OPERATORS ON SUBSPACES OF HEREDITARILY INDECOMPOSABLE BANACH SPACES

V. FERENCZI

Abstract

We show that if X is a complex hereditarily indecomposable space, then every operator from a subspace Y of X to X is of the form $\lambda I + S$, where I is the inclusion map and S is strictly singular.

1. Definitions and notation

In the following, by *space* (respectively *subspace*), we shall always mean infinite dimensional Banach space (respectively closed subspace). A *hereditarily inde-composable* (or HI) Banach space is a space that does not contain any topological direct sum of two (infinite dimensional) subspaces. In other words, for all $\varepsilon > 0$, and all subspaces Y and Z of X, there exist two unit vectors y in Y and z in Z such that $||y-z|| \leq \varepsilon$. This notion was defined by Gowers and Maurey in [2], in which they actually proved the existence of HI spaces.

An operator S from Y to X is said to be *strictly singular* if the restriction of S to a subspace is never an isomorphism into. This is equivalent to saying that for any $\varepsilon > 0$, and any $Z \subset Y$, there exists z in Z such that $||S(z)|| \le \varepsilon ||z||$. By Proposition 2.c.4 of [3], S is strictly singular if and only if for every $Z \subset Y$ and every $\varepsilon > 0$, there exists $Z' \subset Z$ such that $||S_{|Z'}|| \le \varepsilon$. Let $\mathscr{S}(Y, X)$ denote the space of strictly singular operators from Y to X. We recall that for any strictly singular operator S, and any operators T and U for which TS and SU are defined, the operators TS and SU are strictly singular.

Let Y and Z be two subspaces of X. We say that an operator T from Y to Z is an Id + S-isomorphism if it is an isomorphism of the form Id + S, where S is strictly singular from Y to X. If T is an Id + S-isomorphism, then so is T^{-1} . If T and U are Id + S-isomorphisms, then so is TU when it is defined. The subspaces Y and Z of X are said to be Id + S-isomorphic if there exists an Id + S-isomorphism from Y onto Z. We denote by Id_Y the inclusion map from Y to X, and by G_X the set of subspaces of the Banach space X.

Let X be a complex HI space. It was shown in [2] that every operator from X to X is of the form $\lambda \operatorname{Id}_X + S$, where λ is complex and S is strictly singular. We generalize this result by showing that for every subspace Y of X, every operator from Y to X is of the form $\lambda \operatorname{Id}_Y + S$, where λ is complex and S is strictly singular (this was proved in [2] in the particular case of the Gowers-Maurey space). It is easy to show that this property is, in fact, equivalent to the HI property: indeed, if X is not HI, and $Y \oplus Z$ is a direct sum in X, then the canonical projection from $Y \oplus Z$ onto Y is not of the form $\lambda \operatorname{Id}_{Y \oplus Z} + S$.

Received 24 November 1995; revised 24 June 1996.

¹⁹⁹¹ Mathematics Subject Classification 46B20, 47B99.

Bull. London Math. Soc. 29 (1997) 338-344

Even if this result is about complex HI spaces, we shall write the main part of our proof in the case of a real or complex Banach space. More precisely, we shall show that if X is HI real or complex, then for $Y \subset X$, the space $\mathcal{L}(Y, X)/\mathcal{S}(Y, X)$ with a suitable norm embeds in a Banach algebra E which is a division ring. Our main theorem follows from this property in the complex case and from the Gelfand–Mazur theorem.

2. A filter on the set of subspaces of X

In this section, we show that the subspaces of an HI space form a filter. First, we notice that the relation of Id + S-isomorphism is an equivalence relation on G_X . We now give a definition.

DEFINITION 1. Let Y and Z be in G_X . We say that $Z \leq Y$ if Z is Id + S-isomorphic to a subspace of Y.

LEMMA 1. Let X be HI. Then the relation \leq defines a filter on G_X .

