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THE LIPSCHITZ FREE BANACH SPACES OF C(K)-SPACES

YVES DUTRIEUX AND VALENTIN FERENCZI

(Communicated by David Preiss)

Abstract. The aim of this note is to prove that if K is any infinite metric
compact space, then the Lipschitz free spaces of C(K) and c0 are isomorphic.
This gives an example of non-Lipschitz-homeomorphic Banach spaces whose
free Lipschitz spaces are isomorphic. We also derive some results about Lip-
schitz homogeneity for Banach spaces, from the results of G. Godefroy and
N. J. Kalton on Lipschitz free Banach spaces.

1. The Lipschitz free Banach space Fc0

We refer to [5] for the background of this note. Let X be a metric space with a
special point 0. We denote by Lip0(X) the space of Lipschitz functions from X to
R which vanish at 0. The norm of a function f ∈ Lip0(X) is the Lipschitz constant
of f and we denote it by ‖f‖L. The space Lip0(X) has a canonical predual F(X)
which is the linear span in Lip0(X)∗ of the evaluation functionals δx : f �→ f(x)
for x ∈ X. The space F(X) is called the Lipschitz free space of X. It is clearly
invariant under Lipschitz homeomorphisms. So it is natural to ask how much the
Lipschitz free space of a Banach space X captures of the Lipschitz structure of X.
To the best of the authors’ knowledge, it was not even known if two Banach spaces
could have the same Lipschitz free space without being Lipschitz homeomorphic.
In this note, we prove that, for any infinite compact metric space K, the spaces
F(C(K)) and F(c0) are isomorphic. In fact we prove that the Banach-Mazur
distance between F(C(K)) and F(c0) is uniformly bounded. By Theorem 3.1 in
[7], we know that C(K) and c0 are not uniformly homeomorphic (and thus not
Lipschitz homeomorphic) if C(K) is not linearly isomorphic to c0. Hence this gives
an example of a couple of Banach spaces which have isomorphic Lipschitz free
spaces but are not uniformly homeomorphic.

Let us begin with a definition. Let X1, X2, . . . be Banach spaces and X =
(⊕Xn)c0 . We denote by X̂n the subspace of X equal to

∑n−1
i=1 {0}⊕Xn⊕

∑∞
i=n+1{0}.

The set
⋃

X̂n is denoted by � Xn and called the cross of the Xn’s. It is equipped
with the metric d inherited by the norm of X.

Proposition 1. Let X1,X2, . . . be Banach spaces. The Banach spaces (
⊕

F(Xn))�1
and F(� Xn) are isomorphic.
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Proof. The dual spaces of A = (⊕F(Xn))�1 and B = F(� Xn) are respectively
A∗ = (

⊕
Lip0(Xn))�∞

and B∗ = Lip0(�Xn).
We define the map Φ : A∗ → B∗ by Φ(f) = g where f = (fn)n∈N and g(x) =

fn(x) if x ∈ X̂n (here, we identify Xn and X̂n, which does not carry any confusion).
Let x ∈ X̂n and y ∈ X̂m be two points of the cross. If n = m, we have

|Φ(f)(x) − Φ(f)(y)| ≤ ‖fn‖L · ‖x − y‖Xn
≤ ‖f‖∞ d(x, y).

On the other hand, when n �= m, we have

|Φ(f)(x) − Φ(f)(y)| ≤ ‖fn‖L · ‖x‖Xn
+ ‖fm‖L · ‖y‖Xm

≤ 2 ‖f‖∞ d(x, y).

Hence, ‖Φ(f)‖L ≤ 2 ‖f‖∞ for all f ∈ A∗, and thus Φ has norm at most 2. The

inverse of Φ is given by Φ−1(f) =
(
f
∣∣
Xn

)
n∈N

and it has clearly norm at most 1.

Moreover Φ is weak∗ to weak∗ continuous so it induces an isomorphism between A
and B. �

The next step in our proof will be to show that (
⊕

F(c0))�1
is isomorphic to

F(c0). In order to have that, we need a lemma:

Lemma 2. Let X1, X2, . . . be Banach spaces and X = (
⊕

Xn)c0
. Then there is a

3-Lipschitz retraction from X onto �Xn which maps 0 to 0.

Proof. For any integer q, let pq denote the canonical projection from X onto( ⊕
n�=q

Xn

)
c0

, that is to say, for any vector x = (xn) in X, we have pq(x) =

(x1, . . . , xq−1, 0, xq+1, . . . ). We can note that ‖pq(x)‖ = max
r �=q

‖xr‖ ≤ ‖x‖.
Let us define L : X → �Xn by L(0) = 0 and, if x = (xn) is different from 0,

then

L(x) =
(

0, . . . , 0,
(
1 − ‖pq(x)‖

‖xq‖

)
xq, 0, . . .

