OPERATORS ON SUBSPACES OF HEREDITARILY
INDECOMPOSABLE BANACH SPACES

V. FERENCZI

ABSTRACT

We show that if X is a complex hereditarily indecomposable space, then every operator from a subspace
Y of X to X is of the form A/+ S, where / is the inclusion map and S is strictly singular.

1. Definitions and notation

In the following, by space (respectively subspace), we shall always mean infinite
dimensional Banach space (respectively closed subspace). A hereditarily inde-
composable (or HI) Banach space is a space that does not contain any topological
direct sum of two (infinite dimensional) subspaces. In other words, for all ¢ > 0, and
all subspaces Y and Z of X, there exist two unit vectors y in Y and z in Z such that
| y—z|| <e. This notion was defined by Gowers and Maurey in [2], in which they
actually proved the existence of HI spaces.

An operator S from Y to X is said to be strictly singular if the restriction of S to
a subspace is never an isomorphism into. This is equivalent to saying that for any
e > 0,and any Z < Y, there exists z in Z such that || S(z)| < ¢|/z|. By Proposition 2.c.4
of [3], S is strictly singular if and only if for every Z = Y and every ¢ > 0, there exists
Z' < Z such that ||S, | <e Let #(Y,X) denote the space of strictly singular
operators from Y to X. We recall that for any strictly singular operator S, and any
operators 7 and U for which 7'S and SU are defined, the operators 7S and SU are
strictly singular.

Let Y and Z be two subspaces of X. We say that an operator 7 from Y to Z is
an Id + S-isomorphism if it is an isomorphism of the form Id+ .S, where S is strictly
singular from Y to X. If T is an Id + S-isomorphism, then so is 7°%. If T and U are
Id + S-isomorphisms, then so is 7U when it is defined. The subspaces Y and Z of X
are said to be Id 4+ S-isomorphic if there exists an Id + S-isomorphism from Y onto Z.
We denote by Id, the inclusion map from Y to X, and by G, the set of subspaces of
the Banach space X.

Let X be a complex HI space. It was shown in [2] that every operator from X to
X is of the form A1d , + S, where 4 is complex and S is strictly singular. We generalize
this result by showing that for every subspace Y of X, every operator from Y to X is
of the form A1d, + S, where 4 is complex and S is strictly singular (this was proved
in [2] in the particular case of the Gowers—Maurey space). It is easy to show that
this property is, in fact, equivalent to the HI property: indeed, if X is not HI, and
Y ® Z is a direct sum in X, then the canonical projection from Y @ Z onto Y is not
of the form A1d, g ,+S.
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Even if this result is about complex HI spaces, we shall write the main part of our
proof in the case of a real or complex Banach space. More precisely, we shall show
that if X is HI real or complex, then for Y < X, the space £(Y, X)/ (Y, X) with a
suitable norm embeds in a Banach algebra E which is a division ring. Our main
theorem follows from this property in the complex case and from the Gelfand—Mazur
theorem.

2. A filter on the set of subspaces of X

In this section, we show that the subspaces of an HI space form a filter. First, we
notice that the relation of Id + S-isomorphism is an equivalence relation on G. We
now give a definition.

DerINITION 1. Let Yand Z bein G .. We say that Z < Yif Zis Id + S-isomorphic
to a subspace of Y.

LemMma 1. Let X be HI. Then the relation < defines a filter on G .

Proof. It is clear that < is a pre-ordering. We prove that it is also a filter. Let
Y and Z be in G, and let us find a space W such that W < Y and W < Z. Passing
to subspaces, we may assume that Y (respectively Z) is spanned by a basis with
constant 2; by support of a vector in Y (respectively Z), we shall mean support with
respect to this basis. Then by the HI property, there exist two unit vectors y, in ¥ and
z, in Z, which we may assume finitely supported, with | y,—z,| < 1/16. Let Y]
(respectively Z,) be the space of vectors successive to y, (respectively z,)—by this we
mean the vectors y (respectively z) such that minsupp(y) > maxsupp(y,) (re-
spectively minsupp (z) > maxsupp(z,)). By the HI property, we may find finitely
supported unit vectors y, in Y;, and z, in Z,, such that ||y, —z,| < 1/32. Repeating
this procedure, we find two basic sequences (y,),.y in Y and (z,),.n in Z such that
foralln, || y,—z,| <(1/16)27". Now let Y’ = span{y,,neN}, and let Z" = span{z,,
neN}. The operator T from Y’ to Z’ defined by 7(y,) = z, is of the form Id+ K,
where K is compact, and it is an isomorphism since || 7—1d| < 1/2, so itis an Id + S-
isomorphism. Then Y' < VY, so Y' <Y, and as Y’ is Id+ S-isomorphic to the
subspace Z’ of Z, we have that Y’ < Z.

