [31]. For details about �B in the Banach space context we refer to [9]; let
us just note here that EKσ cannot (and thus neither can a relation to which it reduces) be reduced
to the orbit equivalence relation induced by the Borel action of a Polish group on a Polish space.

Proposition 1.5. The relation of permutative equivalence between normalized basic sequences
is analytic non-Borel and it Borel reduces EKσ . In particular it cannot be Borel reducible to the
orbit equivalence relation induced by the Borel action of a Polish group on a Polish space.

Proof. By [9], the relation EKσ is Borel reducible to isomorphism between Banach spaces. In
the list of equivalence of [9, Theorem 2.6], we may obviously add the condition: “is permuta-
tively equivalent to,” since equivalence of bases implies permutative equivalence which in turn
implies isomorphism of the closed linear spans. This implies that EKσ is Borel reducible to per-
mutative equivalence. Note that the reduction of EKσ is obtained using unconditional sequences
in �p,1 � p < 2 (respectively c0), and so E0 is Borel reducible to permutative equivalence be-
tween unconditional sequences in �p,1 � p < 2 (respectively c0), and in particular �p,1 � p < 2
(respectively c0) contains 2ω permutatively inequivalent unconditional basic sequences. This fact
will be used at the end of this article.

It is immediate that permutative equivalence is analytic (this was already observed in [10]). To
prove that it is not Borel, we now define an unconditional version of a family of basic sequences
indexed by the set T of trees on ω, which was considered in [2]. We also refer to [2] for more
details about the proof or the notation, in particular concerning trees.

Let T = ω<ω denote the set of finite sequences of integers. Let c00(T ) be the space of finitely
supported functions from T to R and let φs :T → {0,1} be the characteristic function of {s} for
every s ∈ T . An admissible choice of intervals is a finite set {Ij , 0 � j � k} of intervals of T

such that every branch of T meets at most one of these intervals. We consider the �2-James tree
space ṽ(T ) on v, i.e. the completion of c00(T ) under the norm defined by

‖y‖ = sup

((
k∑

j=0

∥∥∥∥ ∑
s∈Ij

y(s)v|s|
∥∥∥∥

2
)1/2)

,

where |s| is the length of s ∈ T and the sup is taken over k ∈ N and all admissible choices of
intervals {Ij , 0 � j � k}.

If A ⊂ T , we let ṽ(A) be the subspace of ṽ(T ) generated by {φs, s ∈ A}. We thus have defined
a map ṽ from T to subsequences of v and thus of u. We claim that ṽ satisfies the following
properties:

(a) ṽ is Borel;
(b) for all θ , ṽ(θ) is unconditional;
(c) if θ is well founded then ṽ(θ) spans a reflexive space;
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(d) if θ is ill founded then some subsequence of ṽ(θ) (corresponding to a branch of θ ) is equiv-
alent to v.

The facts (a), (c) and (d) are valid for an �2-James space on any Schauder basis instead of (vn).
The proof of (a) is essentially the same as [2, Lemma 2.4]. Reproduce [2, Lemma 1.5] and the
Fact in the proof of [2, Theorem 1.2] for (c), and [2, Lemma 1.4] for (d).

To prove (b), we write an unconditional version of [2, Lemma 1.3]. Consider a real sequence
(λi)i∈N, I an interval of T , an integer n ∈ N and a subset J of [0, n]. We denote by c an upper
bound for the norms of canonical projections on subsequences of v. As in [2], let (sn)n∈N be a
fixed enumeration of T . Moreover, let for each t ∈ T , t = st .

For s ∈ T , (
∑

i∈J λiφsi )(s) is equal to λs if s ∈ J and to 0 otherwise. Therefore,

∥∥∥∥∑
s∈I

(∑
i∈J

λiφsi

)
(s)v|s|

∥∥∥∥ =
∥∥∥∥ ∑

s∈I,s∈J

λsv|s|
∥∥∥∥ � c

∥∥∥∥ ∑
s∈I,s�n

λsv|s|
∥∥∥∥

=
∥∥∥∥∑

s∈I

(∑
i�n

λiφsi

)
(s)v|s|

∥∥∥∥.

Let {Ij , 0 � j � k} be an admissible choice of intervals. We have

k∑
j=0

∥∥∥∥∑
s∈Ij

(∑
i∈J

λiφsi

)
(s)v|s|

∥∥∥∥
2

� c2
k∑

j=0

∥∥∥∥ ∑
s∈Ij

(∑
i�n

λiφsi

)
(s)v|s|

∥∥∥∥
2

.

Thus ∥∥∥∥∑
i∈J

λiφsi

∥∥∥∥ � c

∥∥∥∥∑
i�n

λiφsi

∥∥∥∥,

and (φsi )i∈ω is an unconditional basic sequence. The fact (b) follows.
We note the following fact about v. If v is equivalent to a subsequence of some normalized

unconditional basic sequence w, then v is permutatively equivalent to w; indeed w is equivalent
to a subsequence of v by definition of v and the result follows by the Cantor–Bernstein’s principle
for permutative equivalence mentioned in the introduction [26,32,33]. So it follows from (b)
and (d):

(d′) if θ is ill-founded then ṽ(θ) is permutatively equivalent to v.

