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Abstract
We construct a uniformly convex hereditarily indecomposable Banach
space, using similar methods as Gowers and Maurey in [@] and the

theory of complex interpolation for a family of Banach spaces of Coifman,
Cwikel, Rochberg, Sagher and Weiss ( @])

Introduction A hereditarily indecomposable (or H.I.) space is an infinite di-
mensional Banach space such that no subspace can be written as the topological
sum of two infinite dimensional subspaces. As an easy consequence, no such
space can contain an unconditional basic sequence. This notion also appears as
the "worst’ type of subspace of a Banach space in [G]. In [GM], Gowers and
Maurey constructed the first known example of a hereditarily indecomposable
space. Gowers-Maurey space is reflexive, however it is not uniformly convex. In
this article, we provide an example of a uniformly convex hereditarily indecom-
posable space.

1 A class of uniformly convex Banach spaces

1.1 Definitions

Let cgp be the space of sequences of scalars all but finitely many of which are
zero. Let eq, eq, ... be its unit vector basis. If £ C N, then we shall also use the
letter E for the projection from cgg to cop defined by E(Z;’il a;e;) = ZieE a;e;.
If E,F C N, then we write E < F to mean that sup F < inf F. An interval
of integers is a subset of N of the form {a,a + 1,...,b} for some a,b € N. For
N in N, Ex denotes the interval {1,..., N}. The range of a vector z in ¢,
written ran(z), is the smallest interval E such that Ex = z. We shall write
z < y to mean ran(z) < ran(y). If x1 < --- <z, we shall say that z1,...,2,
are successive.

The corresponding notation about range and successive functions will be
used for analytic functions with values in ¢gp ( the range of such functions is
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always finite). Let X be the class of normed spaces of the form (coo, ||.]|), such
that (e;)$2, is a normalized bimonotone basis. By a block basis in a space X € X
we mean a sequence i, Ts,... of successive non-zero vectors in X ( note that
such a sequence must be a basic sequence) and by a block subspace of a space
X € X we mean a subspace generated by a block basis.

Let f be the function logy(x + 1). If X € X, and all successive vectors
T1,...,x, in X satisfy the inequality f(n)~' D1 [|lz;| < || >0 ]|, then we
say that X satisfies a lower f-estimate.

Let ¢ > 1 in R, ¢’ such that 1/¢+ 1/¢' = 1. Let 6 € ]0,1[ , and p be the
number defined by 1/p=1—-60+6/q.

Let S be the strip {z € C/Re(z) € [0,1]}, S its boundary, So the line
{z/Re(z) = 0}, S; the line {z/Re(z) = 1}. Let u be the Poisson probability
measure associated to the point 0 for the strip S. We have p(Sp) = 1 — 6. Let
o be the probability measure on R defined by po(A) = pu(iA)/(1—0), p1 be the
probability measure on R defined by u1(A4) = u(l +iA)/6. Let Ag be the set
of analytic functions F' on S, with values in cgg, which are Ly on .S for dy and
which satisfy the Poisson integral representation F(z0) = [;4 F(2)dP;,(2) on S
( this is well defined since such functions have finite ranges). If F' is analytic
and bounded on S, then F' € Ag.

We recall the definition of the interpolation space of a family of N-dimen-
sional spaces from [fd. Let ||.||, for z in S be a family of norms on CV,
equivalent with log-integrable constants, and such that z — ||z||, is measur-
able for all z in CV. The interpolation space in 6 is defined by the norm
2] = infpe .y, F0)=2([.css |1 F(2)]|2dp(z)), where AY denotes the image of

the canonical projection from Ag into the space of functions from S to C¥.

We generalize to the infinite-dimensional case as follows. Let {X,,z € 05}
be a family of Banach spaces in X', equipped with norms ||.||, such that for all
in oo, the function z — ||x||, is measurable, and such that over vectors of finite
range N, the norms |||, are equivalent with log-integrable constants. Let XV
be ExX., X¥ be the f-interpolation space of the family X?'; the interpolation
space of the family in @ is completion(UyenX ™).

Now let {X;,t € R} be a family of spaces in X, equipped with norms |||,
such that for all ¢ in R, X} satisfies a f-lower estimate and for all = in c¢gg, the
function ¢ + ||z||; is measurable. For vectors of range at most Ey, we have
F(N)"Yzll1 < ||z|l¢ < ||z|1, so that the norms ||.||; are equivalent to ||.|; with
log-integrable constants. We are then allowed to define the f-interpolation space
of the family defined on 65 as X; if z =it, [, if z =1+ it. Let Xp be the class
of spaces X obtained in that way.

We shall sometimes use for z € §S the notation ||.||,, to mean ||.||¢ if z = it,
and ||.||q if z = 1+ ét. There will be no ambiguity from the context. We shall
similarly use the notation ||.||*. The notation X}¥ stands for EyX;, and X}V*
for EnX[. Also, if not specified, the measure of a subset of R will be its measure
for pyg.



1.2 Properties of &)

Let X be in Ay and z be in X. Let Ap(x) be the set of functions in Ag that
take the value z at the point 6. Given 6, it is the set of interpolation functions
for x. By definition, for all z in X, [|z]| = inf pea,(2)([,cs9 I1F(2)[lzdp(2)). The
following theorem is a useful result of [E]

Theorem 1 If z is of finite range, there is an interpolation function F for x,
that we shall call minimal for z, with ran(F) = ran(x) and such that

|E @)l = l|z|| a-e. and ||F(1 +it)|lq = ||| a-e. .

Lemma 1 The following formula is also true:

foll =, dut ([ 1ol ) (f IF(1+it)|qdu1(t))9-

Proof First notice that for any F' in Ap(z), by a convexity inequality, the
argument in the second infimum is smaller than

=0 ([ IF@au(o) +6 ([ 170+l o)

equal to [ _so[|F(2)]|-du(2), so that the second infimum is smaller than the
first one.

