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Some strongly bounded lasses of Banah spaesbyPandelis Dodos (Athens) and Valentin Ferenzi (Paris)
Abstrat. We show that the lasses of separable re�exive Banah spaes and ofspaes with separable dual are strongly bounded. This gives a new proof of a reent resultof E. Odell and Th. Shlumpreht, asserting that there exists a separable re�exive Banahspae ontaining isomorphi opies of every separable uniformly onvex Banah spae.1. Introdution. A Banah spae X is said to be universal for a lass

C of Banah spaes if every spae in C embeds isomorphially into X. It isomplementably universal if the embeddings are omplemented.Aording to the lassial Mazur theorem, the spae C(2N) is univer-sal for separable Banah spaes. By [JS℄, there does not exist a separableBanah spae whih is omplementably universal for the lass of separableBanah spaes. However, A. Peªzy«ski [P℄ onstruted a spae U with aShauder basis whih is omplementably universal for the lass of spaeswith a Shauder basis (and even for the lass of spaes with the BoundedApproximation Property�see [Ka℄). There is also an unonditional versionof U , i.e. a spae with an unonditional basis whih is omplementably uni-versal for the lass of spaes with an unonditional basis.In 1968, W. Szlenk proved that there does not exist a Banah spae withseparable dual whih is universal for the lass of separable re�exive Banahspaes [Sz℄. His proof is based on the de�nition of the Szlenk index whihis a trans�nite measure of the separability of the dual of a spae. In 1980,J. Bourgain proved that any spae whih is either universal for separablere�exive spaes, or for all C(K) for K ountable ompat, must be universalfor all separable Banah spaes (see [Bou1, Bou2℄). B. Bossard formalizedthe use of desriptive set theory, initiated by Bourgain, to study lasses ofseparable Banah spaes in [Bo1, Bo3℄. He proved that any lass of separable2000 Mathematis Subjet Classi�ation: 03E15, 46B03.Key words and phrases: universal Banah spae, strongly bounded lass, Szlenk index,E�ros�Borel struture.Researh supported by a grant of EPEAEK program �Pythagoras�.[171℄



172 P. Dodos and V. FerenziBanah spaes whih is analyti, in the E�ros�Borel struture of subspaesof C(2N), and ontains all separable re�exive Banah spaes, must ontain auniversal spae. In a reent paper [AD℄, S. A. Argyros and the �rst namedauthor have onneted Bourgain's and Bossard's approah to universalityproblems. Among other things, they introdued the following onept.Definition 1. A lass C of separable Banah spaes is said to be stronglybounded if for every analyti subset A of C, in the E�ros�Borel struture ofsubspaes of C(2N), there exists Y ∈ C that ontains isomorphi opies ofevery X ∈ A.This notion is entral for understanding universality problems in Banahspae theory. In [AD℄, it is shown that several natural lasses of separableBanah spaes are strongly bounded. In partiular, the following is proved(see Theorem N in the introdution of [AD℄).Theorem 2. The following hold :
(1) The lass of re�exive spaes with a Shauder basis is strongly bounded.
(2) The lass of spaes with a shrinking Shauder basis is stronglybounded.In this note we remove the assumption of the existene of a basis inTheorem 2 and we prove the following.Theorem 3. The following hold :
(1) The lass of separable re�exive spaes is strongly bounded.
(2) The lass of spaes with a separable dual is strongly bounded.Our method is to redue the proof of Theorem 3 to Theorem 2 by usinga uniform version of the theorem of Zippin [Z℄ stating that every Banahspae with a separable dual embeds into a spae with a shrinking Shauderbasis. To this end, we are essentially based on the results of B. Bossard in[Bo2℄ and the alternative proof of Zippin's theorem given by N. Ghoussoub,B. Maurey and W. Shahermayer in [GMS℄.Theorem 3 answers positively a question of H. P. Rosenthal from1979, [R℄. He asked whether there existed a universal spae with a separabledual for any given lass of spaes on whih the Szlenk index is bounded. Inpartiular, we have the following.Corollary 4. For every ountable ordinal ξ, the lass of spaes withSzlenk index less than or equal to ξ is Borel. Thus, for every ξ < ω1, thereexists a Banah spae Yξ with separable dual suh that for any spae X with