By (c), v(θ) and v are never permutatively equivalent when θ is well founded. If A is the
∼perm-class of v, it follows from this and from (d′) that T \ WF = v−1(A), where WF denotes
the set of ill-founded trees on ω. So by (a) and the well-known fact that WF is non-Borel, A is
non-Borel, and it follows that ∼perm is non-Borel. �

We note here that the relations =+, and the product EKσ ⊗ =+, defined as in [9], may, by
similar observations as in the EKσ case, be reduced to permutative equivalence between basic
sequences.
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2. Reducing E0 to permutative equivalence

2.1. Reducing E0 to permutative equivalence between block-sequences

Our initial and important technical result bares similarity with [23, Lemma 2.a.11]: from an
hypothesis on block-sequences of a Banach space, we already get a lot of information by looking
at those block-sequences of the form ((1−λn)xn +λnyn)n∈N, for some fixed sequences (xn) and
(yn) and choices of sequences (λn)n∈N ∈ [0,1]N.

Let (xn)n∈N and (yn)n∈N be normalized basic sequences generating spaces X and Y . We equip
X ⊕ Y with its canonical normalized basis (en)n∈N, that is, for any (μn)n∈N ∈ c00,∥∥∥∥∑

n∈N

μnen

∥∥∥∥ =
∥∥∥∥∑

n∈N

μ2n−1xn

∥∥∥∥ +
∥∥∥∥∑

n∈N

μ2nyn

∥∥∥∥.

We shall identify vectors in X (respectively Y ) with their image in X ⊕ Y . Given a sequence
(an)n∈N ∈ [0,1]N, the sequence (aixi + (1−ai)yi)i∈N is a normalized block-sequence of X ⊕Y .
We denote by bb2(X ⊕ Y) the set of such infinite block-sequences.

Let (Ik)k∈N be a sequence of successive intervals of integers forming a partition of N, i.e.
∀k ∈ N,min Ik+1 = max Ik + 1, and let (δk)k∈N be a positive decreasing sequence converging
to 0. We shall say that (Ik), (δk) is a rapidly converging system if δ1 � 1/2 and for all k � 1:

(1) |Ik|δk+1 � 1/4;

(2) |Ik|/2 >
∑k−1

j=1 |Ij |.

For any α ∈ 2ω, we define a sequence of positive numbers (an(α))n∈N by

an(α) = δk+α(k), ∀k ∈ N, ∀n ∈ Ik.

Finally we define a map f from 2ω into bb2(X ⊕ Y) by

f (α) = (
ai(α)xi + (

1 − ai(α)
)
yi

)
i∈N

.

We shall say that f is the map associated to (Ik), (δk).

Lemma 2.1. Assume X (respectively Y ) is a Banach space with a normalized Schauder basis (xn)

(respectively (yn)). Let (Ik), (δk) form a rapidly converging system and f : 2ω → bb2(X ⊕ Y)

be the associated map. Then f Borel reduces the relation E0 to permutative equivalence on
bb2(X ⊕ Y) or there exist C � 1, an infinite subset K of N, and for each k ∈ K , a subset Jk of
Ik with |Ik \ Jk| � ∑k−1

j=0 |Ij |, and distinct integers (ni)i∈Jk
such that

(δkxi + yi)i∈Jk
∼C (yni

)i∈Jk
.

Proof. Without loss of generality we assume that (xn) and (yn) are bimonotone.
The map f is obviously Borel (even continuous) and whenever αE0β , f (α) is equivalent,

and thus permutatively equivalent to f (β).
Assume f does not Borel reduce E0 to permutative equivalence on bb2(X ⊕ Y). We have

f (α) ∼perm f (β) for some α,β in 2ω which are not E0 related, and let C be the associated
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constant of equivalence. We may assume for arbitrarily large k that α(k) = 0 while β(k) = 1. Let
K be the infinite set of such integers, and let k ∈ K .

By the permutative equivalence between f (α) and f (β), the sequence (δkxi + (1 − δk)yi)i∈Ik

satisfies

(
δkxi + (1 − δk)yi

)
i∈Ik

∼C
(
δki

xni
+ (1 − δki

)yni

)
i∈Ik

,

where (ni)i∈Ik
is a sequence of distinct integers, and for all i ∈ Jk , ki is equal to m + β(m) if m

is such that ni ∈ Im.
By condition (2), there exists Jk ⊂ Ik , of size at least |Ik|−∑k−1

j=1 |Ij | > 0, for which we have

(
δkxi + (1 − δk)yi

)
i∈Jk

∼C
(
δki

xni
+ (1 − δki

)yni

)
i∈Jk

,

where for i ∈ Jk , ki is of the form m + β(m) for some m � k. So if m = k, since β(k) = 1,
ki � k + 1, and if m > k, ki � k + 1 too. It follows that for all i ∈ Jk , ki � k + 1 and thus
δki

� δk+1.
Therefore, for any (λi)i∈Jk

,

∥∥∥∥∑
Jk

δki
λixni

∥∥∥∥ � δk+1|Jk|max
i∈Jk

|λi |,

so as δk+1|Jk| � 1/4, and by bimonotonicity,

∥∥∥∥∑
Jk

δki
λixni

∥∥∥∥ � 1

4

∥∥∥∥∑
Jk

λiyni

∥∥∥∥.