Now, given u € R, the map G, defined on Ay(z) by G, (F)(z) = F(z)e**=9
is a bijection on Agy(x). Furthermore, for any u, the expressions

([ 1o lhauot ) ( G 1+it)||qdu1(t))9
([ 1r ) - ([ e+ i @)6

are equal. If we choose a proper u (namely such that [, [[(Gu(F)(it)||;dpo(t) =

Je IGu(F)(1 +it)|lqdpa (t)), this is also equal to [, s« [|Gu(F)(2)||-du(z). Con-
sequently, the two infima are actually equal.

and

Proposition 1  For all successive vectors x1 < -+ < x, in X,
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Proof It is enough to prove this in the interpolation space XV defined above,
written in short (XN, 1))g, for any N > 1.

First inequality The unit ball of X} is stable under sums of the form
371 Ajyj, where the y; are successive in the unit ball of X}V and 327, [A;] = 1.

The unit ball of I)¥ is stable under sums of the form Z?Zl t;25, where the
z; are successive in the unit ball of IYand Z?:l |12 =1.

Consequently, the unit ball of XV is stable under successive sums of the
form Z?Zl A;feung, where the z; are in the unit ball of X and \; and p;
satisfy the above conditions. Indeed, for every z; in the unit ball of X N et
F; be minimal for z;; the function F' defined by F(z) = Z?Zl /\Jlfzquj (2) is
then in Ag and bounded by 1 a.e. on 45, so by definition, || F(0)| < 1, that is,
> A% pf2; is in the unit ball of XV,

Now consider any successive vectors x; in X%, and apply this stability
property to x;/|lz;ll and Nj = pf = [a;]|P/ 377, [|#][P. Using the equality
1—0+4+6/q=1/p, one finally gets:

P
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This inequality will be called the upper p-estimate for X.

n
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j=1

Second inequality According to [@], the duality property is true in finite
dimension, that is X™* = ((XN)*,1*)s. As X, satisfies a lower f-estimate,
so does X}V; the dual version of this is that the unit ball of (X}V)* is stable
under sums of the form (1/f(n))> "_, yj, where the y? are successive. As
lév * = lé\,[ , we know that its unit ball is stable under successive sums of the
form Y77 pjz, where 370, |uj|q/ = 1. Letting \; = 1/f(n) for each j, and
using the same proof as above, we get that the unit ball of XV* is stable under
successive sums of the form (1/f(n)'~?) > plas.

Now let x; be successive vectors in XN.forj=1,...,n,let x} be successive
dual unit vectors such that 27 norms x; ( recall that the basis is bimonotone in

every Xy, so it is bimonotone in X). We get that (1/f(n)!~%) P 1|z <

/
37751 @jll. Choosing pf = |[z;]|?/ 32, [|l]|P and using the equality 6/q" =
1 —1/p gives the desired inequality:

W (é ||:Ci|p>; < Héxz

This inequality will be called the lower estimate for X.




Remark Gowers-Maurey’s space, and, more generally, spaces satisfying f-
lower estimates "look like’ the space I; ( for successive vectors, the triangular
inequality is, up to a logarithmic term, an equality). As the interpolation space
of [y and [, is [,, one expects the space X to ’look like’ [,;; the above inequalities
show in what sense this is true.

Proposition 2 The dual space X* of X is also the interpolation space - as
defined at the end of 1.1 - of the family defined on 6S as X; if z =it and lq/ if
z=1+1it.

Proof Recall that a basis (z,,)52; of a Banach space is shrinking if for every
continuous linear functional z* and every ¢ > 0 there exists n € N such that
the norm of z* restricted to the span of z,,x,41,... is at most e. The basis
e1,es, ... is a shrinking basis for X. Indeed, suppose it is not; then we can find
€ > 0, a norm-1 functional z* € X*, and a sequence of successive normalized
blocks 1, 32, ... such that z*(x,) > € for every n. Then, using the upper p-
estimate, we get ne < z* (3.1 x;) < || S0, il| < n'/P, a contradiction if we
choose n big enough.

This implies that given z* in X*, ||2*||x+ = Imyn— 400 ||EnT*||x~-. But
this means that X* = completion(U,enX™V*); furthermore, according to [pd),
XN* is also the interpolation space ((XtN)*,l;\,’)g; as (XM)* = (X))N, we get

the desired dual property.

Proposition 3 The space X is uniformly convex.

Proof It is enough to prove that any vectors x and y in the unit ball of
XN satisfy the relation || 25| < 1 — §(||lz — y||) where § is strictly positive on
10, +00[ and does not depend on N.

We know by [@] that for any r > 1 the norm of a vector x in Xy is given by
the formula ||z||" = infpe 4, (2) ([, 56 1F(2)[12dp(2)). As in Lemma 1, we have
also:

et =t ([ 1eeonzan) ([ 1rsionmm)’

Suppose ¢ > 2. Then for any vectors a and b in the unit ball of 1Y, || $2(|7 <
1-— ||“T_b|\g (this Clarkson’s inequality can be found in [[B]). Now let = and y
be in the unit ball of X, let F ( resp. G) be a minimal interpolation function
for « ( resp. y) as in Theorem 1. Let us apply the formula with r = ¢:

' < </R tqdﬂo(f)>19 (/R :dul(t)> 9-

Tty F+G F+G

2

(it) (1 +it)




The first integral is smaller than 1, so that:

q§</R
q§</R

Adding these two estimates together, and using Clarkson’s estimate we get

F+G
2

Tty
2
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. 0
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Similarly,

T—y F-G

2

(1+41it)

q/0 q/0

<1.

r+y
2

r—y
2

If ¢ < 2, there is another estimate in : there is a constant ¢, such that for
any vectors a and b in the unit ball of I}, 22, < 1—cqlla — bl|2. Applying
the same method as above, we obtain

1/6

xr +
U egllz—y) ¥ < 1.