Sz(X) ≤ ξ, X embeds into Yξ.J. Bourgain had asked whether there existed a separable re�exive Ba-nah spae whih is universal for separable uniformly onvex spaes. Very



Strongly bounded lasses of Banah spaes 173reently, E. Odell and Th. Shlumpreht answered this question in the af-�rmative [OS℄. From our point of view, their result is an immediate on-sequene of Theorem 3 and of the fat that uniform onvexity is a loalproperty, and therefore, that the lass of separable uniformly onvex Banahspaes is Borel.Corollary 5 (E. Odell, Th. Shlumpreht). The lass UC of uniformlyonvex separable Banah spaes is Borel. Thus, there exists a separable re�ex-ive Banah spae Y that ontains isomorphi opies of all uniformly onvexseparable Banah spaes.2. Preliminaries. A topologial spae is Polish if it is separable andits topology is generated by a omplete metri. Its Borel subsets are thosebelonging to the smallest σ-algebra ontaining the open sets. An analytisubset is the ontinuous image of a Polish spae, or equivalently, of a Borelsubset of a Polish spae. A o-analyti subset is the omplement of an ana-lyti subset. If X and Y are Polish spaes, a Borel map f from X into Y isa map suh that f−1(B) is a Borel subset of X for any Borel subset B of Y .If X is a Polish spae and B is a o-analyti subset of X, then a map
φ : B → ω1 is said to be a o-analyti rank on B (a Π

1
1-rank in the logialterminology) if there are relations ≤Σ,≤Π in X ×X whih are analyti ando-analyti respetively, suh that for every x, y ∈ B we have

φ(x) ≤ φ(y) ⇔ x ≤Σ y ⇔ x ≤Π y.We refer to [Ke℄ for a thorough presentation of rank theory as well as to[KL℄ for its appliations. Here we simply state the following properties ofo-analyti ranks whih will be needed later on (see [Ke℄).Lemma 6. Let X be a Polish spae, B a o-analyti subset of X and
φ : B → ω1 a o-analyti rank on B. Then the following hold :(a) (Boundedness) For every A ⊆ B analyti we have

sup{φ(x) : x ∈ A} < ω1.(b) For every ξ < ω1, the set {x ∈ B : φ(x) ≤ ξ} is Borel.The standard Borel spae of separable Banah spaes. Let X be a Polishspae and denote by F (X) the olletion of all losed subsets of X. We equip
F (X) with the E�ros�Borel σ-algebra. This is the σ-algebra generated bythe sets {F ∈ F (X) : F ∩ U 6= ∅}, where U ranges over all non-empty opensubsets of X. It is well known that the E�ros�Borel struture is standard.This means that there exists a Polish topology τ on F (X) suh that theBorel σ-algebra of (F (X), τ) oinides with the E�ros�Borel σ-algebra (see[Ke, Theorem 12.6℄).



174 P. Dodos and V. FerenziNow let X be a separable Banah spae and put
Subs(X) = {F ∈ F (X) : F is a linear subspae of X}.Then Subs(X) is a Borel subset of F (X) (see [Ke, p. 79℄) and so a standardBorel spae in its own right. If X = C(2N), then Subs(C(2N)) is the standardBorel spae of all separable Banah spaes and we denote it simply by SB.We refer to [AD℄, [AGR℄, [Bo1℄, [Bo3℄ and [Ke℄ for more bakground materialon SB. We will need the following fat, whih is essentially a onsequene ofthe Kuratowski�Ryll-Nardzewski seletion theorem (see [Ke, p. 76℄). Thereexist two sequenes dn : SB → C(2N) and Sn : SB → C(2N), n ∈ N,of Borel funtions suh that for every X ∈ SB we have {dn(X)}n = Xand {Sn(X)}n = SX . As usual, for any Banah spae X we denote by