3. A semi-norm on L(Y,X)

DerINITION 2. Let X be a Banach space. For YeG,, let ||, be defined on
L(Y,X) by
ITl, = sup inf |7},

ZcY Z'cZ

LEMMA 2. Let X be a Banach space, and let Y€ Gy. Then the function |- |, is a
semi-norm on L (Y, X). Furthermore, its kernel is the space of strictly singular operators
(Y, X).

Proof. ltis a direct consequence of Proposition 2.c.4 of [3] that | T'|,, = 0 if and
only if T is strictly singular. Now, to show that |- |, is a semi-norm, it is enough to
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check the triangle inequality. Let T and U belong to £ (Y, X), and let ¢ > 0. Let Z,
be such that the supremum in the definition of |7+ U], is attained in Z, up to e. It
follows that

IT+Ully < T+ U) ll+e < T+ 11Ul +e,

forall Z c Z,.
Now let Z, = Z, be such that inf, _, |7, is attained up to ¢ in Z,; then it is also
attained up to ¢ in any Z < Z,. It follows that

IT+Ully < inf [T+ 1U I +2¢ < [Tl + | Ul +2e,

ASVAN

forall Z < Z,. So

IT+Ully < Ty + inf Ul +2e < [Tl +[Ully+ 2,

zZ<Z,

and this holds for any &, so the triangle inequality is satisfied.

LeEmMA 3. Let X be an HI Banach space, let Ye G, and let Te (Y, X). Then the
quantity inf, _, | T, || does not depend on the choice of the subspace Z of Y.

Proof. Let Z, and Z, be two subspaces of Y. It is enough to prove that for any
¢ >0, and any Z;, < Z,, there is a subspace Z| = Z, such that || T,/ < || 7,[ +e.

Lete > 0, and let Z, = Z,. Some subspace Z of Z, is of the form (Id,, +s) (W),
where W is a subspace of Z), and Id,, + s is an Id + S-isomorphism on W; and passing
to further subspaces, we may assume that s has norm at most ¢ and (Id,, +s) " has
norm at most 1 +e&. Then 7/,- = T(Idy; +) (Id,, +s)*. Now notice that W and Z are
Id + S-isomorphic in the HI space Y, so s takes values in Y; so Ts exists, and it follows
that

1T < I T+ Tl [Ady 497 < (T 1+l T A +e),
o)
1T < I Tzl +e2+e) [T

COROLLARY 1. Let X be an HI Banach space, and let Ye G . Then for all T in
LY, X), and for all Z < Y, | T|, = inf, _, | T,

From now on, X is assumed to be an HI space.

LEMMA 4. Let Y,Z be in Gy, let Te (Y, X), and let Ue L(Z,Y). Then

ITUl, < ITI 1U ] -

Proof. Let Y,Z bein Gy, let Te £(Y,X), and let Ue £ (Z,Y). If U is strictly
singular, then 7'U is strictly singular, and [|[TU|, =0,s0 ||[TU|, < |T|+ U], Now
if U is not strictly singular, let Z’ be a subspace of Z on which U is an isomorphism.
Forany W< Z', |TU|, = infy, _y, |TU,, |, by Corollary 1, so

ITUl, < I Tpwl inf Uyl < [ Towl (U1l

W ew
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The isomorphism U induces a bijection between the set of subspaces of Z” and the set
of subspaces of UZ’, and the above inequality is true for any W < Z’, so

ITU|, < inf [T, Ul
VvcUz’
and by Corollary 1,
ITUll, < [Ty Ul

DerINITION 3. We denote by E,. the quotient space of £ (Y, X) by the kernel of
the semi-norm |- |,.. We shall denote the norm on E,, by || |;; the space E; is not
necessarily complete. We shall denote an element of £, by a5, and for Te £(Y, X),
we denote by T the class of T in E,.

