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Abstract
The article is a survey related to a classical unsolved problem in Banach space the-
ory, appearing in Banach’s famous book in 1932, and known as the Mazur rota-
tions problem. Although the problem seems very difficult and rather abstract, its 
study sheds new light on the importance of norm symmetries of a Banach space, 
demonstrating sometimes unexpected connections with renorming theory and dif-
ferentiability in functional analysis, with topological group theory and the theory 
of representations, with the area of amenability, with Fraïssé theory and Ramsey 
theory, and led to development of concepts of interest independent of Mazur prob-
lem. This survey focuses on results that have been published after 2000, stressing 
two lines of research which were developed in the last 10 years. The first one is the 
study of approximate versions of Mazur rotations problem in its various aspects, 
most specifically in the case of the Lebesgue spaces Lp . The second one concerns 
recent developments of multidimensional formulations of Mazur rotations problem 
and associated results. Some new results are also included.
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1  Introduction and first results on Mazur problem

1.1  Mazur rotations problem

Hilbert spaces have the following rotations property:

Given two points x, y on the unit sphere there exists an isometry T (defined on 
the whole space) such that y = Tx.

Here and throughout the paper isometry means linear surjective isometry. 
This clearly follows from the existence of orthogonal complements and can be 
rephrased by saying that the isometry group acts transitively on the unit sphere.

Mazur problem, which can be found in Banach’s Théorie des Opérations Liné-
aires, asks whether every separable Banach space enjoying the above rotations 
property has to be isometric to the separable Hilbert space; see [16, la remarque 
à la section 5 du chapitre XI]. This question is perhaps best understood as two 
separate problems, both of which remain open to this day.

Problem 1.1 (Mazur rotations problem, the isomorphic part) Assume X is a sepa-
rable Banach space whose isometry group acts transitively on its unit sphere. Is X 
linearly isomorphic to the separable Hilbert space H?

As we shall see very soon both the separability and the completeness condi-
tions are necessary since otherwise there are easy counterexamples based on the 
Lebesgue spaces Lp . The other part of the problem, where neither completeness 
or separability seems to be essential, reads as follows:

Problem  1.2 (Mazur rotations problem, the isometric part) Assume ‖ ⋅ ‖ is an 
equivalent norm on a Hibert space H whose isometry group acts transtitively on the 
unit sphere. Is ‖ ⋅ ‖ necessarily euclidean, that is, induced by an inner product on H?

1.2  Notation, conventions

We tend to use X, Y , Z,U… for infinite dimensional Banach spaces and 
A,B,E,F… for finite dimensional ones. The unit sphere of X is the set 
SX = {x ∈ X ∶ ‖x‖ = 1}.

The space of operators from X to Y is denoted by L(X, Y) . Operators are invari-
ably assumed linear and continuous. The identity operator on X is denoted by �X . 
We use GL(X) for the group of linear automorphisms of X and Isom(X) for its 
group of isometries. Recall that throughout, isometries are assumed to be linear 
and surjective (it is worth recalling here that by Mazur’s theorem, onto isometries 
fixing 0 are necessarily linear). An operator T ∶ X → Y  which preserves the norm 
( ‖Tx‖ = ‖x‖ for all x ∈ X ) is called an isometric embedding and we denote the 
subset of such operators in L(X, Y) by Emb(X, Y) . An operator T ∶ X → Y  , not 
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necessarily surjective, that satisfies the estimate (1 + �)−1‖x‖ ⩽ ‖Tx‖ ⩽ (1 + �)‖x‖ 
is called an �-isometry. We denote by Emb�(X, Y) set of all �-isometries from X to 
Y.

The (multiplicative) Banach-Mazur distance between two Banach spaces X, Y 
is defined by

where the infimum of the empty set is treated as ∞.
If G is a group acting on a set X, meaning that we have a homomorphism � 

from G to the group of bijections of X, then the orbit of x under the action of G 
is the set {�(g)(x) ∶ g ∈ G} . If no confusion can arise, we often identify g with 
�(g) and we use the notation G ↷ X to indicate that G acts on X. If both G and 
X carry topologies we say that an action G ↷ X is continuous if the obvious map 
G × X → X sending (g, x) to �(g)(x) is continuous. A topological group G is said 
to be amenable if every continuous affine action of G on a compact convex set of 
a locally convex space has a fixed point. By deleting all the words set in italics 
one obtains the notion of an extremely amenable group.

General references about classical but sometimes specific concepts in Banach 
space theory (convexity, type, cotype, asymptotic structure, finite representabil-
ity, Orlicz spaces, Tsirelson space, etc...) are, for example, [4, 52, 99] or the chap-
ter by Johnson and Lindenstrauss [83] opening the Handbook.

1.3  Topologies

Two topologies will be relevant for us on the spaces of operators L(X, Y) , namely 
the norm topology, and the strong operator topology (SOT, the topology of point-
wise convergence on X). Their restrictions provide topologies on GL(X), Isom(X) 
and Emb(E,X) . We recall some well-known useful facts:

Fact 1.3 Both GL(X) and Isom(X) are topological groups in the norm topology.

The norm topology is somehow too strong to be used on isometry groups and 
actually it has a strong tendency to discretize them (see Comment 3 in Sect. 2.4 
for examples of this on Lebesgue spaces).

In general the SOT is not a group topology on GL(X) , but things get better if 
one looks at bounded subgroups. In particular:

Fact 1.4 The SOT makes Isom(X) into a topological group which is Polish (separa-
ble and completely metrizable) when X is separable.

(We refer the reader to [91, Chapter I, § 9] for an introduction to Polish groups 
as well as the basic examples.) These facts compel us to consider the isometry 
groups in the SOT topology unless otherwise stated.

dBM(X, Y) = inf
�
‖T‖‖T−1‖ ∶ T is an isomorphism betweenX and Y

�
,
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We shall usually equip Emb�(F,X) and in particular Emb(F,X) with the dis-
tance induced by the norm on L(F,X) . But note that here the SOT and the norm 
topology are equivalent when F is finite-dimensional.

1.4  Transitivity and its relatives

A Banach space is almost transitive (AT) if given x, y ∈ X with ‖x‖ = ‖y‖ = 1 and 
𝜀 > 0 there exists a surjective isometry T of X such that ‖y − Tx‖ ⩽ � . If this can 
be achieved for � = 0 we say that X is transitive.