SX = {x ∈ X : ‖x‖ = 1} the sphere of X, and by BX = {x ∈ X : ‖x‖ ≤ 1}its (losed) ball.We denote by REFL and SD the subsets of SB onsisting of all re�exivespaes and all spaes with separable dual respetively. Both are o-analytinon-Borel (see [Bo3℄). For every separable spae X, Sz(X) denotes the Szlenkindex of X (see [Sz℄). It is de�ned as follows. Let F be a w∗-losed subsetof BX∗ . For ε > 0, we let F ′

ε be the set of x∗ in F suh that for any w∗-neighborhood V of x∗ we have diam(V ∩F ) > ε. Let F
(0)
ε = BX∗ and de�neby trans�nite reursion

F (ξ)
ε =





(F
(ζ)
ε )′ε if ξ = ζ + 1 is a suessor ordinal,

⋂

ζ<ξ

F (ζ)
ε if ξ is a limit ordinal.

Then we set Szε(X) = inf{ξ < ω1 : F
(ξ)
ε = ∅} if the set {ξ < ω1 : F

(ξ)
ε = ∅}is non-empty, and Szε(X) = ω1 otherwise. Finally, we let

Sz(X) = sup
ε>0

Szε(X).It is well known that X ∈ SD if and only if Sz(X) < ω1. However, mostimportant for our purposes is the fat that the Szlenk index is a o-analytirank on SD (see [Bo3℄). Thus Lemma 6 applies to it. For an extensive surveyon the Szlenk index we refer to [L2℄.3. A uniform version of Zippin's theorem. The aim of this setion isto present the following uniform version of M. Zippin's theorem [Z℄ essentiallybased on the results of B. Bossard in [Bo2℄.Proposition 7. The following hold :
(1) Let A be an analyti subset of REFL. Then there exists an analytisubset A′ of REFL suh that for all X ∈ A there exists Y ∈ A′ witha Shauder basis that ontains X.
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(2) Let A be an analyti subset of SD. Then there exists an analytisubset A′ of SD suh that every Y ∈ A′ has a shrinking basis andfor all X ∈ A there exists Y ∈ A′ that ontains X.The proof of Proposition 7 is modeled after the proof of Zippin's theoremgiven by N. Ghoussoub, B. Maurey andW. Shahermayer in [GMS℄. Part (2)is an immediate onsequene of the following result of Bossard (see [Bo2,Theorem 3.1℄) modulo the fat that the Szlenk index is a o-analyti rankon SD. Note that sine having a Shauder basis is analyti, we may alwaysassume in Proposition 7 that A′ is an analyti set of spaes with a Shauderbasis.Theorem 8 (B. Bossard). There exists a universal map φ : ω1 → ω1suh that for every Banah spae X with separable dual and every ountableordinal ξ, if Sz(X) ≤ ξ, then X embeds into a Banah spae Y with ashrinking basis with satis�es Sz(Y ) ≤ φ(ξ).To see that Theorem 8 implies part (2) of Proposition 7 one argues asfollows. Let A be an analyti subset of SD. By Lemma 6(a), we get

sup{Sz(X) : X ∈ A} = ξ < ω1.Let [N] denote the set of all in�nite subsets of N and let (un)n denote thebasis of the universal spae U of Peªzy«ski. Consider the set
S = {L ∈ [N] : (un)n∈L is shrinking}.In [Bo3℄, it is shown that S is o-analyti and that the map

S ∋ L 7→ Sz(span{un : n ∈ L})is a o-analyti rank on S (see [Bo3, Theorem 5.4℄). Therefore, by Lem-ma 6(b), the set
Sξ = {L ∈ S : Sz(span{un : n ∈ L}) ≤ φ(ξ)}is a Borel subset of S. Sine the map [N] ∋ L 7→ span{un : n ∈ L} ∈ SB isBorel, it follows that the set

A′ = {Y ∈ SB : ∃L ∈ Sξ suh that span{un : n ∈ L} ∼= Y }is an analyti subset of SD (here ∼= denotes as usual the isomorphism relation,whih is analyti). Theorem 8 implies that A′ is as desired.This simple argument annot be used in order to derive part (1) of Propo-sition 7 diretly from Theorem 8, as the Szlenk index is not a o-analytirank on REFL (see [Bo2, p. 68℄). However, it does follow from the teh-niques of [Bo2℄ and the method of [GMS℄. We will desribe this below. Let
f0 ∈ C(2N) be a �xed funtion that separates points in 2N and let 1 be theonstant funtion equal to 1. For every X ∈ SB we let

E(X) = span{X ∪ f0 ∪ 1}.We have the following easy fat.