With this new definition, the aim of the article is now to show that if X is complex,
then for all Ye G, E; is isometric to C. We recall that we already know by a result
of [2] that if X is complex, E, is isometric to C.

DerINITION 4. Let Z, Y be in G, such that Z < Y. There exists a subspace Y’ of
Y such that Y’ = (Id+s) Z, where s is strictly singular. We define a linear operator
Py, from E, into E, by .
Dy (T) = T(1d +5).

It is clear that the result does not depend on the choice of s or on the representative
T, so that p,, is well defined. Furthermore, if W < Z < Y, we have the relation
Dyw = Pyw Dy, We have also the following lemma.

LemMma 5. Let Z,Y be in G such that Z < Y. Then py., is a linear isometry.

Proof. The application p,., is clearly linear. Now if Id + s is an Id + S-isomorphic
embedding of Z into Y, and T is a representative for «,., then

Iy o), = ITAd+ )|, < [Tl ITd + 5]l , = lloxy |l

0 || py,Il < 1. Now if Z and Y are Id + S-isomorphic, it follows from what we have
just shown and from the fact that p,,p,,, = Id that p,, is an isometry. If Z < 7, it
follows from Corollary 1 that p,, is an isometry. The general case is then a
consequence of these two assertions and of the definition of <.

We now define a notion of product for elements of E, similar to the composition
of linear operators.

DerINITION 5. Let Y, Z be in G .. We denote by E,, the space of elements of E,
that have a representative 7 such that Im7 < Y.

DEFINITION 6. Let Y, Z be in G. We define a linear mapping from E;, x E,,, into
E,by To U = TU, where T'is any representative in #(Y, X), and U any representative
in X(Z,X) such that ImU < Y. It is clear that this mapping is well defined.
Furthermore, it follows from Lemma 4 that |o| < 1.

LemMma 6. Let Y,Z bein Gy, and let Y' < Y. Then E,,. c E,,.
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Proof. Let Id+s be an Id + S-isomorphism mapping Y’ into Y. Let o, € E,,,
and let 7 be a representative for a, with Im7 < Y’. Then (Id+s) 7T satisfies
(Id+s)T=oa, and Im((Id+s)T) < Y, so a,e E,,.

LemMmAa 7. Let Y,Z be in G, and let o, € E,.. Then there exists Y’ < Y such that
pYY'(aY) € EY/Z'

Proof. 1If a, = 0, then it belongs to E,,. If o, # 0, then let T'in Z(Y,X) be a
representative for o.. It is not strictly singular, so there is a subspace Y’ of Y on which
T is an isomorphism, and passing to a subspace, we may assume that there is an
Id + S-embedding Id+s of TY" into Z. The operator (Id+s) 7, has its image in Z,
and satisfies (Id+s) 1. T = PyyAy), SO Py, )EE, .

4. A limit space E

DEFINITION 7. An element (0ty) . Of [, ((Ey)ycq ) is said to be coherent if there
exists ¥,€ G, such that for all Y < Y, a, :pYOY(ocYUj. Let & be the set of coherent
elements of /,((Ey)y.q ). The space & is clearly a linear space.

By Lemma 5, for such an element, ||, |, is constant and equal to lloty, Ily, for
Y < ¥,; so limy, ||a, ||y is defined and is a semi-norm on &. Let " be the space of
elements of & such that limy, [|o; |, = 0. We let E be the quotient space of & by 7.
By abuse of notation, we shall denote by a = (o), an element of E. The space E
is, in fact, the algebraic inductive limit of the system (Ey, Dyy) (see [1] for a general
definition), but remember that we shall finally prove that, at least in the complex case,
the situation is trivial, that is, E;, = C for all Y and £ = C.