2

In both the cases ¢ > 2 and ¢ < 2, the inequalities above are uniform
convexity inequalities.

1.3 [ -averages

Definition 1 Let n be a non-zero integer, C' a real number.

Let X bein X. An [T, -average in X with constant C' is a normalized vector
x € X such that z = Z?:l x; where x1 < --- < x, are successive vectors and
each x; verifies ||z;|| < Cn~!.

Let X bein Xp. An ), -average in X with constant C'is a normalized vector
r € X such that z = Z?:l x; where x1 < --- < x, are successive vectors and
each x; verifies ||z;|| < Cn~1/P,

An 7, (resp. I3, ) -vector is a non-zero multiple of an [T, ( resp. I, )-
average.

Lemma 2 Let X bein Xy. For everyn > 1, every C' > 1, every block subspace
Y of X contains an l), -average with constant C'.

Proof The proof is the same as in Lemma 3 of [@] Suppose the result is
false for some Y. Let k be an integer such that klogC > (1 — ) log f(n*), let
N =nF, let 21 < --- < xx be any sequence of successive norm-1 vectors in Y,
and let x = sz\il z;. For every 0 <i < k and every 1 < j < n*~% let 2(i,5) =

E{Zi(j_l)n“rl x¢. Thus z(0,5) = xj,z(k,1) = z, and, for 1 < i < k, each x(i, j)



is a sum of n successive z(i — 1,7)’s. By our assumption, no z(i, j) is an [}, -
vector with constant C. Tt follows easily by induction that ||x(i,5)|| < C~*n*/P
and, in particular, that ||z|| < C~*n*F/? = C~F NP, However, it follows from
the lower estimate in X that ||z| > N'/?f(N)~(1=9. This is a contradiction,
by choice of k.

Lemma 3 Let X be in Xy. Let 0 < € < 1/4. Let 8§ = 1/2. Let = be an
ly.-average in X with constant 1 + €. There exists an interpolation function
F for x with ran(F) = ran(z), bounded almost everywhere by 1 + €, such that
except on a set of measure at most 2./€, F(it) is an I7, -vector in Xy, of norm
1 up to /€, with constant 1 + 4+/e.

Such a function is called e-representative, or representative, since we shall
always consider [}, -averages associated to given values of e.

Proof The vector x can be written Z?:1 x; where 1 < --- < x,, are suc-

cessive vectors and each x; verifies ||z;]| < (1 +e)n~'/P. Let F} be a minimal
/ /!
interpolation function for x;, let F; be defined by Fj(z) = n~1/P +2/4 Fi(z) and
let I = Z?Zl F;. We show that F' is representative for .
Notice that F'(§) = z, so F is an interpolation function for z, and

1=l < ( ||F<z't>||tduo<t>)” ([1ra+ioldno)

By choice of F, F'is bounded by 1+¢€ a.e. on 6.5, so both integrals are smaller
than 14€. As a consequence, [, p [|F(it)||¢dpo(t) > (14€)=9/0=0) > 1 —¢ (recall
that 6 = 1/2). As for every ¢, ||F(it)||: < 1+ €, by a Bienaymé-Tchebitschev
estimation, we get that on a set of measure at least 1 —2/e, ||F(it)||: > 1 — /e

So on that set, F(it) is of norm 1 up to \/e. For each j, | Fj(it)|s =

n’l/p/ijH < (1 + ¢€)/n; so that F(it) is an I}, -vector in X; with constant

(14+¢€)/(1—+e) <144/

0

1.4 Rapidly Increasing Sequences

To make a construction similar to the one in [@], we need definitions of Rapidly
Increasing Sequences in X and of special sequences in X*. We now assume that

6=1/2.

Definition 2 Let N be a non-zero integer. Let 0 < e < 1.

Let X be in Xp. A sequence x1 < --- < xn in X is a Rapidly Increasing
Sequence of I, -averages, or R.L.S., of length N with constant 1+ € if xy is
an [,t -average with constant 1+ ¢/ny, for each k, ny > 4My(N/e)/ef'(1), and
€/2 f(ng)*? > |ran(zgp_1)| for k=2,...,N.

Here f(1) is the right derivative of f at 1 and M/ is defined on [1,00) by
My(z) = f(3627).



In spaces X;, we shall use R.1.S. in Gowers-Maurey sense, that is, sequences
of [T} -averages with constant 14-€ with the same increasing condition as above.

We shall call both kinds ”R.1.S.” without ambiguity. A R.I.S.-vector is a
non-zero multiple of the sum of a R.I.S.. The following proposition links the
two kinds of R.I.S..

Lemma4 Let X bein Xy. Let0 < e <1/16. Letxy < -+ <z, be a R.LS. in
X with constant 1+¢, and let x =Y, _; k. For each k, let F}, be representative
for xy; then F = Fy + - - -+ F,, is an interpolation function for x, and except on
a set of measure at most 4y/€/ f(n), F(it) is up to 2+/€ the sum of a R.I.S. in
X, with constant 1 + 4+/c.

Proof 1t is clear that F is an interpolation function for xz. According to
Lemma 3, for each k, Fj(it) is 'close’ to an [{}-average, except on a set of

measure at most 24/€/ny. The union over k of these sets is of measure at most
Yoreq 2y €/ < 4y/e/ni < 4y/€/ f(n) ( this is a consequence of the increasing
condition and the lower bound for ny in the definition of the R.I.S.).