Proof. It is clear that \leq is a pre-ordering. We prove that it is also a filter. Let Y and Z be in G_y , and let us find a space W such that $W \leq Y$ and $W \leq Z$. Passing to subspaces, we may assume that Y (respectively Z) is spanned by a basis with constant 2; by support of a vector in Y (respectively Z), we shall mean support with respect to this basis. Then by the HI property, there exist two unit vectors y_0 in Y and z_0 in Z, which we may assume finitely supported, with $\|y_0 - z_0\| \leq 1/16$. Let Y_1 (respectively Z_1) be the space of vectors successive to y_0 (respectively z_0)—by this we mean the vectors y (respectively z) such that min supp $(y) > \max \operatorname{supp}(y_0)$ (respectively min supp $(z) > \max \text{ supp } (z_0)$). By the HI property, we may find finitely supported unit vectors y_1 in Y_1 , and z_1 in Z_1 , such that $||y_1 - z_1|| \le 1/32$. Repeating this procedure, we find two basic sequences $(y_n)_{n\in\mathbb{N}}$ in Y and $(z_n)_{n\in\mathbb{N}}$ in Z such that for all n, $||y_n - z_n|| \leq (1/16)2^{-n}$. Now let $Y' = \operatorname{span}\{y_n, n \in \mathbb{N}\}$, and let $Z' = \operatorname{span}\{z_n, n \in \mathbb{N}\}$. $n \in \mathbb{N}$ }. The operator T from Y' to Z' defined by $T(y_n) = z_n$ is of the form $\mathrm{Id} + K$, where K is compact, and it is an isomorphism since $||T-Id|| \le 1/2$, so it is an Id + Sisomorphism. Then $Y' \subset Y$, so $Y' \leq Y$, and as Y' is Id+S-isomorphic to the subspace Z' of Z, we have that $Y' \leq Z$.

3. A semi-norm on $\mathscr{L}(Y, X)$

DEFINITION 2. Let X be a Banach space. For $Y \in G_X$, let $\|\cdot\|_Y$ be defined on $\mathscr{L}(Y, X)$ by

$$||T||_{Y} = \sup_{Z \subseteq Y} \inf_{Z' \subseteq Z} ||T_{|Z'}||.$$

LEMMA 2. Let X be a Banach space, and let $Y \in G_X$. Then the function $\|\cdot\|_Y$ is a semi-norm on $\mathcal{L}(Y, X)$. Furthermore, its kernel is the space of strictly singular operators $\mathcal{L}(Y, X)$.

Proof. It is a direct consequence of Proposition 2.c.4 of [3] that $||T||_Y = 0$ if and only if T is strictly singular. Now, to show that $||\cdot||_Y$ is a semi-norm, it is enough to

check the triangle inequality. Let T and U belong to $\mathscr{L}(Y, X)$, and let $\varepsilon > 0$. Let Z_0 be such that the supremum in the definition of $||T + U||_Y$ is attained in Z_0 up to ε . It follows that

$$\|T+U\|_{Y} \leq \|(T+U)_{|Z}\| + \varepsilon \leq \|T_{|Z}\| + \|U_{|Z}\| + \varepsilon,$$

for all $Z \subset Z_0$.

Now let $Z_1 \subset Z_0$ be such that $\inf_{Z \subset Z_0} ||T_{|Z}||$ is attained up to ε in Z_1 ; then it is also attained up to ε in any $Z \subset Z_1$. It follows that

$$\|T+U\|_{Y} \leq \inf_{Z \subset \mathbb{Z}_{0}} \|T_{|Z}\| + \|U_{|Z}\| + 2\varepsilon \leq \|T\|_{Y} + \|U_{|Z}\| + 2\varepsilon,$$

for all $Z \subset Z_1$. So

$$\|T+U\|_{Y} \leq \|T\|_{Y} + \inf_{Z \subset Z_{1}} \|U_{|Z}\| + 2\varepsilon \leq \|T\|_{Y} + \|U\|_{Y} + 2\varepsilon,$$

and this holds for any ε , so the triangle inequality is satisfied.

LEMMA 3. Let X be an HI Banach space, let $Y \in G_X$, and let $T \in \mathcal{L}(Y, X)$. Then the quantity $\inf_{Z' \in Z} ||T_{|Z'}||$ does not depend on the choice of the subspace Z of Y.