Establishing a vocabulary to study these properties, Pełczyński and Rolewicz 
[114] (see also Rolewicz’s book [126, Chapter  9]) defined the norm ‖ ⋅ ‖ of a 
Banach space X to be maximal if no equivalent norm can give a strictly larger 
group of isometries. If, in addition, every equivalent norm with the same isom-
etry group as ‖ ⋅ ‖ is a multiple of ‖ ⋅ ‖ the norm is called uniquely maximal. This 
happens if and only if ‖ ⋅ ‖ is convex transitive, namely for every norm one x the 
closed convex hull of the orbit of x under the action of the isometry group is the 
unit ball. One has the implications

Hilbert ⇒ Transitive ⇒ AT ⇒ Convex transitive ⇒ Maximal

Most of what was known on Mazur problem and its more or less natural varia-
tions until the year 2000 can be seen in the survey papers [19, 26]. Here we only 
recall that every Banach space is isometric to a 1-complemented subspace of an AT 
space; see Lusky [103] for the separable case and [19, Theorem 2.14] for the general 
case and some consequences. Thus, (almost) transitivity alone does not imply any 
Banach space property that passes to complemented subspaces (for example there 
exist transitive spaces without the Approximation Property, see [19, Section 2]. We 
shall however focus on more natural and important examples, some of which have 
stronger properties than AT or transitivity.

1.5  Classical isometry groups and examples of AT spaces

We now present the examples upholding the paper focusing primarily on AT 
spaces. Some of them will be revisited in Sect. 4 in the multidimensional setting. 
As we shall see, there is a wide variety of AT spaces arising in very different 
contexts. With the sole possible exception of Hilbert spaces, which may be seen 
from so many different points of view, these spaces are “large” in some sense 
which is difficult to make precise. Actually it is not easy to distinguish the spaces 
that can be given an equivalent AT norm from those that cannot; see Sect. 2 for 
more explanations and the basics on maximal norms. General references for the 
isometries of classical function spaces and many related topics are [60, 61, 96].
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1.5.1  Hilbert spaces

If H is a Hilbert space, then Isom(H) is the unitary group. It acts transitively on the unit 
sphere. Moreover, if x, y are normalized then there is an isometry T sending x to y such 
that ‖T − �H‖ = ‖y − x‖ (optimal) with T − �H of rank 2. There is another isometry L 
sending x to y with L − �H of rank 1 (optimal), but ‖L − �H‖ = 2.

1.5.2  Lebesgue spaces

Given a measure � defined on a set S and 1 ≤ p < ∞ we denote by Lp(�) the usual Leb-
esgue space of p-integrable functions on S, with the usual convention about identifying 
functions that agree almost everywhere. If � = � is the Lebesgue measure on the unit 
interval we just write Lp . If � ∶ [0, 1] → [0, 1] is a Borel automorphism (a bijection 
preserving Borel sets in both directions) which preserves null sets in both directions and 
h is a measurable function such that |h|p = d(�◦�)∕d�) , that is �(�(B)) = ∫

B
|h|pd� 

for every Borel B ⊂ [0, 1] , then the operator

is a correctly defined isometry of Lp . If p ≠ 2 the converse is also true and every 
T ∈ Isom(Lp) arises in this way (the Banach–Lamperti theorem [60, Theorem 3.2.5], 
although in this formulation we need a little help from von Neumann [141]). This 
has the following consequences for finite p ≠ 2:

• Lp is AT, but not transitive: there are exactly two (dense) orbits on the unit sphere 
namely, the “full support” one, i.e. the orbit {f ∈ SLp ∶ �(f −1(0)) = 0} and the 
complement {f ∈ SLp ∶ 𝜆(f −1(0)) > 0}.

• The dense subspace Lp(0, 1−) =
⋃

b<1{f ∈ Lp ∶ supp(f ) ⊂ [0, b]} is a transitive 
normed space (with the obvious definition).

• If ℵ is an uncountable cardinal, then the Banach space �p(ℵ,Lp) (which can be 
regarded as Lp(�) , where � is “Lebesgue measure” on ℵ-many disjoint copies of 
the unit interval) is transitive. Note that this space has density character ℵ , while 
nontrivial ultraproducts (see Sect. 1.8 below) have density character at least the con-
tinuum.

The case p = ∞ was excluded in the preceding discussion because the space L∞ , being 
a C(K) in disguise, cannot be AT. The isometries of C(K) are described by the Banach-
Stone theorem (1932): all have the form Tf (x) = u(x)f (�(x)) , where � is a homeomor-
phism of K and u ∶ K → � is continuous and unimodular. In particular the orbit of the 
unit 1 cannot be dense in the sphere unless K is a singleton. And what happens with 
other spaces of type L∞ ? Keep reading.

(Tf )(t) = h(t)f (�(t))



411

1 3

São Paulo Journal of Mathematical Sciences (2022) 16:406–458 

1.5.3  The Gurariy space

A Banach space U is said to be of almost universal disposition (AUD) if, given a 
finite dimensional space F, isometric embeddings v ∶ E → F, u ∶ E → U and 𝜀 > 0 , 
there exists an �-isometry w ∶ F → U such that u = wv . Diagramatically,

E

u

v
F

w

U

This notion was coined by Gurariy in [75], where he constructed the space that bears 
his name as a separable space of AUD. Gurariy also established that two separable 
Banach spaces of AUD are “almost isometric” (that is, the Banach-Mazur distance 
between them is equal to 1) and that for every 𝜀 > 0 the surjective �-isometries act 
transitively on the unit sphere of any separable space of AUD. Although this is not 
completely evident from the definition, any space of AUD must be a Lindenstrauss 
space (i.e. a predual of an L1-space) because AUD implies the following extension 
property of X: given a subspace E of a finite dimensional space F and 𝜀 > 0 every 
operator � ∶ E → X has an extension 𝜏 ∶ F → X with ‖𝜏‖ ⩽ (1 + 𝜀)‖𝜏‖.

The isometric uniqueness of the Gurariy space G was finally established by Lusky 
in a fine paper [101] where he also showed that the isometry group acts transitively 
on the set of smooth points of the sphere of G . See [62, Section 4] for more general 
results concerning finite-dimensional subspaces of G.

A new proof of the uniqueness of the Gurariy space was later provided by Kubiś 
and Solecki in [94]: they basically proved that the Gurariy space is the (approxi-
mate) Fraïssé limit of the class of finite dimensional Banach spaces and isometric 
embeddings. This remarkable feature of the Gurariy space inspired the study of the 
interactions between Fraïssé structures and Banach spaces; see [100] and the refer-
ences therein. We shall pursue this approach in Sect. 4. From another point of view, 
see also the recent description by Cúth, Dolez̆al, Doucha and Kurka, of the Gurariy 
space as the “generic” separable space [41].