Now let ¢ be in this union. For every k, let |F'|x(it) denote the normalization
of Fy(it); |F|x(it) is an I} -average with constant 1 + 4/€/ny. The sequence
|[Fl1(it) < -+ < |F|n(it) is a R.IS. in X, with constant sup, (1 + 41/€¢/ny) <
1+ 4+/e ( because 1+ 44/ > 1 + ¢, the increasing condition is indeed verified).

It remains to show that F'(it) and the sum of the | F'|,(it) are equal up to 21/€;
and indeed | F(it) = S5, [Fl(i0)ls < S5y 11— |F(it)ls < Xp_y v/efma <
24/€, so that the proof is complete.

Special sequences The trick is to define special sequences of dual interpola-
tion functions. Thus, by a Gowers-Maurey construction, we obtain spaces X;
that ”look like” Gowers-Maurey’s space and such that the special property of
the X is somehow uniform on ¢; more precisely, we build spaces X; - and the re-
lated X - and a space A of dual interpolation functions such that A is countable,
stable under ’Schlumprecht’s operation’ and under taking special functions, and
such that any vector in the unit ball of X* has an almost minimal interpola-
tion function in A. This construction, and the proof that X is hereditarily
indecomposable, are developped in the next two parts.

2  Construction of a space X in Ay

2.1 Construction of spaces X,

Let J = {j1,J2,--.}, where (jn)nen is a sequence of integers such that f(ji) >
256 and logloglog j, > 4(j,_1)% for n > 1. Let K = {j1,73,J5,...} and L =
{J2, ja, jes---}. Let {Ly,m € N*} be a partition of L with every L., infinite.



For r € [1,+o¢], let B(l,) denote the unit ball of I, Ncgg. For N > 1 and z € C,
/ 1—2 /
let f(N,z) = f(N)'"*N*/9 and g(N,z) = \/f(N) ~N*/1.

Definition 3 Given a subset D of Ag, for every N > 0, the set of N-
Schlumprecht sums in D, written By (D), is the set of functions of the form
f(N,2)7'SN | F;, where the F; are successive in D. A Schlumprecht sum in
D is a N-Schlumprecht sum in D for some N > 0. Let B(D) be the set of
Schlumprecht sums. If D is countable, given an injection 7 from U,,enB(D)™
to N, and an integer k, a special function in D, for 7, with length k, is a function
of the form g(k,z)_lEé?:lGj, with G € Bp,;(D),G1 < --- < Gy, n1 = jor and
n; =7(G1,...,Gj_1) for j =2,...,k; G1,...,Gy is a special sequence in D.

Here, it does not seem possible to define the set of special functions be-
fore defining the spaces X; as in @], so we build them at the same time by
induction.

Step 1 For every t in R, let D;(t) = B(l1). Let D; be the set of functions in
Ag with values in D1 (¢) for almost every it and in B(I ;) almost everywhere on
S1. Let Ay be a countable set of functions in Ag, dense in D; for the Li-norm
(namely [|[F|| = [ _sq[IF(2)ll1du(2)). For this first step, we may assume that

all functions in A; are continuous. Let o1 be an injection from U,,en(A1)™ to
Ly, the first subset of L in the partition {L,,,m € N*}. Let S} =R.

Step n  We are given a set of sequences D,,_1(t) for every ¢ in R, a set D,,_1
of functions in Ag, a countable set A,,_1 of functions in Ag defined everywhere
on Sp, a subset S§ ' of R of measure 1 ( that stands for the set of significative’
values of the functions in A,,_1), and an injection o,,—1 from Up,en(A,—1)™ to
Liu... ULang.

Then let A’,, = B(A,—1) U{EF,E interval, F € A,_1}. Let 7,_1 be an
injection from Uy,en(A’)" \ A™ 1) to Lo, _o.

Let S,,—1 be the set of special functions in A, _1, for 7,,_1, with length in K.
For every t in R, let D3 (t) be the sets of sequences of the form f(N) 'SV z,
where the x; are successive in D,,_1(t), DL (t) be the set of sequences Ez where
E is an interval and z is in D,_1(t); if t € S§~', let DZ(t) be the set of
sequences of the form G(it) where G € S,,_1, otherwise, let D2 (t) = 0. Let
D (t) = D3(t) U DL (t) U D5 (t) and let Dy, (t) = conv(Ujyj=1AD',(t)). Let Dy,
be the set of functions in Ag with values in D, (¢) for almost every it and in
B (lq/) almost everywhere on 5.

We complete A’,, in A,, countable set of functions in Ag, dense in D,, for
the Li-norm. There is a subset S§ C S5~ of R of measure 1 such that F(it)
is indeed in D, (t) for all F in A, and for all ¢ in S'. With an injection 7;,_1,
from Upen(A™ \ A7) to La,—1, we obtain an injection oy, from U,,en(A,)™
to Ll U... ULanl.



Definition of X; It is easy to verify that the sequences D, (t) for every ¢ in
R, D,, and A,, are increasing, that the sequence S§ is decreasing and that for
every n, o, coincides with o, on its set of definition.

We then define D; = UpenDy(t) for every t in R, D = UpenDyp, A =
UnenQAn, S§° = NpenSy and o the injection from U,,enA™ to L whose restric-
tions are the o,,.

Finally for every ¢ in R, we define the space X; by its norm on cyg:

Vo € coo, ||Z]|t = sup | < z,y > |
yeD(t)

2.2 Properties of D and A

Proposition 4

(a) For every t in R, B(ly) C D(t) C B(ls)-

(b) The set A is countable, dense in D, stable under interval projections and
Schlumprecht sums in A.

(c) For every t in R, the set D(t) is convez, stable under interval projections,
multiplication by a scalar of modulus 1 ( or balanced), and sums of the form
f(N)flzzj-V:lCCi, with x; € D(t) and x1 < - < xTN.