DEFINITION 8. Let a = (&ty)y, and f = (By)ycq, be elements of E. We define an
element of of E by ‘

afp = lim (ot oﬁZ)ZeGX'
Y

We show that this element is well defined. Let Y, (respectively Z,) be such that the
sequence (o)  y, (respectively (8,), - ;) is coherent. In the following proof, we shall
always consider elements lower than ¥, and Z,, without necessarily saying so.

By Lemma 7, there exists Z; such that f, is in E, ,, and it follows that for
Z<Z, p,isin E,y. So for Z< Z,, oy 0f, is deﬁned as (aty, 08,), < , is clearly
coherent, this defines an element in E.

Furthermore, let Y < ¥, and let Z be such that §,€ E,,.. By Lemma 6, we have
also f,€E,,. For all Z'<Z, the elements o, of, and o, o0f, are defined;
moreover, it follows easily from the definition of o that they are equal. This means
that (ot;,0f,) ¢, and (o, 0 ;)¢ are equivalent modulo 7.

As Y is arbitrary, it follows that (a; 0f,),.. is constant for ¥ < ¥,. So the limit
in the definition is well defined, and is an element of E.

REMARK. By definition, for «, fin E, ||af| = lim, lim, ||a, o 8, ,. It then follows
from the fact that ||o| < 1 that

loBll < (lim oty [[y) (lim || ) < llexl| 181,

so the product on E has norm at most 1.
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DEFINITION 9. Let YeGy, and let Te (Y, X). We denote by e(T) the element
(pyAT)), <y of E. Every element of E is of the form e(7") for some T defined on
some Y.

LEMMA 8. The space E is a division ring.

Proof. The space E is clearly a ring, with neutral element 1 = e(Id,). Now let
o # 0,andlet Te £(Y, X) besuch thate(T) = . The operator T'is not strictly singular,
otherwise o = 0, so passing to a subspace, and considering the restriction of 7 to this
subspace, we may assume that 7'is an isomorphism onto some space W. For Z < W,
let B, =pu T); f=e(T" 1) is the class of (8,),.y in E. Then o, 0p, = Idw, so
(2, 08,), < =1and aff = 1. In the same way, floc = 1. So every non-zero element is
invertible, and as 1 # 0, E is a division ring.

DEerINITION 10.  Let e E. Given Ye G, we say that an element 7 of £(Y, X) is
a 2-minimal representative for o on Y if o = e(T) and || T| < 2| |-

LemMA 9. The space E is complete.

Proof. Itis enough to show that any normally converging series of E converges
in E.

Let (2,),.y be a normally converging series in E. We may find a 2-minimal
representative 7, for o, on some Y. Given 7,_,, a 2-minimal representative for a,_,
on Y, ,, we may find by definition of the semi-norm || - ||;- a 2-minimal representative
T, for o, on a subspace Y, of Y, _,. We can then build by induction a basic sequence
(¥,)nen such that for all n, y, € Y,. Let Y be the space generated by {y,,neN}, let ¥ ,
be the space generated by {y,.k = n}, and let Y_, be the finite dimensional space
generated by {y,,k < n}. For any n, we define an operator 7, on Y as follows:

T\(»=TWifyeY,,, T,y =0ifyeY_,
We have that || < C||T,| <2C|a,|, where C is a constant associated with the
basis (y,),n- Furthermore, e(77,) = e(7, . )=e(T) =,
Now the series ) %, T, converges normally, so converges to some He Z(Y, X).
If we let h = e(H), we have that for all n,

e(H— ) T;c)
k=0

<|la-L

n
h=>Y a,
k=0

so Y r* o, converges in E to h.

5. Conclusion

Assume now that X is complex. As E is a division ring, a Banach algebra, the
product has norm 1 and ||1| = 1, it follows by the Gelfand—Mazur theorem that E is
isometric to C.

Our theorem follows. Indeed, let Y be in G,, and let 7 be in Z(Y,X). Let
A =e(T), where A is considered as an element of C. Then

o(T—1d,) = e(T)—Je(Id,) = 0.
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This means that 0 = ||e(T—4ld,)|| = | T—AId, ||y, that is, T—AlId, is strictly
singular.

This article is part of my PhD thesis, written under the direction of B. Maurey.
I am very grateful to him for his valuable help.
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