)

where q is such that ‖xq‖ = ‖x‖.
This definition is correct since, if ‖xq‖ = ‖xr‖ = ‖x‖ for q �= r, then both

calculations give L(x) = 0.
If x = (xn) and y = (yn) are in X and ‖xq‖ = ‖x‖, ‖yr‖ = ‖y‖ with q �= r, then:

d(L(x), L(y)) = (‖xq‖ − ‖pq(x)‖) ∨ (‖yr‖ − ‖pr(y)‖)
≤ (‖xq‖ − ‖xr‖) ∨ (‖yr‖ − ‖yq‖)
≤ ‖xq‖ − ‖yq‖ + ‖yr‖ − ‖xr‖ ≤ 2 ‖x − y‖ .
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Note that this includes the case x = 0 or y = 0. Now, if ‖xq‖ = ‖x‖ and
‖yr‖ = ‖y‖ for q = r, with x �= 0 and y �= 0, then

d(L(x), L(y)) =
∥∥∥∥(

1 − ‖pq(x)‖
‖x‖

)
xq −

(
1 − ‖pq(y)‖

‖y‖

)
yq

∥∥∥∥
≤

∥∥∥∥(
1 − ‖pq(x)‖

‖x‖

)
(xq − yq)

∥∥∥∥ +
∥∥∥∥(‖pq(y)‖

‖y‖ − ‖pq(x)‖
‖x‖

)
yq

∥∥∥∥
≤ ‖xq − yq‖ + ‖y‖

(∣∣∣‖pq(y)‖ − ‖pq(x)‖
‖y‖

∣∣∣ +
∣∣∣‖pq(x)‖

‖y‖ − ‖pq(x)‖
‖x‖

∣∣∣)

≤ ‖x − y‖ + ‖pq(y − x)‖ + ‖y‖ ‖pq(x)‖
∣∣∣ 1
‖y‖ − 1

‖x‖

∣∣∣
≤ 2 ‖x − y‖ +

‖pq(x)‖
‖x‖

∣∣∣ ‖x‖ − ‖y‖
∣∣∣ ≤ 3 ‖x − y‖ .

Hence L is 3-Lipschitz. Since x ∈ X̂n implies pn(x) = 0, it is clear that L is a
retraction. �

Lemma 3. Let M be a metric space with a special point 0 and let N be a subset of
M containing 0. We suppose that there exists a Lipschitz-retraction L from M onto
N such that L(0) = 0. Then F(N) is isomorphic to some complemented subspace
of F(M).

Proof. Using Theorem 2.2.4.b in [10] (where F(M) is denoted by AE(X)), we see
that there exist linear maps i : F(N) → F(M) and l : F(M) → F(N) such that
for any x ∈ N , y ∈ M , f ∈ Lip0(M) and g ∈ Lip0(N), we have i(δx)(f) = f(x)
and l(δy)(g) = g(L(y)). One can easily see that i is a linear isomorphism from
F(N) into F(M) and that il is a linear continuous projection from F(M) onto
i (F(N)). �

Proposition 4. The spaces (
⊕

F(c0))�1
and F(c0) are isomorphic.

Proof. Let X1, X2, . . . be Banach spaces. Then it follows from Lemmas 2 and 3
and Proposition 1 that the space (

⊕
F(Xn))�1

is isomorphic to a complemented
subspace of F((

⊕
Xn)c0

). Assume now Xn = c0 for each n. We infer that the
spaces (

⊕
F(c0))�1

and F(c0) are isomorphic to complemented subspaces of each
other. Since (

⊕
F(c0))�1

is clearly isomorphic to its �1 sum, the standard Pe�lczyński
decomposition method shows that they are isomorphic. �

Theorem 5. Let K be any infinite metric compact space. The spaces F(C(K)) and
F(c0) are isomorphic. Moreover the Banach-Mazur distance is uniformly bounded.

Proof. The space c0 is 2-complemented in C(K), so Lemma 3 shows that F(c0) is
isometric to a 2-complemented subspace of F(C(K)).

By a classical result of Aharoni (see Theorem 7.11, p. 176 in [1]), we know that
there is a 3-Lipschitz-homeomorphism between C(K) and some subset of c0. Since
the spaces C(K) are absolute Lipschitz retracts (with uniform constant), there is a
Lipschitz retraction from c0 onto C(K) which maps 0 to 0 (with uniform constant).
Using Lemma 3, we see that F(C(K)) is isomorphic to a complemented subspace
of F(c0) (with uniform constants). Finally, Proposition 4 ensures that (

⊕
F(c0))�1
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is isomorphic to F(c0). Using the standard Pe�lczyński decomposition method, we
infer that F(c0) and F(C(K)) are isomorphic with uniform constants. �

Note that by the result of Aharoni, the space F(c0) is universal for separable
Banach spaces. However it is not isomorphic to C(0, 1) which is L∞ whereas L1(0, 1)
is complemented in F(c0).