1.5.4  The Garbulińska space

One should speak, more accurately, of the Garbulińska-Wȩgrzyn renorming of the 
Kadec/Pełczyński/Wojtaszczyk space, see below. The Garbulińska space plays the 
same role as the Gurariy space in a different category, where one takes into account 
1-complemented subspaces only. Let us say that a Banach space X has the prop-
erty [ ⅁ ] if given isometries with 1-complemented range u ∶ E → X and v ∶ E → F , 
where F is finite-dimensional, and 𝜀 > 0 there is an �-isometry w ∶ F → X with 
(1 + �)-complemented range such that u = wv.

Garbulińska shows in [64] that there exists a unique, up to isometries, Banach 
space K with a skeleton and property [ ⅁ ]. Recall that a skeleton of X is a chain of 
finite dimensional subpaces (En)n⩾1 whose union is dense in X and such that En is 
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1-complemented in En+1 . This condition is a clear analogue of separability in the 
1-complemented category and is just a transcription of 1-FDD. Most isometric prop-
erties of K depend, one way or another, on the following fact ( [64, Theorem 6.3]):

Let K and K′ be Banach spaces with skeletons, satisfying the property [⅁] , and 
let h ∶ A → B be an isometry between 1-complemented finite-dimensional sub-
spaces of K and K′ , respectively. Then for every 𝜀 > 0 there exists an isometry 
H ∶ K → K� such that ‖H(x) − h(x)‖ ⩽ �‖x‖ for all x ∈ A . In particular, K and K′ 
are isometric.

Since all lines in a Banach space are 1-complemented and isometric to each other, it 
follows that K is AT.

Another important feature of K , that is going to play its role in Sect. 2, is that 
K contains a 1-complemented copy of every space with a skeleton. This makes K 
isomorphic to some old acquaintances in the theory of complementably universal 
spaces. Let C be a class of Banach spaces. We say that a Banach space is (com-
plementably) universal for C if it belongs to C and it contains a (complemented) 
isomorph of each space in C . This concept emerged in the paper [112], where 
Pełczyński constructed his celebrated (space with a) universal basis (call it PB ) 
which is a complementably universal space for the class of Banach spaces with 
bases and a similar space with an unconditional basis which we shall denote by U.

Later on M.Ĭ. Kadec [84] exhibited a complementably universal space for the 
bounded approximation property (BAP); let us denote that specimen by K and 
observe that an obvious application of the Pełczyński decomposition method shows 
that any two complementably universal spaces for the BAP are isomorphic. In the 
same issue of Studia where Kadec’ space first appeared, Pełczyński [113] showed 
that each separable space with the BAP is complemented in a space with a basis: 
the inexorable consequence is that the spaces PB and K are isomorphic. But since 
the Garbulińska space has the BAP (obvious) and each Banach space with a basis 
can be renormed to get a skeleton (even more obvious) we can apply again the 
Pełczyński decomposition method to conclude that the Garbulińska space K is iso-
morphic to PB and K, which are also isomorphic to a space complementably uni-
versal for FDDs constructed by Pełczyński and Wojtaszczyk [115] in the very same 
volume of Studia.

1.5.5  Spaces of continuous functions on the pseudoarc

Although regarding AT spaces of type L∞ the Gurariy space is the guy to work with, 
there are other natural examples. One of them is the separable “M-Gurariy” space 
from [54] and a closely related, but non-separable creature is obtained in [28] taking 
ultraproducts of the spaces Lp with variable p → ∞ ; cf. Comment 4 in Sect. 4.9.

Here we discuss spaces of continuous functions based on the pseudoarc, a contin-
uum constructed by Knaster [93] in the 1920s which became a celebrity in certain 
circles because of the Bing’s characterization: it is the only hereditarily indecompos-
able chainable continuum; let us denote it by P. An impressive wealth of well organ-
ized information on the pseudoarc is contained in Lewis’ survey [98].
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Kawamura [90] and Rambla [122], independently and almost simultaneously, 
proved that if P∗ is the pseudoarc with one point removed, then the complex space 
C0(P∗) is AT in the sup norm, thus refuting a long standing conjecture of Wood 
[142, Section 3]. The group of homeomorphims acts transitively on P and so the 
homeomorphic type of P∗ does not depend of which point is removed.

Curiously enough the pseudoarc can be considered as the (inverse) Fraïsé limit 
of a suitable class as shown by Irwin and Solecki in [81] which is simply delighful, 
given the approach of this survey, cf. Sect. 4.

Taking ultrapowers leads to C0(L)-spaces which are transitive in the sup norm.
Naive observations in [30] suggest that if L is a locally compact space with more 

than one point, the complex space C0(L) is separable and AT, then the one-point 
compactification of L should be (homeomorphic to) the pseudoarc.

As for real spaces, Greim and Rajalopagan proved in [71] that no C0(L) , can be 
AT in the sup norm if L has more than one point. However, curiously enough, there 
exists a quite natural norm under which a real C0(L) can be AT and even transitive. 
Indeed, if f ∶ L → ℝ is any function, we set

If L is locally compact but not compact, then diam is a norm on C0(L) , clearly equiv-
alent to the sup norm. If K is compact then diam vanishes on the constant functions 
and so it defines a true norm on C(K)∕� which agrees with the quotient norm (up 
to a factor) in case of real scalars. It is shown in [31, Lemma 3.1] that C(P)∕ℝ is AT 
and thus the real space C0(P∗) equipped with the diameter norm is AT. It is perhaps 
worth noticing that both the isometry group of the complex space C0(P∗) and that of 
C(P)∕ℝ fail to be amenable in the SOT ( [31, Example 3.2]).

1.5.6  Noncommutative Lp‑spaces

Other families of AT spaces come from the noncommutative generalizations of Lp . 
We shall not even give the definition and we refer the reader to the official sources 
[76, 138] instead, but let us mention that there is a classical construction in operator 
algebras, due to Haagerup, that associates to each von Neumann algebra M a family 
of spaces Lp(M) for p ∈ (0,∞] in such a way that L1(M) = M∗ is the predual of 
M and L∞(M) = M . The Haagerup Lp(M)-spaces consist of certain unbounded 
operators acting on a Hilbert space which is related to M in a highly nontrivial way.