By the same type of estimate, we have that

3

4

∥∥∥∥∑
Jk

λiyni

∥∥∥∥ �
∥∥∥∥∑

Jk

(1 − δki
)λiyni

∥∥∥∥ � 5

4

∥∥∥∥∑
Jk

λiyni

∥∥∥∥.

Finally, (δki
xni

+ (1 − δki
)yni

)i∈Jk
∼3 (yni

)i∈Jk
. Also,

1

2

∥∥∥∥∑
Jk

λi(δkxi + yi)

∥∥∥∥ �
∥∥∥∥∑

Jk

λi

(
δkxi + (1 − δk)yi

)∥∥∥∥ � 3

2

∥∥∥∥∑
Jk

λi(δkxi + yi)

∥∥∥∥,

since δk � 1/2, so (δkxi + (1 − δk)yi)i∈Jk
∼3 (δkxi + yi)i∈Jk

, and it follows

(δkxi + yi)i∈Jk
∼9C (yni

)i∈Jk
. �

Let � be a linear order on N. When I is a finite subset of N, we denote by (I )
�
i the ith

element of I written in �-increasing order.
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Definition 2.2. Let (yn) be a 1-subsymmetric 1-unconditional basic sequence. Let � be a linear
order on N. We define a norm ‖ · ‖� on the linear span of (yn)n∈N by letting, for all k ∈ N, for
all (λi)

k
i=1 ∈ R

k ,

∥∥∥∥∥
k∑

i=1

λiyi

∥∥∥∥∥
�

=
∥∥∥∥∥

k∑
i=1

λiy{1,...,k}�i

∥∥∥∥∥.

Note that the 1-subsymmetry of (yn) is needed to ensure that this indeed defines a norm,
and that (yn) is a 1-unconditional basis of the completion of its span under this norm. If � is
the usual order relation on N, then ((yn),‖ · ‖�) is obviously 1-equivalent to (yn). When (yn)

is 1-symmetric (i.e. 1-equivalent to (yσ(n)) for any permutation σ on N), then the sequence
((yn),‖ · ‖�) is always 1-equivalent to (yn). We shall also be interested in ‖ · ‖�, where � is
defined as usual on N; note that ((yn),‖ · ‖�) is a 1-subsymmetric basic sequence, and that
((yn),‖ · ‖��) is 1-equivalent to (yn). We also note that whenever (yn) � (zn), and � is a linear
order on N, it follows that ((yn),‖ · ‖�) � ((zn),‖ · ‖�).

If (yn) is a subsymmetric unconditional basis, then we define ‖ · ‖� on [yn] by

∥∥∥∥∑
i∈N

λiyi

∥∥∥∥
�

=
∥∥∥∥∑

i∈N

λiy
′
i

∥∥∥∥
�

,

if (y′
n) is the canonical 1-subsymmetric 1-unconditional basis equivalent to (yn). The previous

observations are still valid up to some constant of equivalence.

Proposition 2.3. Let X be a Banach space with a normalized unconditional basis (xn) and Y

be a Banach space with a normalized subsymmetric unconditional basis (yn). The relation E0 is
Borel reducible to permutative equivalence on bb2(X ⊕ Y) or there exists a linear order � on N

such that (yn) � ((yn),‖ · ‖�) and (xn) � ((yn),‖ · ‖�).

Proof. Without loss of generality we assume that (xn) is bimonotone and that (yn) is 1-
unconditional and 1-subsymmetric. We consider the following.

Fact. There exists C � 1 such that for all n ∈ N, there exists a permutation σn of {1, . . . , n} such
that (xi)

n
i=1 �C (yσn(i))

n
i=1 and (yi)

n
i=1 �C (yσn(i))

n
i=1.

We first assume Fact holds. This means that we may pick for each n ∈ N a linear order �n on
N such that

(x1, . . . , xn) �C
(
(y1, . . . , yn),‖ · ‖�n

)
,

and

(y1, . . . , yn) �C
(
(y1, . . . , yn),‖ · ‖�n

)
.
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Let � be an accumulation point of the sequence (�n)n∈N in the space of linear orders on N, which
is compact. For any k ∈ N we may find some n � k such that �n and � agree on {1, . . . , k}, so
‖ · ‖�n

and ‖ · ‖� agree on [y1, . . . , yk]. It follows that

(x1, . . . , xk) �C
(
(y1, . . . , yk),‖ · ‖�

)
,

therefore ((yi),‖ · ‖�) dominates (xi). Likewise, ((yi),‖ · ‖�) dominates (yi).
Assume now Fact does not hold. We may build by induction a rapidly converging system

(δk), (Ik), so δ1 � 1/2 and for all k � 1:

(1) |Ik|δk+1 � 1/4;

(2) |Ik|/2 >
∑k−1

j=1 |Ij |,

and an increasing sequence of integers (Kk) so that for all k � 1,

(3) Kk >
∑k−1

j=1 |Ij | and Kkδk � k;
(4) for any permutation σ on {1, . . . ,max(Ik)}, there exists a sequence (μi)i�max(Ik) of non-

negative numbers with

∥∥∥∥ ∑
i�max(Ik)

μiyσ(i)

∥∥∥∥ � 1 and

∥∥∥∥ ∑
i�max(Ik)

μixi

∥∥∥∥ +
∥∥∥∥ ∑

i�max(Ik)

μiyi

∥∥∥∥ � 5Kk.