(d) The set D is convez, balanced, stable under interval projections, Schlum-
precht sums in D, and under taking special functions in A for o with length in
K.

Proof

(a) The left inclusion is a consequence of the facts that D;(t) = B(ly)
and that D, (¢) is increasing; for the right inclusion, notice that by induction,
D, (t) C B(lx) for every n.

(b) The set A is countable as a countable union of countable sets; it is dense
in D because for every n, A,, is dense in D,,; the stability property under interval
projections and Schlumprecht sums is ensured because for every n, A,, contains
A’,, the set of projections and sums from A, _;.

(c) The set D(t) is convex as an increasing union of convex sets; the stability
properties are ensured by the definition of D’,,(¢t) and D, (t) from D,,_1(t).

(d) The set D,, is the set of functions with values in the convex, balanced,
and interval projection stable sets D,,(t) and B(lq/) on 0.5, so that it is convex,
balanced and stable under interval projections; and so is D.

To show the Schlumprecht stability property, it is enough, given successive
functions Fy < --- < Fy in D,_1, to show that F = f(N, z)flEjlej is in
D,,. For each j, Fj(it) is in D,_1(t) almost everywhere. The set of t € R
such that this happens for every j is still of measure 1. On this set, F(it) =
(f(N)N_l/q/)“(l/f(N)) Zjvzl F;(it) is in D, (t), by the definition of D, (t). In
the same way, almost everywhere on Sy, F;(1 + it) is in B(lq/) for every j, so
that F'(1 +it) is in B(lq/) too. By definition, this means that F' is in D,,.
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To show the special property, first notice that a special function G in A is
a special function in A,, for some n in N. It follows that G(it) € Dy41(t) for
every ¢t in S§, that is, almost everywhere; furthermore, G(1 + it) is in B(lq/)
almost everywhere; so G is in Dy 41.

Lemma 5 Let S be the set of functions in As with values in D(t) for almost
every it and in B(lq/) almost everywhere on S1. Then D is dense in S for the
L1i-norm.

Proof Let F bein S, 0 < e < 1. Let N be such that ran(F) C Ey.

We recall Havin lemma from [E] in a rougher version. Furthermore, we state
it on S instead of on the unit disk of C ( the two versions are equivalent using
a conformal mapping ).

Lemma For every € > 0, there exists § > 0 such that for every subset
e of S with p(e) < 4§, there exists g, in H>®(S) with |ge] < 1 a.e. on 4§55,
SUD.c. |9:(2)] < €, and [y lg(2) — 1dp(z) < €

Now let 0 be associated to € = ¢/N. The sequence ({t : F(it) € Dy, (t)})nen
is increasing and its union is of measure 1 for pg, so there exists n such that
T = {t/F(it) € D,(t)} is of measure at least 1 — . For u, 5\ T is of measure
at most 6(1—0) < 0. Let H be the function gsg\;7. Let F = H.F. The function
Fis in Ag. Furthermore, F(1+it) is in B(lq/) a.e.on Sy, F(it) is in D, (t) a.e.
on T'; this last assertion is also true on Sy \ T', because almost everywhere on
this set, F(it) is in 1/N D(t) and because, for functions of range at most Ey,
we have the following inclusions: 1/N D(t) C 1/N B(ls) C B(l1) C Dyu(t).
This proves that Fis in D,,.

It remains to show that F and F are close, and indeed:

[ = PEhdn) <N [ |HE) - 1lda(e) < e
6S S

2.3 Definition of X

For every x in cgo, the function ¢ — ||z||¢ is measurable. To see it, it is enough
to prove that the restriction of the function to S§° is measurable. We prove this
by induction on [ran(z)|. Remember that ||z(|; = sup,cp | < =,y > |. Now
let y be in D(t); either y is, up to multiplication by a scalar of modulus 1,
the value in it of the projection of a special function, and there are countably
many of them; or y is a n-Schlumprecht sum with n > 1 so that | < z,y > | <
(1/f(n)) 3751 [I€z]le, where & < --- < &, are successive intervals; or y is in
B(ly). Finally,

1 n
x| = ||z sup <z, EG(it) > sup — ;x|
lelle =l V/ | sup | 0>V s 7o el
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We may restrict the last sup to intervals £; that do not contain ran(x);
t + ||z||+ is then the supremum of a countable family of measurable functions
by the induction hypothesis, so it is a measurable function.

Furthermore, it follows from the stability property of D(t) that for every ¢
in R, X; satisfies a lower-f estimate. We can then define a Banach space X in
Xy as in the first part of this article.

Lemma 6 Let F* € D. Then F*(0) is in the unit ball of X*.

Proof First notice that if we restrict them to finite range vectors, it is
a consequence of their convexity and of the definition of ||.|; that the unit
ball of X; and D(t) coincide. Now, given F* in D, it is of finite range. For
almost every ¢, F*(it) € D(t), so that by the previous remark, ||F*(it)||; < 1.
Furthermore, ||F*(1 + it)Hq/ < 1, so by Proposition 2, ||F*(0)|* < 1.

We need to recall some definitions and properties of @ Let F be Schlum-
precht’s space of functions ( the explicit definition is in ﬂ@], just think of
these functions as log-like). We notice that f and /f € F. Given X in X,
given g in F, a functional z* in X* is an (M, g) — form if ||z*||* < 1 and
x* = Z;\il x; for some sequence rj < --- <z}, of successive functionals such
that [|2}[* < g(M)~" for each j.

Let Ky C K, and let us define a function ¢ : [1,00) — [1,00) as

o(x) =/ f(z) if x € Ko, ¢(z) = f(z) otherwise.

We now state two lemmas that are a slight modification of Lemma 7 of [[GM]
for the first one and a mixture of Lemmas 8 and 9 of [[GM] for the second one.