By a celebrated result of Connes and Størmer [40, Theorem 4], if M is a fac-
tor of type III1 , then, given states �,� ∈ M∗ and 𝜀 > 0 , there is a unitary u ∈ M 
such that ‖u∗𝜙u − 𝜓‖M∗

< 𝜀 , where u∗�u is defined by ⟨u∗�u, x⟩ = ⟨�, uxu∗⟩ for 
x ∈ M . It follows from the generalized Power-Størmer inequality (see [80, Appen-
dix]) that the spaces Lp(M) for finite p have a similar homogeneity property: given 
positive f , g ∈ Lp(M) with ‖f‖p = ‖g‖p = 1 and 𝜀 > 0 there is a unitary u ∈ M 
such that ‖u∗fu − g‖p < 𝜀 . It follows readily that for arbitrary f , g ∈ Lp(M) with 
‖f‖p = ‖g‖p = 1 and 𝜀 > 0 there exist unitaries u, v ∈ M such that ‖vfu − g‖p < 𝜀 
and so Lp(M) is AT.

diam(f ) = sup{|f (x) − f (y)| ∶ x, y ∈ L}.
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By remarks on ultraproducts presented in Sect.  1.8 below, the countable 
ultrapowers of Lp(M) are transitive and, by results of Raynaud [125], the ultrapow-
ers Lp(M)U can be represented as the Haagerup spaces Lp(N) , for some large von 
Neumann algebra N .

1.6  Microtransitivity

In a desperate attempt to break the impasse on Mazur problem the authors of [34] 
and [20] consider the following stronger form of transitivity, which has very lit-
tle to do with the subject of this survey: a Banach space is called microtransitive 
(MT) if for every 𝜀 > 0 there is 𝛿 > 0 so that if x, y ∈ SX satisfy ‖y − x‖ < 𝛿 there is 
T ∈ IsomX such that y = Tx and ‖T − �X‖ < 𝜀 . As one may guess the only known 
examples of MT spaces are the Hilbert spaces, which satisfy the definition with 
� = � . The issue of separability (and completeness), which is central in Mazur rota-
tions problem, is irrelevant for MT: X is MT if and only if for every separable Y ⊂ X 
there exist a further separable Z ⊂ X which is MT and contains Y. Moreover, MT 
passes to the dual and implies both uniform convexity and uniform smoothness of 
the norm; see [20, Theorems 3.11 and 3.14] for the strongest available results in this 
line. So, the following is a seemingly cheap, but still open, substitute for the Mazur 
problem:

Problem 1.5 Are the Hilbert spaces the only microtransitive Banach spaces?

Comments:

The Effros Microtransitivity Theorem [49, Theorem  2.1] states that a Polish 
group acting transitively on a Polish space must act microtransitively. See also 
van Mill’s work on this topic [140]. This implies that if X is a separable transitive 
Banach space, then the action of the isometry group on the sphere is SOT-micro-
transitive: i.e. for any x ∈ SX , the map assigning to an isometry T its value in x 
is open for the SOT on Isom(X) . The notion of microtransitivity (MT) defined 
above is much stronger and corresponds to the map being open in the norm topol-
ogy on Isom(X) . The papers [20, 34] also consider “open actions” of the semi-
group of contractive automorphisms.

1.7  Strict convexity and transitivity

Though much information has been obtained on almost transitive Banach spaces 
under additional geometric assumptions such as reflexivity [19, 26], very few condi-
tions that are necessary for the actual transitivity in the separable case are known.

Related to the present study, let us mention that, if X is a separable transitive 
real Banach space, then X is strictly convex and smooth, and thus X∗ is AT; see [56, 
Theorem 28] and [19, Corollary 2.9]. This result fails if X is only assumed to be 
almost transitive (resp. if X is non-separable), as can be seen by considering L1 (resp. 
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an ultrapower of L1 , see the next section on ultraproducts). The paper [1] contains 
some related results.

1.8  Ultraproducts

The Banach space ultraproduct construction is a quite useful technique that allows 
one to construct large spaces with upgraded transitivity properties. We refer the 
reader to [77] (or Sims’ booklet [132]) for two very readable expositions which suf-
fice for our modest purposes. A more complete one, which emphasizes the model-
theoretic pedigree of the ultraproduct construction is [78]. Here we only recall the 
definition, just to fix the notation.

Let (Xi) be a family of Banach spaces indexed by I and let U be an ultrafilter on I.
Consider the space of bounded families �∞(I,Xi) equipped with the sup norm 

and the closed subspace cU
0
(Xi) = {(xi) ∶ limU ‖xi‖ = 0} . The Banach space 

�∞(I,Xi)∕c
U
0
(Xi) , with the quotient norm, is called the ultraproduct of the family 

(Xi)i∈I along U and it is denoted by [Xi]U . When all Xi = X for some fixed X the 
ultraproducts are called ultrapowers and are denoted by XU instead.

An ultrafilter is called free if it contains no finite set; otherwise there is exactly 
one point i ∈ I such that U ∈ U ⟺ i ∈ U and U is called principal. An ultrafilter 
U is said to be countably incomplete (CI, for short) if there exists a countable family 
of members of U whose intersection does not belong to U ; we can require the inter-
section to be empty without altering the definition. It is very easy to see that all free 
ultrafilters on a countable set are CI and that U is CI if and only if there is a strictly 
positive function f ∶ I → (0, 1) such that f (i) → 0 along U . Ultraproducts are rele-
vant in our business because of the following observation (see [19, Proposition 2.19] 
for this formulation and [70, Remark on p. 479] or [28, Lemma 1.4] for two slightly 
weaker forerunners):

Fact 1.6 An ultraproduct of a family of AT spaces along a CI ultrafilter is transitive.

Comments:

(1) It is clear that the conclusion of Fact 1.6 subsists under much weaker hypotheses. 
For a fixed 𝜀 > 0 , say that X is �-transitive if given x, y ∈ SX there is T ∈ IsomX 
such that ‖y − Tx‖ ⩽ � . Call it �-asymptotically transitive if, given x, y ∈ SX there 
is a surjective �-isometry T such that y = Tx ; this is inspired by Talponen’s [136, 
Definition 2.1]. An easy argument on series shows that an �-transitive Banach 
space is also 2�-asymptotically transitive provided � ⩽

1

2
 . It is straightforward 

that if (Xn) is a sequence of Banach spaces such that Xn is �n-asymptotically tran-
sitive and �n → 0 as n → ∞ and U is a free ultrafilter on ℕ , then the ultraproduct 
[Xn]U is transitive.

