
OPERATORS ON SUBSPACES OF HEREDITARILY

INDECOMPOSABLE BANACH SPACES

V. FERENCZI

A

We show that if X is a complex hereditarily indecomposable space, then every operator from a subspace
Y of X to X is of the form λI­S, where I is the inclusion map and S is strictly singular.

1. Definitions and notation

In the following, by space (respectively subspace), we shall always mean infinite

dimensional Banach space (respectively closed subspace). A hereditarily inde-

composable (or HI) Banach space is a space that does not contain any topological

direct sum of two (infinite dimensional) subspaces. In other words, for all ε" 0, and

all subspaces Y and Z of X, there exist two unit vectors y in Y and z in Z such that

sy®zs% ε. This notion was defined by Gowers and Maurey in [2], in which they

actually proved the existence of HI spaces.

An operator S from Y to X is said to be strictly singular if the restriction of S to

a subspace is never an isomorphism into. This is equivalent to saying that for any

ε" 0, and any ZZY, there exists z in Z such that sS(z)s% εszs. By Proposition 2.c.4

of [3], S is strictly singular if and only if for every ZZY and every ε" 0, there exists

Z «ZZ such that sSrZ «s% ε. Let 3(Y,X ) denote the space of strictly singular

operators from Y to X. We recall that for any strictly singular operator S, and any

operators T and U for which TS and SU are defined, the operators TS and SU are

strictly singular.

Let Y and Z be two subspaces of X. We say that an operator T from Y to Z is

an Id­S-isomorphism if it is an isomorphism of the form Id­S, where S is strictly

singular from Y to X. If T is an Id­S-isomorphism, then so is T−". If T and U are

Id­S-isomorphisms, then so is TU when it is defined. The subspaces Y and Z of X

are said to be Id­S-isomorphic if there exists an Id­S-isomorphism from Y onto Z.

We denote by Id
Y

the inclusion map from Y to X, and by G
X

the set of subspaces of

the Banach space X.

Let X be a complex HI space. It was shown in [2] that every operator from X to

X is of the form λ Id
X
­S, where λ is complex and S is strictly singular. We generalize

this result by showing that for every subspace Y of X, every operator from Y to X is

of the form λ Id
Y
­S, where λ is complex and S is strictly singular (this was proved

in [2] in the particular case of the Gowers–Maurey space). It is easy to show that

this property is, in fact, equivalent to the HI property : indeed, if X is not HI, and

YGZ is a direct sum in X, then the canonical projection from YGZ onto Y is not

of the form λ Id
YGZ

­S.
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Even if this result is about complex HI spaces, we shall write the main part of our

proof in the case of a real or complex Banach space. More precisely, we shall show

that if X is HI real or complex, then for YZX, the space ,(Y,X )}3(Y,X ) with a

suitable norm embeds in a Banach algebra E which is a division ring. Our main

theorem follows from this property in the complex case and from the Gelfand–Mazur

theorem.

2. A filter on the set of subspaces of X

In this section, we show that the subspaces of an HI space form a filter. First, we

notice that the relation of Id­S-isomorphism is an equivalence relation on G
X
. We

now give a definition.

D 1. Let Y and Z be in G
X
. We say that Z%Y if Z is Id­S-isomorphic

to a subspace of Y.

L 1. Let X be HI. Then the relation % defines a filter on G
X
.

Proof. It is clear that % is a pre-ordering. We prove that it is also a filter. Let

Y and Z be in G
X
, and let us find a space W such that W%Y and W%Z. Passing

to subspaces, we may assume that Y (respectively Z ) is spanned by a basis with

constant 2; by support of a vector in Y (respectively Z ), we shall mean support with

respect to this basis. Then by the HI property, there exist two unit vectors y
!
in Y and

z
!

in Z, which we may assume finitely supported, with sy
!
®z

!
s% 1}16. Let Y

"

(respectively Z
"
) be the space of vectors successive to y

!
(respectively z

!
)—by this we

mean the vectors y (respectively z) such that min supp (y)"max supp (y
!
) (re-

spectively min supp (z)"max supp (z
!
)). By the HI property, we may find finitely

supported unit vectors y
"

in Y
"
, and z

"
in Z

"
, such that sy

"
®z

"
s% 1}32. Repeating

this procedure, we find two basic sequences (y
n
)
n`. in Y and (z

n
)
n`. in Z such that

for all n, sy
n
®z

n
s% (1}16) 2−n. Now let Y «¯ span ²y

n
, n `.´, and let Z «¯ span ²z

n
,

n `.´. The operator T from Y « to Z « defined by T(y
n
)¯ z

n
is of the form Id­K,

where K is compact, and it is an isomorphism since sT®Ids% 1}2, so it is an Id­S-

isomorphism. Then Y «ZY, so Y «%Y, and as Y « is Id­S-isomorphic to the

subspace Z « of Z, we have that Y «%Z.