We note that all μi ’s in (4) are smaller than 1. Also, any permutation on Ik may be extended
to a permutation on {1, . . . ,max(Ik)}. Thus using (3) and the bimonotonicity of the basis, we
deduce from (4):

(5) for any permutation τ on Ik , there exists a sequence (μi)i∈Ik
of non-negative numbers such

that ‖∑
i∈Ik

μixi‖ + ‖∑
i∈Ik

μiyi‖ � 3Kk and such that ‖∑
i∈Ik

μiyτ(i)‖ � 1.

Now we claim that the map associated to the system (δk), (Ik) Borel reduces E0 to permutative
equivalence on bb2(X ⊕Y). Otherwise, by Lemma 2.1, we find C � 1, an infinite subset K of N,
and for all k ∈ K , a subset Jk of Ik with |Ik \ Jk| � ∑k−1

j=0 |Ij |, and distinct integers (ni)i∈Jk
such

that, for any (λi)i∈Jk
,

δk

(∥∥∥∥ ∑
i∈Jk

λixi

∥∥∥∥ +
∥∥∥∥ ∑

i∈Jk

λiyi

∥∥∥∥
)

� δk

∥∥∥∥ ∑
i∈Jk

λixi

∥∥∥∥ +
∥∥∥∥ ∑

i∈Jk

λiyi

∥∥∥∥ � C

∥∥∥∥ ∑
i∈Jk

λiyni

∥∥∥∥.

Now by 1-subsymmetry of (yn), the sequence (yni
)i∈Jk

is 1-equivalent to some (yσ(i))i∈Jk
for

some permutation σ of Jk . We may extend σ to a permutation σ̃ of Ik .
Applying the previous inequality to the coefficients μi given by (5) for τ = σ̃ , we obtain

δk

(
3Kk − 2|Ik \ Jk|

)
� C

∥∥∥∥∑
μiyσ(i)

∥∥∥∥,
i∈Jk
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so, by choice of Jk and by 1-unconditionality,

δk

(
3Kk − 2

k−1∑
j=1

|Ij |
)

� C

∥∥∥∥∑
i∈Ik

μiyσ̃ (i)

∥∥∥∥,

so by (3),

k � Kkδk � C,

for arbitrary large k ∈ K , a contradiction. �
In the following we shall use the notation (yn)

� to mean ((yn),‖ · ‖�).

Proposition 2.4. Let X (respectively Y ) be a Banach space with a normalized subsymmetric
unconditional basis (xn)n∈N (respectively (yn)n∈N). Assume (xn) and (yn) are not equivalent.
Then E0 is Borel reducible to permutative equivalence on bb2(X ⊕ Y).

Proof. Assume (xn) and (yn) are 1-subsymmetric. We assume E0 is not Borel reducible to
permutative equivalence on bb2(X ⊕ Y) and apply Proposition 2.3: let � be a linear order on N

such that (xn) � (yn)
� and (yn) � (yn)

�. By a standard application of Ramsey’s theorem for
sequences of length 2, we may find an infinite subset K of N on which either � coincides with
� or � coincides with �.

In the first case, by passing to a subsequence with indices in K , and by subsymmetry of (xn)

and (yn), we obtain that (xn) � (yn).
In the second case, we have (xn) � (yn)

� and (yn) � (yn)
�. But this means that (yn)

� �
(yn)

��, and as (yn)
�� is equivalent to (yn), that (yn) � (yn)

�. We deduce in that case that
(xn) � (yn) as well.

By symmetry we obtain that these two sequences are equivalent. �
An immediate consequence of this fact is that E0 is Borel reducible to permutative equivalence

between normalized block-sequences of �p ⊕ �q , 1 � p < q < +∞, and of c0 ⊕ �p , 1 � p <

+∞.
We recall a conjecture by H.P. Rosenthal. A Schauder basis (en)n∈N is said to be a Rosenthal

basis if any normalized block-sequence of (en)n∈N has a subsequence which is equivalent to
(en)n∈N. A Banach space has the Rosenthal property if it admits a Rosenthal basis.

It is not difficult to see that a Rosenthal basis must be subsymmetric unconditional. Also, all
spreading models generated by block-sequences are equivalent in a Banach space with a Rosen-
thal basis. Rosenthal conjectured that any Rosenthal basis must be equivalent to the canonical
basis of c0 or �p , 1 � p < +∞. For more details about this property, see [12].

Lemma 2.5. Let X be a Banach space with an unconditional basis (en)n∈N. Assume E0 is not
Borel reducible to permutative equivalence on bb(X). Then there is a subsequence (fn)n∈N of
(en)n∈N such that every normalized block-sequence in X has a subsequence which is equivalent
to (fn)n∈N. In particular (fn)n∈N is a Rosenthal basic sequence.