An open question is whether a converse to Aharoni’s result is true, that is, if
F(X) is universal (equivalently contains F(c0)), does it follow that c0 embeds into
X? It is not even known if X must contain the �n

∞’s uniformly when F(X) is
universal.

2. Lipschitz homogeneous Banach spaces

We include in this note a consequence of the results of Godefroy and Kalton on
Lipschitz free Banach spaces. Define a Banach space to be Lipschitz homogeneous
if it is Lipschitz homeomorphic to all its closed infinite-dimensional subspaces. The
following question was asked in [2].

Question 6. Is every Lipschitz homogeneous Banach space isomorphic to �2?

That the answer should be yes is a natural conjecture which would generalize the
positive answer given to the homogeneous Banach space problem by Gowers [4] and
Komorowski, Tomczak-Jaegermann [8]. They proved that a Banach space which
is isomorphic to its (closed infinite-dimensional) subspaces must be isomorphic to
�2. It is also related to the conjecture that for separable Banach spaces, Lipschitz
homeomorphism and isomorphism coincide; if the latter is true, then obviously �2
is the only Lipschitz homogeneous Banach space.

Using the results of Gowers and Komorowski, Tomczak-Jaegermann, partial pos-
itive answers to Question 6 were given in [2]: for example, if a dual Banach space
is Lipschitz homogeneous, then it must be isomorphic to �2.

We derive additional results about this problem using a result of Godefroy and
Kalton [5] which states that the Bounded Approximation Property is stable under
Lipschitz homeomorphism. We recall a few results about local unconditional struc-
ture (or l.u.st.). There are two notions of l.u.st. in the literature. The first, that we
shall call l.u.st., was introduced by Figiel, Johnson and Tzafriri [3], on the model
of Lp-spaces. The second was introduced by Gordon and Lewis [6], and we shall
write it GL-l.u.st. For the definition:

Definition 7. A Banach space X is said to have l.u.st. if there is a constant
C ≥ 1 and an increasing net Eα of finite-dimensional subspaces of X, such that
X =

⋃
α Eα and such that for every α, Eα has a C-unconditional basis.

A Banach space X is said to have GL-l.u.st. if there is a constant C ≥ 1 such
that for every finite-dimensional subspace E of X, there exists a finite-dimensional
space F with a 1-unconditional basis, and maps T : E → F , U : F → X, such that
UT (x) = x for all x ∈ E and such that ‖T‖ ‖U‖ ≤ C.

While it is clear that l.u.st. implies GL-l.u.st., the converse is only known to
hold in some special cases. The following proposition is proved in [3] with l.u.st.
instead of GL-l.u.st. But we notice that gathering some facts in that article allows
us to generalize it to Banach spaces with GL-l.u.st.
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Proposition 8. Let X be a Banach space with GL-l.u.st. which does not con-
tain �n

∞’s uniformly. Then every subspace of X has a further subspace with an
unconditional basis.

Proof. Assume X has GL-l.u.st. Then by [3], Remark 2.3, X∗∗ is complemented in
a Banach lattice L. So X(4) (and thus X∗∗) is complemented in L∗∗ which is a σ-
complete Banach lattice. By local reflexivity, X∗∗ does not contain �n

∞’s uniformly,
so by [3], Proposition 2.6, X∗∗ is complemented in a Banach lattice M which does
not contain �n

∞’s uniformly. In particular M does not contain a copy of c0, so is
σ-complete and σ-order continuous, and X is isomorphic to a subspace of M . Thus
we may apply [3], Theorem 4.1, to conclude that every subspace of X contains an
unconditional basic sequence. �

The following proposition mixes new results with some results previously ob-
tained in [2].

Proposition 9. Let X be a Lipschitz homogeneous Banach space which is not
isomorphic to �2. Then

(a) no subspace of X has the Radon-Nikodým Property,
(b) no subspace of X has GL-l.u.st.,
(c) X has a hereditarily indecomposable subspace,
(d) every subspace of X has the Bounded Approximation Property,
(e) X has cotype 2 + ε and type 2 − ε for any ε > 0.

Proof. (a) was proved in [2], where it was also proved that X does not contain a
subspace with an unconditional basis, and so by Gowers’ dichotomy theorem, (c)
follows. Every Banach space has a subspace with a Schauder basis, and so (d)
follows from the result of Godefroy and Kalton that we recalled. (e) follows from
(d) and the results of Szankowski about the Approximation Property (see e.g. [9]).
By (e), X does not contain �n

∞’s uniformly and so (b) follows from the previous
proposition. �

Properties (a)-(e) are a strange combination of positive and negative results,
and of course, no example of a Banach space satisfying (a)-(e) is known. The task
of finding such a space with the additional property of being Lipschitz homoge-
neous seems to be out of reach. This suggests that �2 should be the only Lipschitz
homogeneous Banach space.
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