(2) Perhaps the most interesting question concerning transitivity properties of 
ultraproducts is whether the transitivity of the ultrapower XU implies anything 
about the isometry group of the base space X. Of course one can ask whether X 
must be AT, which is quite natural from the point of view of model theory, but 
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actually at this point it is even open whether there exists a Banach space with 
only trivial isometries whose ultrapowers are transitive.

2  Maximality of norms, Wood’s problems, Deville–Godefroy–Zizler 
problem

Recall from Sect. 1.4 that every transitive or even almost transitive norm is maxi-
mal. This follows easily from the observation that if a group of isomorphisms acts 
as an isometry for two norms, then these norms must be proportional on any orbit 
of the action of the group. This led many people to investigate which spaces have 
maximal norms.

In 1933-34 Auerbach [9–11] proved that for every finite dimensional real Banach 
space (X, ‖ ⋅ ‖) , there exists a norm ‖ ⋅ ‖2 on X induced by an inner product and such 
that the isometry group of (X, ‖ ⋅ ‖2) contains the isometry group of (X, ‖ ⋅ ‖) . Thus 
the isometry group of every real finite dimensional space is contained in that of 
a maximal norm. Rolewicz [126, §9.8] showed that the norm of any space with a 
1-symmetric basis (real or complex) is maximal. This includes norms on the clas-
sical spaces �p , whose isometries act as “signed” permutations of the vectors of the 
unit basis - and therefore those norms are maximal but not AT. Norms of the spaces 
Lp, 1 ⩽ p < ∞ , being AT, are in particular maximal. For C(K)- and specially for 
C0(L)-spaces, the situation is more involved, depending on whether the scalars are 
real or complex. See the survey paper by J. Becerra Guerrero and Á. Rodríguez-
Palacios [19] for general information on maximal norms and [31] and the references 
therein for maximality in C0(L) and C(K)-spaces.

Note that if G is a bounded subgroup of GL(X) , then G is a subgroup 
of Isom(X, ‖ ⋅ ‖G) , where ‖ ⋅ ‖G is an equivalent norm on X defined by 
‖x‖G = supg∈G ‖gx‖. Thus a norm is maximal if and only if the corresponding isom-
etry group is a maximal bounded subgroup of GL(X) . Citing the introduction of 
[55], “[it seemed] natural to suspect that a judicious choice of smoothing procedures 
on a space X could eventually lead to a most symmetric norm, which then would be 
maximal on X”. However the following fundamental questions on maximal norms 
remained open until 2013.

Problem  2.1 (1982, Wood [142]) Does every Banach space admit an equivalent 
maximal norm, that is, does GL(X) always have maximal bounded subgroups?

Problem 2.2 (1993, Deville, Godefroy, Zizler) [43, Problem IV.2 and the remark 
following it] Does every super-reflexive space admit an equivalent almost transitive 
norm?

Problem  2.3 (2006, Wood [143]) Is it true that for every Banach space, there 
exists an equivalent maximal renorming whose isometry group contains the original 
isometry group, i.e., is every bounded subgroup of GL(X) contained in a maximal 
bounded subgroup of GL(X)?
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In 2013 Ferenczi and Rosendal [55] answered these three problems nega-
tively by exhibiting a complex super-reflexive space and a real reflexive space, 
both without a maximal bounded subgroup of the isomorphism group. In 2015 
Dilworth and Randrianantoanina [44] studied Problems 2.2 and 2.3 further. They 
showed multiple examples of super-reflexive spaces (both complex and real) 
which provide a negative answer to Problems  2.2 and 2.3, despite the fact that 
they have an equivalent maximal renorming. Among others, the classical spaces 
�p , 1 ≤ p < ∞ , p ≠ 2 , are such examples. In [44] the authors also showed that 
for some spaces X, the group GL(X) may contain even continuum different maxi-
mal bounded subgroups. It is open whether there exists a Banach space X with a 
unique, up to conjugacy, maximal bounded subgroup of GL(X) , or whether Hil-
bert space has this property.

2.1  Almost trivial isometry groups

In this section we describe the main result of Ferenczi and Rosendal from [55].

Theorem 2.4 There exists a complex, separable, super-reflexive Banach space X, 
and a real, separable, reflexive space Y, both without maximal bounded groups of 
isomorphisms, i.e., X and Y have no equivalent maximal norms.

We choose to present a sketch of the result corresponding to the complex case, 
and to present a simplified version of the results. This allows us to give much 
simpler versions of the proofs of [55].

A second motivation and a source of tools for the work [55] comes from the the-
ory of spaces with “few operators”, initiated by the construction of W.T. Gowers and 
B. Maurey [69] of a hereditarily indecomposable (or HI) space (meaning that it con-
tains no subspace decomposable as a direct sum of infinite dimensional subspaces). 
Gowers and Maurey proved that such spaces have small spaces of operators, namely, 
in the complex case any operator is a strictly singular perturbation of a scalar multi-
ple of the identity map. The currently strongest result in this direction, due to S. A. 
Argyros and R. G. Haydon [8], is the construction of a Banach space on which every 
operator is a compact perturbation of a scalar multiple of the identity.

One can ask the same question for isometries. An isometry is called trivial if 
its a scalar multiple of the identity. Does every Banach space admit a non-trivial 
surjective isometry? After partial answers by P. Semenev and A. Skorik [131], 
and an answer in the real separable case by S. Bellenot [22], the question was set-
tled by K. Jarosz [82], who proved that any real or complex Banach space admits 
an equivalent norm with only trivial isometries.

Thus, no isomorphic property of a space can force the existence of a non-triv-
ial surjective linear isometry. On the other hand it is immediate, through renorm-
ings where some prescribed finite dimensional subspace becomes euclidean, that 
an infinite dimensional space always admits an equivalent norm whose isometry 
group contains a copy of the unitary group of the n-dimensional euclidean space.
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In this line, Ferenczi and Rosendal investigate results relating the size of the 
isometry group Isom(X, ‖ ⋅ ‖) , for any equivalent norm ‖ ⋅ ‖ , with the isomorphic 
structure of X, through the next definition.

Definition 2.5 A bounded subgroup G ⩽ GL(X) acts nearly trivially on X if there is 
a G-invariant decomposition X = F ⊕ H , where F is finite-dimensional and G acts 
by trivial isometries on H.