Proof. Assume E0 is not Borel reducible to permutative equivalence on bb(X). Then E0 is
Borel reducible to permutative equivalence on the set of subsequences of (xn)n∈N for no (xn)n∈N
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in bb(X). By [30, Proposition 22], it follows that every normalized block-sequence of X has
a subsymmetric subsequence. It remains to show that any two subsymmetric block-sequences
(xn) and (yn) in X are equivalent. We may assume, by passing to subsequences, that xk < yk <

xk+1 for all k ∈ N. We then apply Proposition 2.4, since E0 cannot be reduced to ∼perm on
bb2([xk]k∈N ⊕ [yk]k∈N). �

Let X have a Schauder basis (en)n∈N. For 1 � p � +∞, we say that �p is block-finitely repre-
sentable in X if there exists C � 1 such that for all n ∈ N, some length n block-sequence in X is
C-equivalent to the canonical basis of �n

p . Note that this differs slightly from the usual definition
where it is required that we may take C = 1 + ε for any ε > 0. By Krivine’s theorem [22], there
always exists p ∈ [1,+∞] such that �p is block-finitely representable in X (with C arbitrarily
close to 1 if you wish). We say that �p is disjointly finitely representable in X if there exists C � 1
such that ∀n ∈ N, some length n sequence of disjointly supported blocks in X is C-equivalent to
the canonical basis of �n

p .
Using the proof by Lemberg of Krivine’s theorem [22], Odell et al. [27] proved that if X is

a Banach space with a Schauder basis,
⊕

n∈N
Fn is a decomposition of X in successive finite-

dimensional subspaces of increasing dimension (where each Fn is equipped with the canonical
basis which is a subsequence of the basis of X), (εn) is a sequence of positive reals, and f :X →
R is a Lipschitz function on X, then there exists a subsequence Fkn of Fn, finite block-subspaces
Gn of Fkn of increasing dimension, and a map f̃ on R

<ω such that, for all k ∈ N, for all k �
n1 < · · · < nk , for all norm 1 vectors xi in Gni

, i � k, all coefficients (λi)i�k , with |λi | � 1,

∣∣∣∣∣f
(

k∑
i=1

λixi

)
− f̃ (λ1, . . . , λk)

∣∣∣∣∣ � εk.

We recall that a basic sequence (xn)n∈N generates a spreading model (x̃n)n∈N if for any ε > 0,
and k ∈ N, there exists N ∈ N such that for all N < n1 < · · · < nk , the sequences (xni

)i�k and
(x̃i)i�k are (1 + ε)-equivalent. A spreading model is a basic sequence which is necessarily 1-
subsymmetric.

The main application given in [27] for their result is about spreading models, and we derive
from this the following lemma.

Lemma 2.6. Let X be a Banach space with a Schauder (respectively unconditional) basis
(en)n∈N. Let p ∈ [1,+∞] be such that �p is block (respectively disjointly) finitely representable
in X. Then there exist a spreading model (ỹn)n∈N generated by a block-sequence in X, a normal-
ized block-sequence (respectively sequence of disjointly supported blocks) (xn) in X, successive
intervals Ik forming a partition of N and some C � 1 such that:

• |Ik| = k for all k ∈ N;
• for all k ∈ N, (xn)n∈Ik

is C-equivalent to the unit basis of �k
p;

• for any k ∈ N, any k < n1 < · · · < nk , any normalized sequence (yi)1�i�k with (yi) ∈
[xn]n∈Ini

, ∀i � k, the sequence (yi)1�i�k is 2-equivalent to (ỹi)1�i�k .

Proof. Assume �p is block finitely representable in X. We construct a block-subspace of X

of the form
⊕

n∈N
Fn, where each Fn is a block-subspace of dimension n whose basis is C-

equivalent to the basis of �n
p and the Fn’s are successive. We pick a sequence (εk) of positive real
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numbers smaller than 1 and decreasing to 0, and we apply the result of [27] to
⊕

n∈N
Fn with the

norm on X, which is a Lipschitz map on X.
We obtain finite block-subspaces Gk and a spreading model ỹn such that for any k ∈ N, any

k < n1 < · · · < nk , any normalized sequence (yi)1�i�k with (yi) ∈ Gi is (1 + εk)-equivalent
to ỹn. We let (xn)n∈Ik

be the canonical basis of Gk for all k and we pass to a subsequence to
obtain the correct dimension k for each Gk : (xn)n∈Ik

is uniformly equivalent to the basis of lkp .
In the case when �p is disjointly finitely representable in X, we do the same construction with

the difference that each Fn will have a basis C-equivalent to the basis of �n
p which is disjointly

supported on X, instead of successive. �
Lemma 2.7. Let X be a Banach space with an unconditional basis. Assume E0 is not Borel
reducible to permutative equivalence on bb(X) (respectively on dsb(X)) and let (fn)n∈N be
a Rosenthal basic sequence in X given by Lemma 2.5. Let p ∈ [1,+∞] be such that �p is
block-finitely representable in [fn]n∈N (respectively disjointly finitely representable in X). Then
(fn)n∈N is equivalent to the unit basis of �p (or c0 if p = +∞).