Then we prove that the property of minimality of the R.I.S. ( Lemma 10 of
[GM)) is true in every X;, and then that it can be extended to X.

Lemma 7 Let f,g € F with g > /f, let X € X satisfy a lower f-estimate,
let0<e<l,letxy <---<zy beaR.LS. in X for f with constant 1+ ¢, and
let x = Zi\il x;. Suppose that

|Ex|| < 1Vsup{|z*(Ex)|: M >2,2" is an (M, g) — form}

for every interval E. Then ||z|| < (1 + 2¢)Ng(N)~L.

Lemma 8 Given Koy C K, there is a function g : [1,00) — [1,00) such that:
gEF, Vf<g<o¢<f, andif N € J\ Ky, then g = f on the interval
[log N, exp N].

12



Lemma 9 Lett€R. Let N € L, letn € [log N,expN], let 0 < € < 1, and let
Ty <<z, bea RIS in X; with constant 1 + €. Then

n
|
i=1

< (1L+20n/ ()

Proof The space X; € X satisfies a lower f-estimate.

Let « be the sum of the R.I.S. ;1 < --- < x,. Let E be any interval. Let
¢ be the function defined above in the case Ky = K and g associated to ¢ by
Lemma 8. Let z* be a functional in D(t). If 2* is in Dq(t), then |2*(Ex)| < 1.
Else there exists m > 2 such that z* is in Dy, (¢) \ Dy,—1(t); then, by definition
of D, (t), either z* is an (M, f)— form with M > 2 or z* is an (M, +/f)— form
with M € K; since g < ¢, it follows that z* is an (M, g) — form with M > 2.
Consequently,

|Ex|le < 1Vsup{|z*(Ex)|: M > 2, ¥ is an (M,g) — form}

Since g € F and g > +/f, all the hypotheses of Lemma 7 are satisfied. It follows
that || >0 @ille < (14 2€)n/g(n). By Lemma 8, g(n) = f(n), which proves
our statement.

Lemma 10 Let X be the space defined at the beginning of 2.3. Let N € L, let
n € [log N,exp N], let 0 < € < 1/16, and let X; < --- < X, be a R.I.S. in X
with constant 1 + €. Then

DR
i=1

< (L+10v/e)n'?/ f(n)'~°.

Proof Let Fy be representative for Xy, and F = F} + ...+ F,,. We know
that F' is an interpolation function for X7 + -+ + Xj so

sz;x < (/R ||F(it)||tdﬂo(f)>l_9 (/R ||F(1+it)|qdu1(t)>

For the second integral, the following estimate holds:

0

/R |F(1+ it)| odpa(t) < (1 + e)n*/.

According to Lemma 4, there is a set A of measure at most 41/€/ f(n) such that
on R\ A, F(it) is up to 2+/€ the sum x; of a R.I.S. in X;. On R\ A, ||F(it)]]; <
|zt ||t + 2+/€; furthermore, z; is a R.I.S. in X; with constant 1+ 44/, so that by
Lemma 9, ||z¢]: < (1 + 8y/e)n/f(n). On A, we have only ||F(it)|: < (1 + €)n.

13



Gathering these estimates, we get:

Fn )+2\f] Zf) (14 ¢e)n < (14 15y/€)

Going back to the R.I.S. X; < --- < X,,, we have

Lemma 11 Lett € R. Let N € L, let 0 < e < 1/4, let M = N€ and let

r1 < - < xy be a R.IS. in X; with constant 1 + ¢. Then Zi\;l T; 1S an
l{\ﬁ[r-vector i X; with constant 1 + 4e.

Proof 1t is the same as the one of Lemma 11 in [GM]. Let m = N/M, let
x = Zfil x; and for 1 < j < M let y; = Zg:(jfl)mﬂ x;. Then each y; is
the sum of a R.L.S. of length m with constant (1 + ¢). By Lemma 9 we have
lyjlle < (1+ 2€)mf(m)~" for every j while || 3500 y;lle = |2 > NF(N)™*. It
follows that  is an [{% -vector in X; with constant at most (14 2¢)f(N)/f(m).
But m = N'=¢so f(N)/f(m) < (1 —¢)~!. The result follows.

AJHMMWM)[G+&O o

n1*9+9/q 1/p

Ty = VO

< (141501 4€)f

Lemma 12 Let g = 1/10. Let k € K and FY, ..., F} be a special sequence
of length k, with F} € By, (A). Let t € S§°. Let x1 < --- < xp, a sequence of
successive vectors in X;, where every x; is a normalized R.1.S.-vector of length
M; and constant 1 + €9/4. Suppose ran(F}) C ran(zx;) fori =1,...,k, and
1/2 eo f (M, E0/4)1/2 > |ran(z;—1)| fori=2,...,k.

If for every interval E, |(Zf:1 E; (t))(ZfZl Ex;)| <4, then

Dk

(1+2e0)k/ f().

Proof First we recall two lemmas of [GM].

Lemma GMj Let M,N € Nand C > 1,let X € X, let x € X be an
l{\ﬁr-vector with constant C and let & < --- < &y be a sequence of intervals.
Then Y370, [|€;a]| < C(1+2M/N)||].

Lemma GM5 Let f,g € F with g > f1/? and let X € X satisfy a lower
f-estimate. Let 0 < e <1, let z; < --- < zx be a R.I.S. in X with constant
14 e€eandlet x = vazl x;. Let M > My(N/e), let * be an (M, g)-form and let
E be any interval. Then |z*(Ez)| <1+ 2e.