176 P. Dodos and V. FerenziLemma 9. The map SB ∋ X 7→ E(X) ∈ SB is Borel. In partiular , if
A ⊆ REFL is analyti, then the set A1 = {E(X) : X ∈ A} is an analytisubset of REFL.Proof. Let dn : SB → C(2N), n ∈ N, be the sequene of Borel funtionssuh that for all X ∈ SB we have {dn(X)}n = X. Now observe that for every
U ⊆ C(2N) open, we have

E(X) ∩ U 6= ∅ ⇔ ∃n ∈ N ∃p1, p2 ∈ Q with dn(X) + p1f0 + p21 ∈ U.Thus the funtion E is Borel. As for every re�exive spae X the spae E(X)is re�exive, the lemma is proved.From now on we �x an analyti subset A of REFL. Let A1 be the setobtained by Lemma 9 for A. Applying Lemma 6(a) we see that
sup{Sz(Z) : Z ∈ A1} = ξ < ω1.Denote by e = (en)n the anonial basis of ℓ1. If H ∈ Subs(ℓ1) and e ∈ ℓ1,then eH will be the lass of e in ℓ1/H, and e

H = (eH
n )n. Reall that anyseparable Banah spae is isometri to ℓ1/H for some H. By Lemma 3.2 in[Bo2℄, the subset Zξ of Subs(ℓ1) × ℓN

1 × C(2N)N × SB de�ned by
Zξ = {(H,h,x, X) : Sz(X) ≤ ξ, span(x) = X, span(h) = H,

x
1
∼ e

H , 1 ∈ X and f0 ∈ X}is Borel (as usual, x
1
∼ e

H means that x is 1-equivalent to e
H). For every

a ∈ Zξ write a = (H(a),h(a),x(a), X(a)). Given suh an a and applyingthe sliing methods developed in [GMS℄ one produes the following objets:(I) A losed, onvex, bounded and symmetri subset W (a) of C(2N) suhthat the map
Zξ ∋ a 7→ W (a) ∈ F (C(2N))is Borel (see [Bo2, Lemma 3.6℄). Moreover, if X(a) is re�exive, thenthe set W (a) is weakly ompat.(II) A monotone basis b(a) ∈ C(2N)N for C(2N) suh that again the map
Zξ ∋ a 7→ b(a) ∈ C(2N)Nis Borel (see [Bo2, Lemma 3.5℄).Performing the Davis�Figiel�Johnson�Peªzy«ski interpolation [DFJP℄ forthe pair (C(2N), W (a)), it is shown in [GMS℄ that the interpolation spae

∆(a) ontains X(a) and the sequene b(a) de�nes a shrinking basis of ∆(a).We notie that by (I) above, if X(a) is re�exive, then the lassial propertiesof the interpolation sheme of [DFJP℄ imply that the spae ∆(a) is alsore�exive. Denote by b̃(a) the sequene b(a) regarded as a basis of ∆(a).The ruial fat established by this proedure is that the subset R of Zξ ×
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C(2N)N × SB de�ned by

R = {(a,v, V ) : span(v) = V and v
1
∼ b̃(a)}is Borel (see the proof of Lemma 3.7 in [Bo2℄). Notie that if (a,v, V ) ∈ R,then V is isometri to ∆(a). Now onsider the set A′ de�ned by