Proof. Let (fn) be a Rosenthal basic sequence in X. Let p be such that �p is block-finitely
representable in [fn]n∈N (respectively disjointly finitely representable in X). Let (en) be the
canonical basis of �p (or c0 if p = +∞). We need to prove that (fn) is equivalent to (en).

We note that any spreading model (ỹn) generated by a block-sequence in X is equivalent
to (fn). Indeed, any block-sequence generating this spreading model has a subsequence equiva-
lent to (fn), so (ỹn) is equivalent to (fn). So by Lemma 2.6, we find a block-sequence of [fn]n∈N

(respectively sequence of disjointly supported blocks of X) (xn)n∈N, a constant C � 1 and asso-
ciated intervals (Ik) of length k so that

• for all k ∈ N, (xn)n∈Ik
is C-equivalent to (en)n∈Ik

;
• for any k ∈ N, any k < n1 < · · · < nk , any normalized sequence (yi)1�i�k with (yi) ∈

[xn]n∈Ini
, ∀i � k, the sequence (yi)1�i�k is C-equivalent to (fi)1�i�k .

In the disjointly supported case, we may, by passing to a subsequence of (xn), assume that
for some subsequence (f ′

n) of (fn), xn and f ′
p are disjointly supported for all n,p in N. In the

bb(X) case, we may, by replacing (xn) by an appropriate subsequence of (x2n), assume that for
all n ∈ N, min(supp(xn+1)) � 2 + max(supp(xn)), where the supports are with respect to (fn).
We may then find a subsequence (f ′

n) of (fn) such that xn < f ′
n < xn+1 for all n ∈ N (recall that

(xn) is a block-sequence of [fn] in this case).
In both cases, we may therefore apply Proposition 2.3 to (xn) and (f ′

n), and using the fact
that (fn) is subsymmetric, we find a linear order � on N such that (xn) �C′

(fn)
�, for some

constant C′. In particular, for all k ∈ N,

(xn)n∈Ik
�C′ (

(fn)
�)

n∈Ik
.

This implies that

(en)n�k �cCC′
(fσ(n))n�k,

where c is such that (fn) is c-subsymmetric and σ is a permutation on {1, . . . , k}. By symmetry
of the basis (en) and as k was arbitrary, we deduce that (fn) cCC′-dominates (en).
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We now prove that (fn) is dominated by (en), and to simplify the notation, we assume p <

+∞; the case p = +∞ is similar. Assume on the contrary that (fn) is not dominated by (en).
Then we may build by induction a rapidly converging system (δk), (I

′
k) and some increasing

sequence Kk such that for all k ∈ N,

(6) Kk > 2
∑k−1

j=1 |I ′
j | and Kkδk � k;

(7) there exists a sequence (μi)i∈I ′
k

which satisfies ‖∑
i∈I ′

k
μiei‖ � 1 and ‖∑

i∈I ′
k
μifi‖ � Kk .

Note that (|I ′
k|)k∈N is increasing. We consider the previously defined sequence (xn)n∈N and,

up to passing to the subsequence of (xn)n∈N corresponding to indices in
⋃

k∈N
I|I ′

k |, we may
assume that:

• for all k ∈ N, (xn)n∈I ′
k

is C-equivalent to (en)n∈I ′
k
;

• for any k ∈ N, any k < n1 < · · · < nk , any normalized sequence (yi)1�i�k with (yi) ∈
[xn]n∈I ′

ni
, the sequence (yi)1�i�k is C-equivalent to (fi)1�i�k ,

while we still have that for some subsequence (f ′
n) of (fn), xn < f ′

n < xn+1 for all n ∈ N (re-
spectively xn and f ′

p are disjointly supported for all n,p in N).
By Lemma 2.1 applied to (f ′

n) and (xn) we may find D � 1, an infinite subset K of N, and
for all k ∈ K , a subset Jk of I ′

k with |I ′
k \ Jk| � ∑k−1

j=0 |I ′
j | and distinct integers (ni)i∈Jk

such that

(
δkf

′
i + xi

)
i∈Jk

∼D (xni
)i∈Jk

.

The end of our proof now divides in two cases. For k ∈ K , let Ak be the set of n’s such that
{ni, i ∈ Jk} ∩ I ′

n �= ∅.
First case. We first assume that for any m ∈ N, we may find k ∈ K such that the set Ak is of

cardinality at least m.
Let m ∈ N. For infinitely many k’s, we may find a set Lk ⊂ Jk of cardinality m such

that {ni, i ∈ Lk} meets I ′
n for exactly m values of n which are strictly larger than m. Then

(xni
)i∈Lk

∼C (fai
)i∈Lk

, where (ai)i∈Lk
is a reordering of (1, . . . ,m).

We deduce that

(fai
)i∈Lk

�CD
(
δkf

′
i + xi

)
i∈Lk

so, as Lk ⊂ I ′
k , for all (λi)i∈Lk

,

∥∥∥∥ ∑
i∈Lk

λifai

∥∥∥∥ � CD

(
δkmmax

i∈Lk

|λi | + C

( ∑
i∈Lk

|λi |p
)1/p)

,

and by symmetry of the expression on the right-hand side, we deduce that for any sequence
(λi)1�i�m,

∥∥∥∥ ∑
λifi

∥∥∥∥ � CD

(
δkmmax

i�m
|λi | + C

( ∑
|λi |p

)1/p)
.

i�m i�m
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Letting k tend to infinity and as m was arbitrary, we obtain that (fn) is C2D-dominated by
(en)n∈N.