3. A semi-norm on ,(Y,X )

D 2. Let X be a Banach space. For Y `G
X
, let s[s

Y
be defined on

,(Y,X ) by

sTs
Y

¯ sup
ZZY

inf
Z «ZZ

sTrZ «s.

L 2. Let X be a Banach space, and let Y `G
X
. Then the function s[s

Y
is a

semi-norm on ,(Y,X ). Furthermore, its kernel is the space of strictly singular operators

3(Y,X ).

Proof. It is a direct consequence of Proposition 2.c.4 of [3] that sTs
Y

¯ 0 if and

only if T is strictly singular. Now, to show that s[s
Y

is a semi-norm, it is enough to
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check the triangle inequality. Let T and U belong to ,(Y,X ), and let ε" 0. Let Z
!

be such that the supremum in the definition of sT­Us
Y

is attained in Z
!
up to ε. It

follows that

sT­Us
Y

% s(T­U )rZ
s­ε% sTrZ

s­sUrZ
s­ε,

for all ZZZ
!
.

Now let Z
"
ZZ

!
be such that inf

ZZZ
!

sTrZ
s is attained up to ε in Z

"
; then it is also

attained up to ε in any ZZZ
"
. It follows that

sT­Us
Y

% inf
ZZZ

!

sTrZ
s­sUrZ

s­2ε% sTs
Y
­sUrZ

s­2ε,

for all ZZZ
"
. So

sT­Us
Y

% sTs
Y
­ inf

ZZZ
"

sUrZ
s­2ε% sTs

Y
­sUs

Y
­2ε,

and this holds for any ε, so the triangle inequality is satisfied.

L 3. Let X be an HI Banach space, let Y `G
X
, and let T `,(Y,X ). Then the

quantity inf
Z «ZZ

sTrZ «s does not depend on the choice of the subspace Z of Y.

Proof. Let Z
"
and Z

#
be two subspaces of Y. It is enough to prove that for any

ε" 0, and any Z !

#
ZZ

#
, there is a subspace Z !

"
ZZ

"
such that sTrZ !

"

s% sTrZ !

#

s­ε.

Let ε" 0, and let Z !

#
ZZ

#
. Some subspace Z !

"
of Z

"
is of the form (Id

W
­s) (W ),

where W is a subspace of Z !

#
and Id

W
­s is an Id­S-isomorphism on W ; and passing

to further subspaces, we may assume that s has norm at most ε and (Id
W
­s)−" has

norm at most 1­ε. Then TrZ !

"

¯T(Id
W
­s) (Id

W
­s)−". Now notice that W and Z !

"
are

Id­S-isomorphic in the HI space Y, so s takes values in Y ; so Ts exists, and it follows

that

sTrZ !

"

s% sTrW
­Tss s(Id

W
­s)−"s% (sTrZ !

#

s­εsTs) (1­ε),

so

sTrZ !

"

s% sTrZ !

#

s­ε(2­ε) sTs.

C 1. Let X be an HI Banach space, and let Y `G
X
. Then for all T in

,(Y,X ), and for all ZZY, sTs
Y

¯ inf
Z «ZZ

sTrZ «s.

From now on, X is assumed to be an HI space.

L 4. Let Y,Z be in G
X
, let T `,(Y,X ), and let U `,(Z,Y ). Then

sTUs
Z
% sTs

Y
sUs

Z
.

Proof. Let Y,Z be in G
X
, let T `,(Y,X ), and let U `,(Z,Y ). If U is strictly

singular, then TU is strictly singular, and sTUs
Z
¯ 0, so sTUs

Z
% sTs

Y
sUs

Z
. Now

if U is not strictly singular, let Z « be a subspace of Z on which U is an isomorphism.

For any WZZ «, sTUs
Z
¯ inf

W «ZW
sTUrW «s, by Corollary 1, so

sTUs
Z
% sTrUW

s inf
W «ZW

sUrW «s% sTrUW
s sUs

Z
.
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The isomorphism U induces a bijection between the set of subspaces of Z « and the set

of subspaces of UZ «, and the above inequality is true for any WZZ «, so

sTUs
Z
% inf

VZUZ «

sTrV
s sUs

Z
,

and by Corollary 1,

sTUs
Z
% sTs

Y
sUs

Z
.

D 3. We denote by E
Y

the quotient space of ,(Y,X ) by the kernel of

the semi-norm s[s
Y
. We shall denote the norm on E

Y
by s[s

Y
; the space E

Y
is not

necessarily complete. We shall denote an element of E
Y

by α
Y
, and for T `,(Y,X ),

we denote by Th the class of T in E
Y
.