Proof. Let Z_1 and Z_2 be two subspaces of Y. It is enough to prove that for any $\varepsilon > 0$, and any $Z'_2 \subset Z_2$, there is a subspace $Z'_1 \subset Z_1$ such that $||T_{|Z'_1}|| \leq ||T_{|Z'_2}|| + \varepsilon$.

Let $\varepsilon > 0$, and let $Z'_2 \subset Z_2$. Some subspace Z'_1 of Z_1 is of the form $(\mathrm{Id}_W + s)(W)$, where W is a subspace of Z'_2 and $\mathrm{Id}_W + s$ is an Id + S-isomorphism on W; and passing to further subspaces, we may assume that s has norm at most ε and $(\mathrm{Id}_W + s)^{-1}$ has norm at most $1 + \varepsilon$. Then $T_{|Z'_1} = T(\mathrm{Id}_W + s)(\mathrm{Id}_W + s)^{-1}$. Now notice that W and Z'_1 are Id + S-isomorphic in the HI space Y, so s takes values in Y; so Ts exists, and it follows that

$$||T_{|Z_1'}|| \leq ||T_{|W} + Ts|| ||(\mathrm{Id}_W + s)^{-1}|| \leq (||T_{|Z_2'}|| + \varepsilon ||T||)(1 + \varepsilon),$$

so

$$\|T_{|Z'_1}\| \leq \|T_{|Z'_2}\| + \varepsilon(2+\varepsilon) \|T\|.$$

COROLLARY 1. Let X be an HI Banach space, and let $Y \in G_X$. Then for all T in $\mathscr{L}(Y, X)$, and for all $Z \subset Y$, $||T||_Y = \inf_{Z' \subset Z} ||T_{|Z'}||$.

From now on, X is assumed to be an HI space.

LEMMA 4. Let Y, Z be in G_X , let $T \in \mathcal{L}(Y, X)$, and let $U \in \mathcal{L}(Z, Y)$. Then

$$||TU||_{z} \leq ||T||_{y} ||U||_{z}$$

Proof. Let Y, Z be in G_X , let $T \in \mathscr{L}(Y, X)$, and let $U \in \mathscr{L}(Z, Y)$. If U is strictly singular, then TU is strictly singular, and $||TU||_Z = 0$, so $||TU||_Z \leq ||T||_Y ||U||_Z$. Now if U is not strictly singular, let Z' be a subspace of Z on which U is an isomorphism. For any $W \subset Z'$, $||TU||_Z = \inf_{W' \subset W} ||TU|_{W'}||$, by Corollary 1, so

$$\|TU\|_{z} \leqslant \|T_{|UW}\| \inf_{W' \subset W} \|U_{|W'}\| \leqslant \|T_{|UW}\| \|U\|_{z}.$$

340

The isomorphism U induces a bijection between the set of subspaces of Z' and the set of subspaces of UZ', and the above inequality is true for any $W \subset Z'$, so

$$\|TU\|_{z} \leq \inf_{V \in UZ'} \|T_{|V|}\| \|U\|_{z},$$
$$\|TU\|_{z} \leq \|T\|_{Y} \|U\|_{z}.$$

and by Corollary 1,

we denote by \tilde{T} the class of T in E_{γ} .

DEFINITION 3. We denote by E_Y the quotient space of $\mathscr{L}(Y, X)$ by the kernel of the semi-norm $\|\cdot\|_Y$. We shall denote the norm on E_Y by $\|\cdot\|_Y$; the space E_Y is not necessarily complete. We shall denote an element of E_Y by α_Y , and for $T \in \mathscr{L}(Y, X)$,

With this new definition, the aim of the article is now to show that if X is complex, then for all $Y \in G_X$, E_Y is isometric to \mathbb{C} . We recall that we already know by a result of [2] that if X is complex, E_X is isometric to \mathbb{C} .

DEFINITION 4. Let Z, Y be in G_X such that $Z \leq Y$. There exists a subspace Y' of Y such that $Y' = (\mathrm{Id} + s)Z$, where s is strictly singular. We define a linear operator p_{YZ} from E_Y into E_Z by

$$p_{YZ}(\tilde{T}) = T(\mathrm{Id} + s).$$

It is clear that the result does not depend on the choice of s or on the representative T, so that p_{YZ} is well defined. Furthermore, if $W \le Z \le Y$, we have the relation $p_{YW} = p_{ZW}p_{YZ}$. We have also the following lemma.