The relation of this concept with questions of maximality is based on the follow-
ing easy but powerful lemma:

Lemma 2.6 If the isometry group of an infinite dimensional space acts nearly trivi-
ally then the norm is not maximal.

Proof If X = F ⊕ H is the decomposition associated to the near triviality of 
Isom(X) , and if H is decomposed as R⊕ Y  , where R is 1-dimensional, then the 
equivalent norm defined by the formula ‖f‖ = ‖r‖ + ‖y‖ , f ∈ F , r ∈ R, y ∈ Y  , 
admits an isometry group which strictly contains the original one.   ◻

In particular, if every bounded subgroup of GL(X) (equivalently, every isometry 
group) acts nearly trivially, then X admits no maximal renorming.

As an initial step towards Theorem  2.4, Ferenczi and Rosendal, improving on 
some earlier work of F. Räbiger and W. J. Ricker [120, 121], show that in a certain 
class of spaces, each individual isometry acts nearly trivially.

Theorem  2.7 Let X be a Banach space containing no unconditional basic 
sequence. Then each individual isometry which is of the form ��X + S , for S strictly 
singular, acts nearly trivially on X (and in particular S is a finite range operator). In 
particular each isometry on a complex HI space acts nearly trivially.

Proof The spectrum of an isometry of the form �X + S is formed either of a finite 
sequence of eigenvalues, or an infinite converging sequence of eigenvalues together 
with their limit 1. In the latter case the authors of [55] prove that a sequence of 
eigenvectors associated to eigenvalues converging fast enough to 1 would form an 
unconditional basic sequence (with constant arbitrarily close to 1). In the former 
case, classical spectral decomposition results imply that the operator S has finite 
dimensional range, or equivalently, that �X + S acts nearly trivially on X.   ◻

For future reference the decomposition of X associated to the fact that an opera-
tor T acts nearly trivially may be written as X = FT ⊕ HT where HT is the kernel of 
�X − T  and FT its image. This notation will be used in what follows.

The next step is to proceed from single isometries acting nearly trivially to an 
understanding of the global structure of the isometry group Isom(X) . Using a renor-
ming result of Lancien [97] for separable reflexive X, the authors of [55] prove a ver-
sion of Alaoglu-Birkhoff [3] ergodic decomposition theorem:
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Proposition 2.8 Assume X is separable reflexive and G is a bounded group of auto-
morphisms of X. Let HG be the subspace of points fixed by every T ∈ G , and HG∗ be 
the subspace of functionals fixed by every element of G under its natural action on 
X∗ . Let S be a family generating a SOT-dense subgroup of G.

Then X admits the G-invariant decomposition FG ⊕ HG , where

and the associated projection onto HG has norm at most ‖G‖2 (where 
‖G‖ ∶= supg∈G ‖g‖).

Denote by Isomf (X) , the subgroup of isometries of the form �X + A , where A 
is a finite-rank operator on X. Note that when G is a subgroup of Isomf (X) , each 
subspace FT is finite dimensional. This leads the authors of [55] to consider pos-
sible FDDs of X:

Proposition 2.9 Let X be separable and reflexive. Then either Isomf (X) acts nearly 
trivially on X, or X admits a complemented subspace with a finite dimensional 
decomposition.

Proof This is [55, Theorem 4.16]; the proof goes as follows. Picking an SOT-dense 
sequence (Tn) of isometries in Isomf (X) , one considers each of the Alaoglu-Birkhoff 
decompositions associated to the subgroups Gn generated by T1,… , Tn , i.e.

where Fn is the linear span of the finite dimensional subspaces Im(�X − Tj), 1 ⩽ j ⩽ n , 
and Hn the set of points fixed by T1,… , Tn . Consider the decomposition

associated to G = Isomf (X) . It can be seen that FG identifies with the closure of ⋃
n Fn and therefore either is finite dimensional or admits an FDD. In the former 

case G acts trivially on the finite codimensional space HG and therefore nearly trivi-
ally on X.   ◻

Combining Theorem 2.7 and Lemma 2.6, with the decomposition from Propo-
sition 2.9, along with the indecomposability property of HI spaces, one deduces:

Theorem 2.10 Let X be a separable, reflexive, hereditarily indecomposable, com-
plex Banach space without a FDD. Then for any equivalent norm on X, the group 
of isometries acts nearly trivially on X. In particular X does not admit a maximal 
norm.

FG = H⟂
G∗ = span

⋃

T∈S

FT ,

X = Fn ⊕ Hn,

X = FG ⊕ HG,
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The existence of a uniformly convex example satisfying these conditions fol-
lows from an earlier construction of a super-reflexive HI space due to Ferenczi 
[53], as well as conditions by Szankowski [135] for the existence of subspaces 
failing the Approximation Property and therefore failing to have an FDD.

Comments:

(1) The construction of [55] does not seem to provide a uniformly convex space 
on which no subspace admits an AT norm. Indeed on subspaces admitting a 
Schauder basis, the authors also obtain isometry invariant decompositions of 
the form F ⊕ H where F is finite dimensional, but are only able to prove that the 
group of isometries which are finite range perturbations of the identity acts as an 
SOT-discrete group for on H. We are unaware of a general argument suggesting 
that this would prevent the existence of dense orbits for the action of the isometry 
group on the sphere (on this subject, one can consult [7] where an SOT-discrete 
bounded group of automorphisms is constructed on c0 whitout discrete orbits). 
Uniformly convex spaces where no subspaces admit an AT renorming will be 
encountered in Sect. 2.2.

(2) The paper [55] has a wider scope than presented above. First of all, by renorm-
ing, bounded groups of automorphisms may be seen as groups of isometries, to 
which the above results apply. The setting of several results may also be extended 
from the case of spaces with few operators, to a more general case of bounded 
actions of groups of operators of the form �X + S on arbitrary Banach spaces. 
Through a finer analysis of the group structure of the isometries, FDD may be 
replaced by Schauder bases in most occurences. Finally methods of complexi-
fication allow to extend most results to the real case.

(3) Weaker forms of rigidity than in the exotic spaces considered in this section may 
also induce restrictions on the actions of bounded groups. For considerations in 
this line regarding bounded groups acting on interpolation scales and (almost) 
transitivity, see Section 3.4 of the recent paper [38].

(4) Before leaving the topic of “nearly trivial isometries”, it is perhaps worth notic-
ing the following result from [29]: If Isomf (X) acts transitively on the unit sphere 
of a normed space X then the norm of X is Euclidean.