With this new definition, the aim of the article is now to show that if X is complex,

then for all Y `G
X
, E

Y
is isometric to #. We recall that we already know by a result

of [2] that if X is complex, E
X

is isometric to #.

D 4. Let Z,Y be in G
X

such that Z%Y. There exists a subspace Y « of

Y such that Y «¯ (Id­s)Z, where s is strictly singular. We define a linear operator

p
YZ

from E
Y

into E
Z

by

p
YZ

(Th )¯T(I cd­s).

It is clear that the result does not depend on the choice of s or on the representative

T, so that p
YZ

is well defined. Furthermore, if W%Z%Y, we have the relation

p
YW

¯ p
ZW

p
YZ

. We have also the following lemma.

L 5. Let Z,Y be in G
X

such that Z%Y. Then p
YZ

is a linear isometry.

Proof. The application p
YZ

is clearly linear. Now if Id­s is an Id­S-isomorphic

embedding of Z into Y, and T is a representative for α
Y
, then

sp
YZ

(α
Y
)s

Z
¯ sT(Id­s)s

Z
% sTs

Y
sId­ss

Z
¯ sα

Y
s
Y
,

so sp
YZ

s% 1. Now if Z and Y are Id­S-isomorphic, it follows from what we have

just shown and from the fact that p
YZ

p
ZY

¯ Id that p
YZ

is an isometry. If ZZY, it

follows from Corollary 1 that p
YZ

is an isometry. The general case is then a

consequence of these two assertions and of the definition of %.

We now define a notion of product for elements of E
Y

similar to the composition

of linear operators.

D 5. Let Y,Z be in G
X
. We denote by E

ZY
the space of elements of E

Z

that have a representative T such that ImTZY.

D 6. Let Y,Z be in G
X
. We define a linear mapping from E

Y
¬E

ZY
into

E
Z
by Th aUh ¯T bU, where T is any representative in ,(Y,X ), and U any representative

in ,(Z,X ) such that ImUZY. It is clear that this mapping is well defined.

Furthermore, it follows from Lemma 4 that sas% 1.

L 6. Let Y,Z be in G
X
, and let Y «%Y. Then E

ZY « ZE
ZY

.
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Proof. Let Id­s be an Id­S-isomorphism mapping Y « into Y. Let α
Z
`E

ZY «,

and let T be a representative for α
Z

with ImTZY «. Then (Id­s)T satisfies

(Id f­s)T¯α
Z

and Im ((Id­s)T )ZY, so α
Z
`E

ZY
.

L 7. Let Y,Z be in G
X
, and let α

Y
`E

Y
. Then there exists Y «%Y such that

p
YY «(αY

) `E
Y «Z

.

Proof. If α
Y

¯ 0, then it belongs to E
YZ

. If α
Y

1 0, then let T in ,(Y,X ) be a

representative for α
Y
. It is not strictly singular, so there is a subspace Y « of Y on which

T is an isomorphism, and passing to a subspace, we may assume that there is an

Id­S-embedding Id­s of TY « into Z. The operator (Id­s)TrY « has its image in Z,

and satisfies (Id f­s)TrY « ¯T arY « ¯ p
YY «(αY

), so p
YY «(αY

) `E
Y «Z

.

4. A limit space E

D 7. An element (α
Y
)
Y`GX

of l¢((E
Y
)
Y`GX

) is said to be coherent if there

exists Y
!
`G

X
such that for all Y%Y

!
, α

Y
¯ p

Y
!
Y
(α

Y
!

). Let % be the set of coherent

elements of l¢((E
Y
)
Y`GX

). The space % is clearly a linear space.

By Lemma 5, for such an element, sα
Y
s
Y

is constant and equal to sα
Y
!

s
Y
!

for

Y%Y
!
; so lim

Y
sα

Y
s
Y

is defined and is a semi-norm on %. Let + be the space of

elements of % such that lim
Y

sα
Y
s
Y

¯ 0. We let E be the quotient space of % by +.

By abuse of notation, we shall denote by α¯ (α
Y
)
Y`GX

an element of E. The space E

is, in fact, the algebraic inductive limit of the system (E
Y
, p

ZY
) (see [1] for a general

definition), but remember that we shall finally prove that, at least in the complex case,

the situation is trivial, that is, E
Y

¯# for all Y and E¯#.

D 8. Let α¯ (α
Y
)
Y`GX

and β¯ (β
Y
)
Y`GX

be elements of E. We define an

element αβ of E by

αβ¯ lim
Y

(α
Y

a β
Z
)
Z`GX

.

We show that this element is well defined. Let Y
!
(respectively Z

!
) be such that the

sequence (α
Y
)
Y%Y

!

(respectively (β
Z
)
Z%Z

!

) is coherent. In the following proof, we shall

always consider elements lower than Y
!

and Z
!
, without necessarily saying so.

By Lemma 7, there exists Z
"

such that β
Z
"

is in E
Z
"
Y
!