LEMMA 5. Let Z, Y be in G_X such that $Z \leq Y$. Then p_{YZ} is a linear isometry.

Proof. The application p_{YZ} is clearly linear. Now if Id + s is an Id + S-isomorphic embedding of Z into Y, and T is a representative for α_Y , then

$$\|p_{YZ}(\alpha_Y)\|_Z = \|T(\mathrm{Id} + s)\|_Z \le \|T\|_Y \|\mathrm{Id} + s\|_Z = \|\alpha_Y\|_Y,$$

so $||p_{YZ}|| \leq 1$. Now if Z and Y are Id + S-isomorphic, it follows from what we have just shown and from the fact that $p_{YZ}p_{ZY} = \text{Id that } p_{YZ}$ is an isometry. If $Z \subset Y$, it follows from Corollary 1 that p_{YZ} is an isometry. The general case is then a consequence of these two assertions and of the definition of \leq .

We now define a notion of product for elements of E_y similar to the composition of linear operators.

DEFINITION 5. Let Y, Z be in G_X . We denote by E_{ZY} the space of elements of E_Z that have a representative T such that Im $T \subset Y$.

DEFINITION 6. Let Y, Z be in G_X . We define a linear mapping from $E_Y \times E_{ZY}$ into E_Z by $\tilde{T} \circ \tilde{U} = \tilde{TU}$, where T is any representative in $\mathscr{L}(Y, X)$, and U any representative in $\mathscr{L}(Z, X)$ such that Im $U \subset Y$. It is clear that this mapping is well defined. Furthermore, it follows from Lemma 4 that $||\circ|| \leq 1$.

LEMMA 6. Let Y, Z be in G_X , and let $Y' \leq Y$. Then $E_{ZY'} \subset E_{ZY}$.

V. FERENCZI

Proof. Let Id + s be an Id + S-isomorphism mapping Y' into Y. Let $\alpha_z \in E_{ZY'}$, and let T be a representative for α_z with $Im T \subset Y'$. Then (Id + s) T satisfies $(Id + s) T = \alpha_z$ and $Im ((Id + s) T) \subset Y$, so $\alpha_z \in E_{ZY}$.

LEMMA 7. Let Y, Z be in G_X , and let $\alpha_Y \in E_Y$. Then there exists $Y' \leq Y$ such that $p_{YY'}(\alpha_Y) \in E_{Y'Z}$.

Proof. If $\alpha_Y = 0$, then it belongs to E_{YZ} . If $\alpha_Y \neq 0$, then let T in $\mathscr{L}(Y, X)$ be a representative for α_Y . It is not strictly singular, so there is a subspace Y' of Y on which T is an isomorphism, and passing to a subspace, we may assume that there is an Id + S-embedding Id + s of TY' into Z. The operator $(Id + s) T_{|Y'}$ has its image in Z, and satisfies $(\overline{Id + s}) T_{|Y'} = \overline{T}_{|Y'} = p_{YY'}(\alpha_Y)$, so $p_{YY'}(\alpha_Y) \in E_{Y'Z}$.

4. A limit space E

DEFINITION 7. An element $(\alpha_Y)_{Y \in G_X}$ of $l_{\infty}((E_Y)_{Y \in G_X})$ is said to be *coherent* if there exists $Y_0 \in G_X$ such that for all $Y \leq Y_0$, $\alpha_Y = p_{Y_0 Y}(\alpha_{Y_0})$. Let \mathscr{E} be the set of coherent elements of $l_{\infty}((E_Y)_{Y \in G_X})$. The space \mathscr{E} is clearly a linear space.