Second case. We now assume that there exists some m ∈ N such that for all k ∈ K , the set Ak

contains at most m elements.
Then for any k ∈ K , all (λi)i∈Jk

,

∥∥∥∥ ∑
i∈Jk

λixni

∥∥∥∥ =
∥∥∥∥ ∑

n∈Ak

∑
i∈Jk,ni∈I ′

n

λixni

∥∥∥∥ � Cm

( ∑
i∈Jk

|λi |p
)1/p

.

It follows that

δk

∥∥∥∥ ∑
i∈Jk

λif
′
i

∥∥∥∥ � CDm

( ∑
i∈Jk

|λi |p
)1/p

.

Applying this to the coefficients μi given by (7), we obtain

δk

(
Kk −

k−1∑
j=1

∣∣I ′
j

∣∣) � cCDm,

where c is such that (fn) is c-subsymmetric, so by (6),

k � δkKk � 2cCDm,

a contradiction. �
Theorem 2.8. Let X be a Banach space with a Schauder basis (en). Assume E0 is not Borel
reducible to permutative equivalence on bb(X). Then there exists p ∈ [1,+∞] such that every
block-sequence of X has a block-sequence which is equivalent to the canonical basis of �p (or
c0 if p = +∞).

Proof. If (en) is unconditional, Lemma 2.5 applies, so there is a Rosenthal basic sequence (fn)

such that every normalized block basis in X has a subsequence equivalent to (fn). Let p be such
that �p is block finitely representable in [fn]n∈N (p exists by Krivine’s theorem). By Lemma 2.7,
(fn) is equivalent to the basis of �p (or c0 if p = +∞).

In the general case, note that by [30, Theorem 16], every normalized block-sequence in X

has a subsequence which is permutatively equivalent to its further subsequences. In particular,
X contains no hereditarily indecomposable subspace (no subspace of a H.I. space is isomor-
phic to a proper subspace [16]), and by Gowers’ dichotomy theorem [14], X is saturated with
unconditional block-sequences.

By the unconditional case, we deduce that X is saturated with spaces isomorphic to c0 or �p .
Finally, if X contains �p and �q , for p �= q , then as �p and �q are totally incomparable, X contains
a direct sum �p ⊕ �q , and we may assume that these copies are spanned by block-sequences (xn)

and (yn) which alternate (i.e. ∀n ∈ N, xn < yn < xn+1). By Proposition 2.4, E0 is Borel reducible
to permutative equivalence on bb2(�p ⊕ �q), so E0 would be Borel reducible to ∼perm on bb(X),
a contradiction. The same proof holds for c0 and �p . We deduce that there is a unique p such that
X contains copies of �p (or c0 if p = +∞). �
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A Banach space X with an unconditional basis is said to satisfy an upper p estimate if there
exists C � 1 such that for any disjointly supported vectors x1, . . . , xn,

∥∥∥∥
n∑

i=1

xi

∥∥∥∥ � C

(
n∑

i=1

‖xi‖p

)1/p (
or

∥∥∥∥∑
i=1

xi

∥∥∥∥ � C max
i�n

‖xi‖ if p = +∞
)

.

By a simple diagonalization argument, this is equivalent to saying that for any normalized dis-
jointly supported sequence (xn)n∈N on X, (xn) is dominated by the canonical basis of �p (or c0
if p = +∞).

Theorem 2.9. Let X be a Banach space with an unconditional basis (en).

• Assume E0 is not Borel reducible to permutative equivalence on bb(X). Then there exists
p ∈ [1,+∞] such that every normalized block-sequence of X has a subsequence which is
equivalent to the canonical basis of �p (or c0 if p = +∞).

• Assume E0 is not Borel reducible to permutative equivalence on dsb(X). Then there is a
unique p ∈ [1,+∞] such that �p is disjointly finitely representable in X. If p = +∞ then
(en) is equivalent to the unit vector basis of c0. If p < +∞ then X satisfies an upper
p-estimate and every normalized block-sequence of X has a subsequence which is equiv-
alent to the canonical basis of �p .

Proof. The bb(X) case is proved at the beginning of the proof of Theorem 2.8. Assume now
that E0 is not Borel reducible to permutative equivalence on dsb(X). By Lemma 2.5, there is a
Rosenthal basic sequence (fn), necessarily unique up to equivalence, such that every normalized
block basis in X has a subsequence equivalent to (fn). Let p be such that �p is disjointly finitely
representable in X. By Lemma 2.7, (fn) is equivalent to the basis of �p (or c0 if p = +∞), so
p is unique. It remains to show that (en) satisfies an upper p-estimate, which implies that (en) is
equivalent to the basis of c0 if p = +∞.