2.2  More on the Deville–Godefroy–Zizler problem

In this section we describe the results and methods of Dilworth and Randrianan-
toanina [44] providing additional counterexamples for Problem 2.2. They proved 
the following.

Theorem 2.11 The following classes of Banach spaces do not admit an equivalent 
almost transitive renorming.
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(a) subspaces of classical sequence spaces �p  for 1 ≤ p < ∞ different from 2, or c0,
(b) subspaces of an �p-sum of finite-dimensional normed spaces, for 1 < p < ∞ 

p ≠ 2 , and, in particular, subspaces of quotient spaces of �p , for 1 < p < ∞ , 
p ≠ 2,

(c) subspaces of asymptotic-�p spaces, 1 ≤ p ≤ ∞, p ≠ 2,
(d) subspaces of Asymptotic-�p spaces, 1 ≤ p ≤ ∞, p ≠ 2 , in the sense of [105],
(e) subspaces of any Orlicz sequence space �M (where M is an Orlicz function) such 

that �M does not contain a subspace isomorphic to �2.
(f) subspaces of Lp, 2 < p < ∞ , that do not contain a subspace isomorphic to �2.

Their method relies on an application of the classical Dvoretzky theorem, see e.g. 
[65], which says that in every infinite dimensional Banach space for every natural 
number m and every 𝜀 > 0 , there exists a sequence {xi}mi=1 in X that is (1 + �)-equiva-
lent to the standard normalized basis of �m

2
 . It is a very simple but key observation, 

that when X is AT, then the first element x1 in the above sequence can be chosen 
arbitrarily close to any element of the sphere of X. Moreover, using compactness, 
given x1 ∈ SX , there exists x2 ∈ SX that is almost disjoint with x1 (with respect to a 
given Schauder basis), and {x1, x2} is (1 + �)-equivalent to the standard basis of two 
dimensional �2

2
.

It is not known whether this can be generalized to an arbitrary dimension n, that 
is, whether for every n ∈ ℕ every AT space X with a Schauder basis contains n vec-
tors that are mutually almost disjoint and (1 + �)-equivalent to the standard normal-
ized basis of �n

2
 . However using induction the authors of [44] prove existence of 

block bases in AT spaces that behave like the normalized basis of �n
2
 for an arbitrary 

but (sic!) fixed sequence of scalars.
Recall that a sequence (xi)i of vectors is a normalized block basis if ‖xi‖ = 1 

( i ≥ 1 ), each vector xi is finitely supported, and x1 < x2 < x3 < … , that is, for all 
i ≥ 2 , max suppxi−1 < min suppxi.

Theorem  2.12 Suppose that X has a Schauder basis and contains an infinite-
dimensional subspace Y which is almost transitive. Then, for any 𝜀 > 0 and any 
sequence (ai)i of nonzero scalars, there exists a normalized block basis (xi)i in X 
such that, for all m ≥ 1 , we have

We stress that in Theorem 2.12 the block basis that satisfies (1) depends not only 
on 𝜀 > 0 , but also on the selected scalar sequence (ai)i . It turns out that this is pow-
erful enough to imply several results on nonexistence of AT renormings. As an illus-
tration we show how it can be used to prove that no subspace of �p , 1 ≤ p < ∞ , 
p ≠ 2 , admits an equivalent AT renorming.

The argument is as follows: suppose that a subspace Y of X admits an equivalent 
AT norm ||| ⋅ ||| . It is well-known that any equivalent norm on a subspace may be 
extended to an equivalent norm on the whole space, see e.g. [52, p. 55]. Then, by 
Theorem  2.12 applied to (X, ||| ⋅ |||) with the constant sequence (ai = 1)∞

i=1
 , there 

(1)(1 − �)‖(ai)mi=1‖�2
≤ ���

m�

k=1

akxk
��� ≤ (1 + �)‖(ai)mi=1‖�2

.
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exists a disjointly supported sequence (xk)k in X such that for all n ∈ ℕ , the norm 
���∑n

k=1
xk��� is (1 + �)-equivalent to n1∕2 . However, ||| ⋅ ||| is C-equivalent to ‖ ⋅ ‖

𝓁p
 , 

and, as is well known, every block basis of �p is isometrically equivalent to the 
standard basis of �p , see e.g. [99], i.e. ���∑n

k=1
xk��� is C-equivalent to n1∕p , which 

gives the contradiction when p ≠ 2 and n is large enough.
Essentially the same argument works for spaces X with a Schauder basis (ei) that 

satisfy (p, q)-estimates, where 1 < q ≤ p < ∞ , that is, such that there exists C > 0 
with

whenever x1 < x2 < ⋯ < xn . Thus we have:

Corollary 2.13 Suppose that a Banach space X with a Schauder basis (ei) contains 
a subspace Y which admits an equivalent almost transitive norm. If (ei) satisfies 
(p, q)-estimates, then q ≤ 2 ≤ p.

Using similar reasoning and known properties of Banach spaces the authors 
of [44] obtain a list of classes of Banach spaces such that none of their subspaces 
admits an equivalent AT renorming, stated in Theorem 2.11.

Remark 2.14 For a Banach space X, let

The proof of Theorem  2.12, is valid not only for the exponent 2, as stated, but 
(after the obvious modifications) for any exponent r ∈ FR(Y) , where Y is an infinite 
dimensional AT subspace of X (and X has a Schauder basis).

By the Maurey-Pisier theorem [106], this holds for all r ∈ [pY , 2] ∪ {qY} , where 
pY ∶= sup{1 ≤ p ≤ 2 ∶ Y has type p} and qY ∶= inf{2 ≤ q < ∞ ∶ Y has cotype q}. 
For spaces with an unconditional basis, using results of Sari [129], the authors of 
[44] then obtain a stronger version of Theorem 2.12 for certain values of r.

Theorem 2.15 Suppose that X has an unconditional basis (ei)i . If X has an equiva-
lent almost transitive renorming ||| ⋅ ||| , then for r = pX and r = qX and for all n ≥ 1 
and 𝜀 > 0 , there exist disjointly supported vectors (xi)ni=1 ⊂ X such that (xi)ni=1 in the 
norm ||| ⋅ ||| is (1 + �)-equivalent to the unit vector basis of �n

r
.