By Lemma 5, for such an element, $\|\alpha_Y\|_Y$ is constant and equal to $\|\alpha_{Y_0}\|_{Y_0}$ for $Y \leq Y_0$; so $\lim_Y \|\alpha_Y\|_Y$ is defined and is a semi-norm on \mathscr{E} . Let \mathscr{H} be the space of elements of \mathscr{E} such that $\lim_Y \|\alpha_Y\|_Y = 0$. We let *E* be the quotient space of \mathscr{E} by \mathscr{H} . By abuse of notation, we shall denote by $\alpha = (\alpha_Y)_{Y \in G_X}$ an element of *E*. The space *E* is, in fact, the algebraic inductive limit of the system (E_Y, p_{ZY}) (see [1] for a general definition), but remember that we shall finally prove that, at least in the complex case, the situation is trivial, that is, $E_Y = \mathbb{C}$ for all *Y* and $E = \mathbb{C}$.

DEFINITION 8. Let $\alpha = (\alpha_Y)_{Y \in G_X}$ and $\beta = (\beta_Y)_{Y \in G_X}$ be elements of *E*. We define an element $\alpha\beta$ of *E* by

$$\alpha\beta = \lim_{Y} (\alpha_{Y} \circ \beta_{Z})_{Z \in G_{X}}.$$

We show that this element is well defined. Let Y_0 (respectively Z_0) be such that the sequence $(\alpha_Y)_{Y \leq Y_0}$ (respectively $(\beta_Z)_{Z \leq Z_0}$) is coherent. In the following proof, we shall always consider elements lower than Y_0 and Z_0 , without necessarily saying so.

By Lemma 7, there exists Z_1 such that β_{Z_1} is in $E_{Z_1Y_0}$, and it follows that for $Z \leq Z_1$, β_Z is in E_{ZY_0} . So for $Z \leq Z_1$, $\alpha_{Y_0} \circ \beta_Z$ is defined; as $(\alpha_{Y_0} \circ \beta_Z)_{Z \leq Z_1}$ is clearly coherent, this defines an element in E.

Furthermore, let $Y \leq Y_0$, and let Z be such that $\beta_Z \in E_{ZY}$. By Lemma 6, we have also $\beta_Z \in E_{ZY_0}$. For all $Z' \leq Z$, the elements $\alpha_{Y_0} \circ \beta_{Z'}$ and $\alpha_Y \circ \beta_{Z'}$ are defined; moreover, it follows easily from the definition of \circ that they are equal. This means that $(\alpha_Y \circ \beta_Z)_{Z \in G_X}$ and $(\alpha_{Y_0} \circ \beta_Z)_{Z \in G_X}$ are equivalent modulo \mathscr{K} .

As *Y* is arbitrary, it follows that $(\alpha_Y \circ \beta_Z)_{Z \in G_X}$ is constant for $Y \leq Y_0$. So the limit in the definition is well defined, and is an element of *E*.

REMARK. By definition, for α, β in E, $\|\alpha\beta\| = \lim_{Y} \lim_{Z} \|\alpha_{Y} \circ \beta_{Z}\|_{Z}$. It then follows from the fact that $\|\circ\| \leq 1$ that

$$\|\alpha\beta\| \leq (\lim_{Y} \|\alpha_{Y}\|_{Y})(\lim_{Z} \|\beta_{Z}\|_{Z}) \leq \|\alpha\| \|\beta\|,$$

so the product on E has norm at most 1.

342

DEFINITION 9. Let $Y \in G_X$, and let $T \in \mathscr{L}(Y, X)$. We denote by e(T) the element $(p_{YZ}(\tilde{T}))_{Z \leq Y}$ of *E*. Every element of *E* is of the form e(T) for some *T* defined on some *Y*.

LEMMA 8. The space E is a division ring.

Proof. The space *E* is clearly a ring, with neutral element $\tilde{1} = e(Id_X)$. Now let $\alpha \neq 0$, and let $T \in \mathscr{L}(Y, X)$ be such that $e(T) = \alpha$. The operator *T* is not strictly singular, otherwise $\alpha = 0$, so passing to a subspace, and considering the restriction of *T* to this subspace, we may assume that *T* is an isomorphism onto some space *W*. For $Z \leq W$, let $\beta_Z = p_{WZ}(\overline{T^{-1}})$; $\beta = e(T^{-1})$ is the class of $(\beta_Z)_{Z \leq W}$ in *E*. Then $\alpha_Y \circ \beta_W = Id_W$, so $(\alpha_Y \circ \beta_Z)_{Z \leq W} = 1$ and $\alpha\beta = 1$. In the same way, $\beta\alpha = 1$. So every non-zero element is invertible, and as $1 \neq 0$, *E* is a division ring.