According to Lemma 11, each z; is an lfgi-average with constant 1+¢p, where

N; = Mf /4 The increasing condition and the lower bound for M; ensure that
x1 < -+ <z is a R.ILS. in Xy of length k& with constant 1 + €.
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To prove this Lemma we shall apply Lemma 7. First, we show that if
1,..., G} is any special sequence in A of length k and E is any interval, then
|2*(Ex)| < 1, where 2* is the (k,v/)-form f(k)~"/2 Y% | ¢ with 2} = G3(it),
and x = Zle x;.
Indeed, let s be maximal such that G¥ = F. or zero if no such s exists.
Suppose now i # j or one of 4,5 is greater than s + 1. Then since o is an
injection, we can find Ly # Ly € L such that z; is an (L4, f)-form and x; is the

normalized sum of a R.I.S. of length Lo and also an lfj—average with constant

1+ €o, where L = L;°/4. We can now use Lemmas GM4 and GMS5 to show
that |27 (Ez;)| < k=2

If L < Lo, it follows from the lacunarity of L that Ly < L. We know that
L1 > joi, since L; appears in a special sequence of length k. Lemma GM4 thus
gives |z} (Exz;)| = [(Ez})(z;)] < 3(1 + €)/f(L1). The conclusion in this case
now follows from the fact that f(I) > 4k? when [ > joy.

If Ly < Ly, we apply Lemma GMS5 in X; with € = 1 to the non-normalized
sum 2 of the R.I.S. the normalized sum of which is x;. The definition of L
gives us that My(La) < L1, so Lemma GM5 gives |27 (Ez})| < 3. It follows
from the lower f-estimate in X; that ||z}|| > L2/f(L2). The conclusion now

follows because | > jaj implies that f(1)/l < 1/4k>.

Now choose an interval E’ such that

s k
(S 20| = |02 Fr ) (E'w)|< 4.
=1 =1
It follows that
k
|- 2 (Ba)|< 4+ 2 (o) + K2A72 <6,
i=1

We finally obtain that |z*(Ex)| < 6f(k)~/? < 1 as claimed.
Now let ¢’ be the function

¢ (x)=~/f(x)if v € K,z #k,¢'(x) = f(x) otherwise.

Let ¢’ be the function obtained from ¢’ by Lemma 8 in the case Ko = K \ {k};
we know that ¢'(I) = f(I) for every | € L U {k}.

It follows from what we have just shown about special sequences of length
k that for every interval E,

|Ez|: <1Vsup{|z*(Fz)|: M >2,2" is an (M,g') — form}.
Since x is the sum of a R.L.S., Lemma 7 implies that ||z|; < (1+2¢g)kg’ (k)" =
(1+ 2e0)k/ f(K).
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3 X is hereditarily indecomposable

Let Y and Z be two infinite-dimensional subspaces of X. We want to show that
their sum is not a topological sum. Let § > 0. We shall build two vectors y € Y’
and z € Z such that d|jy + z|| > ||y — z|.

Let ¢ = 1/10. Let k € K be an integer such that 1/4 < ¢q k'/?/f(k)' ¢
and 2/\/F(k) < 8, and let ¢ > 0 be such that \/é < eo/4kf(k). We may
assume that both Y and Z are spanned by block bases. By Lemma 2, Y and Z
contain, for every NV € N, an lZ],VJr-average with constant 1 4+ €. We now build a
sequence (:vj)le in X by iteration.

First step Let 7 € Y be a R.I.S.-vector of norm 1, constant 1+ ¢ and length
My = jog; we have M{/* = Ny > aMy(k/eo)/eof'(1). Let 211 < -+ < T1ap,
be the R.I.S. whose normalized sum is x1: there exists A1 such that \jz; =
Z11 + -+ - + T1a, .- Applying the lower estimate in X and Lemma 10, we get

MPJF(M)'0 < | < (14 10Ve) M, P/ f(M7) .

so that A\; = Mll/p/f(Ml)l_e up to the multiplicative factor 1 4+ 10+/e.
Now we associate to x1m,:

e a representative function Fi,, for xi.m,;
e a vector x},, in X* that norms 1, and with ran(z7,,) C ran(zim);

e a minimal interpolation function FY;, for z7,,; it exists because of Propo-
sition 2 and because, as z7,, is of finite range, Theorem 1 applies.

The function Fy,, is in S. Indeed, remember that if we restrict them to
finite range vectors, the unit ball of X;* and D(t) coincide; so by the convexity
of D(t), for every v > 0, the function Fy,, /(1 + v) takes its values in D(t) for
almost every it; as it takes its values in B(lq/) a.e. on S, it is in S, which ends
the proof.

By Lemma 5, F},, can be approached by a function F7,, in A ( and be-
cause of the interval projection stability of A, we may assume that ran(Fy,,) C
ran(Fy,,)). More precisely, we suppose that F7j,, is close to Fy,,, up to €/(1+¢)
for the norm [, _, o [[.Il5du(2) ( over functions of finite range, this norm is equiv-
alent to the norm [ ;o ||.[lidu(z) first introduced).

Lastly, we define two functions:

Let Ff = f(My,2)~1 2%1:1 Fin- It belongs to A. Let af = Fi(0).

Let Fy = f(My,2)M; M By,
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Iteration Let My = o(F;) € L. We may assume we chose F; such that
1/2 o f(MS/YH/2 > |ran(F)| ( by choosing a function F7, such that M, is big
enough). Let o € Z be a R.I.S.-vector of norm 1, constant 1 + ¢ and length
Ms, and z2 > x1; and repeat the above construction. By iterating it, we obtain
for j =1,...,k sequences Fj,xj, F}, % such that:

e z; € Y when j is odd, x; € Z otherwise.

e |[z;|| =1 for every j and |[z}|* < 1.

e z; = F;(0) up to 10,/ and x} = F;(0).

o FY,..., Fi is a special sequence of length &.

o For j=2,....k, 1/2 eof (M*/")'/2 > [ran(F;_1)|.
e For every j, < F;(0), F(0) >= 1 up to e

e For every j, except on J; of measure at most 2v/¢, < F7(it), F;(it) >= 1
up to 2+/e.

e For every j, except on J] of measure at most 4\/€/ f(M;), F;(it) is up to
10+/€ the normalized sum of a R.L.S. with constant 1+ 41/ <1+ ¢y/4.