For any (xn) ∈ dsb(X), we may find a normalized sequence (vn) ∼ (fn) which is disjointly
supported from (x2n). As E0 is not Borel reducible to permutative equivalence on bb2([x2n] ⊕
[vn]), we deduce from Proposition 2.3 that (x2n) � (vn)

� for some linear order � on N. As (vn)

is symmetric it follows that (x2n) � (vn), that is for some C and any (λn) ∈ c00,

∥∥∥∥∑
n∈N

λ2nx2n

∥∥∥∥ � C

(∑
n∈N

|λ2n|p
)1/p

,

if p < +∞, or ∥∥∥∥∑
n∈N

λ2nx2n

∥∥∥∥ � C max
n∈N

|λ2n|,

if p = +∞. We obtain a similar estimate for (x2n+1) and deduce that (xn) is dominated by the
unit vector basis of �p (or c0 if p = +∞), and so finally (en) satisfies an upper p-estimate. �

Note that from this theorem, we may deduce that E0 is Borel reducible to ∼perm on bb(S),
where S is Schlumprecht’s space [1]. It is, however, still unknown if S is ergodic.
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3. Permutative equivalence between unconditional basic sequences in X and in X∗

We obtain a complete dichotomy result by also looking at the disjointly supported sequences
of the dual X∗ of X, when X∗ has a basis. Compare this theorem with Conjecture 1.4.

Theorem 3.1. Let X be a Banach space with a shrinking normalized unconditional basis (en).
Then either (en) is equivalent to the canonical basis of c0 or some �p , 1 < p < +∞, or E0 is
Borel reducible to permutative equivalence on dsb(X), or on dsb(X∗).

Proof. Assume E0 is Borel reducible to permutative equivalence neither on dsb(X) nor on
dsb(X∗). By Theorem 2.9, there exists Y = c0 or �p for some 1 < p < +∞ such that every
normalized block-sequence of X has a subsequence equivalent to the canonical basis of Y , and
we may assume that 1 < p < +∞ and that X satisfies an upper p-estimate.

Some subsequence of (en) is equivalent to the basis of �p , so its dual basis identified with a
subsequence of (e∗

n) is equivalent to the basis of �p′ (where 1/p + 1/p′ = 1). Thus by Theo-
rem 2.9 applied for X∗, X∗ satisfies an upper p′-estimate. So (e∗

n)n∈N is dominated by the unit
vector basis of �p′ . It follows that (en)n∈N dominates the unit vector basis of �p . Finally (en)n∈N

is equivalent to the unit vector basis of �p . �
We also deduce the following dichotomy result about the number of permutatively inequiva-

lent sequences spanning subspaces, or quotients, of a Banach space with an unconditional basis
which is not isomorphic to a Hilbert space. Note that by uniqueness of the unconditional basis
of �2, any normalized unconditional basis of a subspace, or a quotient, of �2 must be (permuta-
tively) equivalent to the canonical basis of �2.

Theorem 3.2. Let X be a Banach space with an unconditional basis. Then either X is isomorphic
to �2, or X contains 2ω subspaces, or 2ω quotients, spanned by normalized unconditional bases
which are mutually permutatively inequivalent.

Proof. Assume X is not isomorphic to �2. If X contains c0 or �1, then we are done, since by [9],
there is a Borel reduction of E0 to permutative equivalence between the canonical unconditional
bases of some subspaces of c0 (respectively �1). So by the classical result of James (see [23]),
we may assume X is reflexive.

We may assume the basis of X is normalized and we apply Theorem 3.1. If E0 is Borel
reducible to permutative equivalence on dsb(X), then we obtain the desired result with subspaces
of X. If E0 is Borel reducible to permutative equivalence on dsb(X∗), let f : 2ω → dsb(X∗) be
the Borel reduction. We note that the bases f (α) and f (β) are permutatively equivalent if and
only if the dual bases f (α)∗ and f (β)∗ are permutatively equivalent; and for α ∈ 2ω, the dual
basis f (α)∗ is an unconditional basis of some quotient of X. We thus obtain continuum many
permutatively inequivalent normalized unconditional bases of quotients of X in the family f (α)∗,
α ∈ 2ω.

Finally if the basis of X is equivalent to the canonical basis of some �p,1 < p < +∞, with
p < 2, [9] gives an explicit construction of 2ω subspaces of X with normalized unconditional
bases which are mutually permutatively inequivalent (see the proof of Proposition 1.5; in fact
we even obtain a reduction of E0 to permutative equivalence between such unconditional bases
in that case). If p > 2, then we use duality to deduce the existence of 2ω quotients of X with
normalized unconditional bases which are mutually permutatively inequivalent. �
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The reader should compare this result with Conjecture 1.2, noting that the proof of Theo-
rem 3.2 actually gives a reduction of E0 to permutative equivalence on an appropriate space of
basic sequences spanning subspaces or quotients of X, when X is not isomorphic to �2.

To conclude, let us mention two results with some similarity with Theorem 3.2, by the use
their hypotheses make of both subspaces and duals (respectively quotients). By P. Mankiewicz
and N. Tomczak-Jaegermann, if every subspace of every quotient of �2(X) has a Schauder basis,
then the Banach space X must be isomorphic to �2 [24]. By V. Mascioni, if �2(X) is locally self-
dual (i.e. finite-dimensional subspaces are uniformly isomorphic to their duals), then X must also
be isomorphic to �2 [25].
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