DEFINITION 10. Let $\alpha \in E$. Given $Y \in G_X$, we say that an element T of $\mathscr{L}(Y, X)$ is a 2-minimal representative for α on Y if $\alpha = e(T)$ and $||T|| \leq 2||\alpha||$.

LEMMA 9. The space E is complete.

Proof. It is enough to show that any normally converging series of *E* converges in *E*.

Let $(\alpha_n)_{n \in \mathbb{N}}$ be a normally converging series in *E*. We may find a 2-minimal representative T_0 for α_0 on some Y_0 . Given T_{n-1} , a 2-minimal representative for α_{n-1} on Y_{n-1} , we may find by definition of the semi-norm $\|\cdot\|_Y$ a 2-minimal representative T_n for α_n on a subspace Y_n of Y_{n-1} . We can then build by induction a basic sequence $(y_n)_{n \in \mathbb{N}}$ such that for all $n, y_n \in Y_n$. Let Y be the space generated by $\{y_n, n \in \mathbb{N}\}$, let $Y_{\ge n}$ be the space generated by $\{y_k, k \ge n\}$, and let $Y_{< n}$ be the finite dimensional space generated by $\{y_k, k < n\}$. For any n, we define an operator T'_n on Y as follows:

$$T'_{n}(y) = T_{n}(y)$$
 if $y \in Y_{\geq n}$, $T'_{n}(y) = 0$ if $y \in Y_{< n}$.

We have that $||T'_n|| \leq C ||T_n|| \leq 2C ||\alpha_n||$, where *C* is a constant associated with the basis $(y_n)_{n \in \mathbb{N}}$. Furthermore, $e(T'_n) = e(T_n|_{Y_{\geq n}}) = e(T_n) = \alpha_n$.

Now the series $\sum_{k=0}^{+\infty} T'_k$ converges normally, so converges to some $H \in \mathscr{L}(Y, X)$. If we let h = e(H), we have that for all n,

$$\left\|h-\sum_{k=0}^{n}\alpha_{k}\right\|=\left\|e\left(H-\sum_{k=0}^{n}T'_{k}\right)\right\|\leqslant\left\|H-\sum_{k=0}^{n}T'_{k}\right\|,$$

so $\sum_{k=0}^{+\infty} \alpha_k$ converges in *E* to *h*.

5. Conclusion

Assume now that X is complex. As E is a division ring, a Banach algebra, the product has norm 1 and $\|\tilde{1}\| = 1$, it follows by the Gelfand–Mazur theorem that E is isometric to \mathbb{C} .

Our theorem follows. Indeed, let Y be in G_X , and let T be in $\mathscr{L}(Y, X)$. Let $\lambda = e(T)$, where λ is considered as an element of \mathbb{C} . Then

$$e(T - \lambda \operatorname{Id}_Y) = e(T) - \lambda e(\operatorname{Id}_Y) = 0$$

This means that $0 = ||e(T - \lambda \operatorname{Id}_Y)|| = ||T - \lambda \operatorname{Id}_Y||_Y$, that is, $T - \lambda \operatorname{Id}_Y$ is strictly singular.

This article is part of my PhD thesis, written under the direction of B. Maurey. I am very grateful to him for his valuable help.

References

1. N. BOURBAKI, Algèbre, Vol. II (Masson, Paris, 1963) 90.

2. W. T. GOWERS and B. MAUREY, 'The unconditional basic sequence problem', J. Amer. Math. Soc. 6 (1993) 851–874.

3. J. LINDENSTRAUSS and L. TZAFRIRI, Classical Banach spaces I (Springer, New York, 1977).

Equipe d'Analyse et de Mathématiques Appliquées Université de Marne la Vallée 2, rue de la Butte Verte 93166 Noisy le Grand Cedex France

Current address Equipe d'Analyse Université Paris 6 4 Place Jussieu 75252 Paris Cedex 05 France

344