Proof Only the last three points are not obvious.

First point For F and F* in Ag, define < F, F* > to be [ s« < F(2), F*(z) >
du(z), and notice that this is equal to < F'(8), F*(#) > by analyticity. Now for

every j,
M;

1 J
< FIF >_MZ < Fins Fim >
m=1
If we replace each F7,, by F7, , the sum is equal to
1 &,
— Z < Ty Tjm >= 1.
T m=1
The error we make by doing this is [1/M; M7 < Fim = Fis Fjm > |,
smaller than
1M M;
— > 1(FGn = Fim) )21 Fjm (2) || 2dpa(z Z
MJ m—1" 2€4S m—1

(we recall that as Fj, is representative for &, |Fjm(2)||: <1+ € a.e.).
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Second point Let F; be the function f(My,z)~" 2%1:1 F7. It is easy to
see that

1= /zeas < Fi(2), Fj(2) > du(2),

while
< Fj(2), Fj(2) >< 1+eae. .

By a Bienaymé-Tchebitschev estimation, except on a set of measure at most
Ve, < Fj(2), Fj(z) >=1 up to y/e. Furthermore, we know that

[ 1< = EDEL B ) > ldule) < o
z€6S

so that except on a set of measure at most \/e, < (F; — F)(2), Fj(2) >=0
up to +/e.

Adding these two estimates completes the proof.

Third point For each m, Fj,, is representative for x;,, so by Lemma 4,
except on a set J; of measure 4\/¢/f(M;), we have

M;
|32 Fymit) = ]|,
m=1

where ; is the sum of a R.I.S. in X; with constant 1+ 4,/e. So

< 2V,

Ml/q/ it
j f(M;)

FOL) Y < 2\ff( s) < 2v/e.

Fj(it) —

The proof follows, because by Lemma 9,

M;/f(M;) < llzelle < (1+8v/e)M;/ f(M;),
so f(M;)/M; x, is up to 8y/€ a normalized R.I.S.-vector.

Estimation of || Z?Zl x| Let G* = g(k,2)"'SF_ Fr. Since for every j,
F; €A, and kis in K, G* is in D and by Lemma 6, z* = G*() is in the unit
ball of X*.k i Lo

So || 251 F(O)ll = 2% (325, F5(0)) = (1 — o)k'/?/\/f(k) , and

HZ% (1 — kP /TR —1/4> (1 - 2e)k? )/ (&

( the 1/4 is the error we made by replacing the z;’s by the F;(6)’s ).
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Estimation of || Z?Zl (—1)~'z;|| Let J be the union of the J;’s and the
J}’s. The set J is of measure at most 6k+/c.
For every t in R\ J, for every interval E, let us evaluate

k

k
SCF) | Do (=1 ER (i)
j=1

Jj=1

This is a sum of at most k scalars. Those who come from terms of range
included in E are equal to (—1)7~% up to 24/, so that their sum is —1,0 or 1
up to 2k+/€; two others can come from terms whose range intersects E, they
are bounded in modulus by 1 + 104/€; the others are equal to 0. So the sum is
smaller than 1 + 2kv/e + 2(1 + 10y/¢) < 3 + 3ky/e.

For every j, Fj(it) is up to 10y/€ a R.LS. vector x;(t). The (—1)71z;(t)’s
satisify the hypotheses of Lemma 12: the increasing condition is satisfied, and
for every interval F,

k

k
STFE) | | S (-1 By (1) || < 3+ 3k + 10kvE < 4.
j=1

Jj=1

It then follows from the conclusion of Lemma 12 and the relation between Fj(t)
and x;(t) that

k
HZ(—1)J’*1Fj(it)Htg (1 + 2e0)k/ f(k) + 10k+/e.
=1
It follows that

/R\jH_Xk:(—l)j_le(it)thuo(t) < (1 + 2e0)k/ f (k) + 10k+/e.

We now want to estimate the integral of this same norm on J. It is enough,
by a triangular inequality, to evaluate ftej |1 (i) |l edpo(t). If t belongs to T,
by a triangular inequality, ||F;(it)|[; < (1 + €)f(M;), but recall that J/ is of
measure at most 4v/¢/f(M;); else, F;(it) is up to 104/e a normalized R.LS.
vector, so that ||F;(it)|: < 1+ 10+/¢, and this on a set of measure less than

6k+/¢. Finally,

4y/e
f(M;)

/J 175t edpo(t) < 6k/E(l + 10VE) + =L (1 + €) f(M;) < Thv/e.

and

/jHZk:(_l)j1Fj(it)thu0(t) < T2/,
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It follows from these two estimates that

- J— ; k k
/RH;(—U 1Fj(lt)th/L0(t) < (7k2+10k)\/2+(1+260)m < (1+4eo)m,

Furthermore, almost everywhere on Sy,
k
HZ(_UJ'%FJ-@ +it)H < (1+ kY,
j=1 a

so that, by Lemma 1,

k .

[ B @) < 0 seok /7).
j=1

and

k
HZ(—l)j_le
j=1

< (14 3e0)k P/ (k)0 +1/4 < (1 + 4eo)k P/ f (k)0

Conclusion Let y € Y be the sum of the z; with odd indices, z € Z be the
sum of the x; with even indices. By the above estimates and by choice of k,
they satisfy d||y + z|| > |ly — z||. As ¢ is arbitrary and so are Y and Z, X is
hereditarily indecomposable.

I warmly thank Bernard Maurey for his help.
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