, and it follows that for

Z%Z
"
, β

Z
is in E

ZY
!

. So for Z%Z
"
, α

Y
!

a β
Z

is defined; as (α
Y
!

a β
Z
)
Z%Z

"

is clearly

coherent, this defines an element in E.

Furthermore, let Y%Y
!
, and let Z be such that β

Z
`E

ZY
. By Lemma 6, we have

also β
Z
`E

ZY
!

. For all Z «%Z, the elements α
Y
!

a β
Z « and α

Y
a β

Z « are defined;

moreover, it follows easily from the definition of a that they are equal. This means

that (α
Y

a β
Z
)
Z`GX

and (α
Y
!

a β
Z
)
Z`GX

are equivalent modulo +.

As Y is arbitrary, it follows that (α
Y

a β
Z
)
Z`GX

is constant for Y%Y
!
. So the limit

in the definition is well defined, and is an element of E.

R. By definition, for α, β in E, sαβs¯ lim
Y

lim
Z
sα

Y
a β

Z
s
Z
. It then follows

from the fact that s a s% 1 that

sαβs% (lim
Y

sα
Y
s
Y
) (lim

Z

sβ
Z
s
Z
)% sαs sβs,

so the product on E has norm at most 1.
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D 9. Let Y `G
X
, and let T `,(Y,X ). We denote by e(T ) the element

(p
YZ

(Th ))
Z%Y

of E. Every element of E is of the form e(T ) for some T defined on

some Y.

L 8. The space E is a di�ision ring.

Proof. The space E is clearly a ring, with neutral element 14 ¯ e(Id
X
). Now let

α1 0, and letT `,(Y,X ) be such that e(T )¯α. The operatorT is not strictly singular,

otherwise α¯ 0, so passing to a subspace, and considering the restriction of T to this

subspace, we may assume that T is an isomorphism onto some space W. For Z%W,

let β
Z
¯ p

WZ
(T a−") ; β¯ e(T−") is the class of (β

Z
)
Z%W

in E. Then α
Y

a β
W

¯ Id f
W
, so

(α
Y

a β
Z
)
Z%W

¯ 14 and αβ¯ 14 . In the same way, βα¯ 14 . So every non-zero element is

invertible, and as 14 1 04 , E is a division ring.

D 10. Let α `E. Given Y `G
X
, we say that an element T of ,(Y,X ) is

a 2-minimal representati�e for α on Y if α¯ e(T ) and sTs% 2sαs.

L 9. The space E is complete.

Proof. It is enough to show that any normally converging series of E converges

in E.

Let (α
n
)
n`. be a normally converging series in E. We may find a 2-minimal

representative T
!
for α

!
on some Y

!
. Given T

n−"
, a 2-minimal representative for α

n−"

on Y
n−"

, we may find by definition of the semi-norm s[s
Y

a 2-minimal representative

T
n

for α
n

on a subspace Y
n

of Y
n−"

. We can then build by induction a basic sequence

(y
n
)
n`. such that for all n, y

n
`Y

n
. Let Y be the space generated by ²y

n
, n `.´, let Y&n

be the space generated by ²y
k
,k& n´, and let Y!n

be the finite dimensional space

generated by ²y
k
,k! n´. For any n, we define an operator T !

n
on Y as follows:

T !
n
(y)¯T

n
(y) if y `Y&n

, T !
n
(y)¯ 0 if y `Y!n

.

We have that sT !
n
s%CsT

n
s% 2Csα

n
s, where C is a constant associated with the

basis (y
n
)
n`.. Furthermore, e(T !

n
)¯ e(T

n rY&n

)¯ e(T
n
)¯α

n
.

Now the series 3+¢

k=!
T !

k
converges normally, so converges to some H `,(Y,X ).

If we let h¯ e(H ), we have that for all n,

)) h®3
n

k=!

α
k ))¯ )) e 0H®3

n

k=!

T !
k1 ))% ))H®3

n

k=!

T !
k )) ,

so 3+¢

k=!
α
k

converges in E to h.

5. Conclusion

Assume now that X is complex. As E is a division ring, a Banach algebra, the

product has norm 1 and s14 s¯ 1, it follows by the Gelfand–Mazur theorem that E is

isometric to #.

Our theorem follows. Indeed, let Y be in G
X
, and let T be in ,(Y,X ). Let

λ¯ e(T ), where λ is considered as an element of #. Then

e(T®λ Id
Y
)¯ e(T )®λe(Id

Y
)¯ 0.
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This means that 0¯ se(T®λ Id
Y
)s¯ sT®λ Id

Y
s
Y
, that is, T®λ Id

Y
is strictly

singular.

This article is part of my PhD thesis, written under the direction of B. Maurey.

I am very grateful to him for his valuable help.
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