V ∈ A′ ⇔ ∃Y ∈ A ∃a ∈ Zξ ∃v ∈ C(2N)N [E(Y ) = X(a) ∧ (a,v, V ) ∈ R].As R is Borel and E is a Borel map, we see that A′ is analyti. By the fat that
A ⊆ REFL and property (I) above, we infer that every V ∈ A′ is re�exive, i.e.
A′ is an analyti subset of REFL. Finally, we notie that for every Y ∈ Athere exists aY ∈ Zξ suh that X(aY ) = E(Y ). Thus ∆(aY ) ∈ A′. As
E(Y ) = X(aY ) embeds into ∆(aY ), so does Y . It follows that the set A′ hasall desired properties and the proof of part (1) of Proposition 7 is ompleted.4. Proof of the main resultsProof of Theorem 3. (1) Let A be an analyti subset of REFL. By Propo-sition 7(1), there exists an analyti subset A′ of REFL suh that for every
Y ∈ A there exists Z ∈ A′ with a Shauder basis suh that Y is ontainedin Z. By Theorem 2(1), the result follows.(2) Let A be an analyti subset of SD. By Proposition 7(2), there exists ananalyti subset A′ of SD of spaes with a shrinking basis, suh that for every
Y ∈ A there exists Z ∈ A′ suh that Y is ontained in Z. By Theorem 2(2),the result follows.Proof of Corollary 4. Fix a ountable ordinal ξ. By Theorem 3(2), it isenough to show that the set {X ∈ SD : Sz(X) ≤ ξ} is Borel. But this isan immediate onsequene of the fat that the Szlenk index is a o-analytirank on SD and of Lemma 6(b).Proof of Corollary 5. By Theorem 3(1), it is enough to show that thelass UC of separable uniformly onvex Banah spaes is Borel. To see thislet Sn : SB → C(2N), n ∈ N, be the sequene of Borel funtions suh thatfor every X ∈ SB we have {Sn(X)}n = SX . Now observe that

X ∈ UC ⇔ ∀k ∈ N ∃l ∈ N suh that ∀n, m ∈ N

‖Sn(X) − Sm(X)‖ ≥
1

k
⇒

∥∥∥∥
Sn(X) − Sm(X)

2

∣∣∣∣ ≤ 1 −
1

l
.Invoking the Borelness of the funtions (Sn)n we see that UC is Borel.It is atually known that a separable spae is isomorphi to a uniformlyonvex spae if and only if its weak∗-dentability index (an ordinal indexlose to the Szlenk index) is less than ω (see [L1℄). Our method does notgive information on the Szlenk index, or the weak∗-dentability index, of



178 P. Dodos and V. Ferenzithe re�exive spae provided by Corollary C. This spae must have weak∗-dentability index stritly greater than ω.We lose this setion by noting the following unonditional versions ofthe above results. Their proofs are easy adaptations of the methods of [AD℄,with the use of the unonditional version of the universal spae of Peªzy«skiinstead of the Shauder basis version.Theorem 10.
(1) The lass of re�exive spaes with an unonditional basis is stronglybounded.
(2) The lass of spaes with an unonditional basis and not ontaining

ℓ1 is strongly bounded.The universal spaes with an unonditional basis and not ontaining ℓ1obtained in (2) are atually omplementably universal for the orrespondinganalyti lasses of spaes with an unonditional basis and not ontaining ℓ1.Corollary 11.
(1) The lass UUC of uniformly onvex Banah spaes with an unondi-tional basis is analyti. Thus, there exists a re�exive Banah spaewith an unonditional basis that ontains isomorphi opies of alluniformly onvex Banah spaes with an unonditional basis.
(2) The lass of spaes with an unonditional basis and non-trivial type isanalyti. Therefore there exists a re�exive spae with an unonditionalbasis whih is universal for this lass.Proof. We notie that the lass of spaes with an unonditional basis isanalyti. So part (1) is an immediate onsequene of Theorem 10(1). Forpart (2) we reall that the subset of SB onsisting of all spaes with non-trivial type is analyti (see [AD℄). Observe that a spae with non-trivial typeannot ontain a opy of ℓ1 or c0, therefore by the lassial theorem of James,it must be re�exive if it has an unonditional basis. By Theorem 10(1), theresult follows.
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