Comments:

(1) The “extreme” cases in Theorem 2.11(a) namely subspaces of �1 and c0 are 
much easier and were proven earlier by Cabello Sánchez [27, Theorem 2.1]: 
every space which is either Asplund or has the Radon-Nikodým property with 

1

C

� n�

k=1

‖xk‖p
�1∕p ≤ ��

n�

k=1

xk
�� ≤ C

� n�

k=1

‖xk‖q
�1∕q

,

FR(X) ∶= {1 ≤ r ≤ ∞ ∶ �r is finitely representable in X}.
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an AT renorming must be super-reflexive. Actually these spaces and also those 
in entries (a), (b), (f) lack convex transitive norms, by [19, Corollary 6.9.].

(2) It is instructive to observe that Theorem 2.12, when applied to the Haar basis 
of Lp , does not contradict the fact that Lp is AT. This is because the unit vector 
basis of �m

2
 is ( 1 + �)-equivalent to a block basis of the Haar basis.

(3) A natural question, in the light of the third and fourth item of Theorem 2.11, is 
whether every super-reflexive space which does not admit a subspace with an 
AT norm must contain an asymptotic-�p subspace. The authors of [44] answer 
this question negatively using as an example a space constructed in [36].

(4) This comment is in response to questions by the referee and Gilles 
Godefroy. A Banach space X has property (M) (respectively, prop-
erty (mp) for some 1 ≤ p ≤ ∞ ) if for each weak-null sequence (xn) and all 
x, y ∈ X  w i t h  ‖x‖ = ‖y‖ ,  one has lim supn ‖x + xn‖ = lim supn ‖y + xn‖  
(respectively, lim supn ‖x + xn‖p = ‖x‖p + lim supn ‖xn‖p ). These asymptotic 
properties of the norm were introduced by Kalton in his study of M-ideals [85] 
and by Kalton and Werner in [87], respectively. The papers [85] and [87] contain 
a wealth of examples and counterexamples as well as the ultimate connections 
between properties (M), (mp) , and (M∗) and M-ideals of compact operators.

  The presence of an equivalent norm with property (M) has a considerable 
impact on the isomorphic structure of the underlying Banach space and has 
been used in [85] and [87] in particular to obtain important characterizations 
of subspaces and quotients of Lp , the Schatten class cp , and of �p-sums of finite 
dimensional spaces.

  Dutta and Godard [47, Proposition 2.3] showed that norms with property 
(M) have “optimal” moduli of asymptotic uniform smoothness and asymptotic 
uniform convexity among all other equivalent renormings of the space. In [47, 
Theorem 2.6] they also identified an equivalent condition in terms of the “opti-
mal” growth of the Szlenk indices of X and X∗ for the separable reflexive space 
X with property (M) to be isomorphic to a subspace of an �p-sum of finite 
dimensional normed spaces, where p = inf{r ∶ sup𝜀>0 𝜀

rSz(X∗, 𝜀) < ∞} . By 
Theorem 2.11(b), in this situation if p ≠ 2 , no subspace of X can be renormed 
to be AT.

  Theorem 3.3 of [87] says, in particular, that if a Banach space X is separable, 
does not contain an isomorphic copy of �1 , and has property (mp) for some 
1 < p < ∞ , then X is isomorphic to a subspace of an �p-sum of finite dimensional 
normed spaces. Thus, by Theorem 2.11(b), if a Banach space X is separable, 
does not contain an isomorphic copy of �1 , and can be equivalently renormed 
to satisfy property (mp) for some 1 < p < ∞ , p ≠ 2 , then X does not contain any 
infinite dimensional subspace that can be renormed to be AT. However we do not 
know if the same holds true only under the assumption that X is non-hilbertian 
and has property (M), or even whether a non-hilbertian norm with property (M) 
can be AT. We note that by [85, Remark after Proposition 4.1] every reflexive 
Orlicz space which is not isomorphic to any �p can be renormed to satisfy prop-
erty (M) and simultaneously fail property (mp) for every p. By Theorem 2.11(e) 
we know that if an Orlicz space �F does not contain a subspace isomorphic to 
�2 , then no subspace of �F can be renormed to be AT.
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  At this time the most that we can say about general spaces with property 
(M) and AT subspaces is the following. It follows from [44, Lemma 2.1] and 
[85, Lemma 3.6 and the remark before it] that if X has a Schauder basis and 
property (M), and if an infinite dimensional subspace of Y of X is AT, then Y 
contains a subspace isomorphic to �2 and, by [85, Proposition 3.8], every infinite 
dimensional subspace Z of Y, for every 𝜀 > 0 , contains a subspace E ⊆ Z with 
dBM(E,�2) < 1 + 𝜀.

2.3  Spaces with multiple maximal bounded subgroups of GL(X)

We have seen in Sect. 2.1 that there exist Banach spaces X without maximal bounded 
subgroups of GL(X) . On the other hand, in this section, following [44], we will show 
examples of spaces with multiple different (i.e. non-conjugate) maximal equivalent 
renormings.

We say that two equivalent norms ‖.‖ and ||| ⋅ ||| on X are conjugate if there exists 
a bounded linear automorphism T of X such that ‖x‖ = ���Tx��� for all x ∈ X . Note 
that in this case, T induces an bilipschitz homemorphism between the unit spheres of 
X under the two norms. On the other hand we say that the groups Isom(X, ‖.‖) and 
Isom(X, ||| ⋅ |||) are conjugate if they are conjugate as subgroups of GL(X) , that is, if 
there exists a bounded linear automorphism L of X such that

Note that if two norms are conjugate then their respective isometry groups are con-
jugate, but the converse does not hold (the isometry group for the two norms could 
e.g. be trivial and therefore equal without the norms being conjugate). However the 
two notions are equivalent in the following important case, which will simplify con-
siderably some of our proofs.

Lemma 2.16 Two convex transitive norms on a Banach space are conjugate if (and 
only if) they have conjugate isometry groups.

Proof Let ‖ ⋅ ‖ and | ⋅ | be CT norms on X and assume that Isom(‖ ⋅ ‖) and 
Isom(| ⋅ |) are conjugate through L ∈ GL(X) so that T is an isometry of ‖ ⋅ ‖ if 
and only if T̃ = LTL−1 is an isometry of | ⋅ | . Pick x0 ∈ X so that ‖x0‖ = 1 . Mul-
tiplying L by a positive constant if necessary, we can and do assume WLOG 
that |Lx0| = 1 . Then for all T ∈ Isom(‖ ⋅ ‖) , T̃ = LTL−1 ∈ Isom(| ⋅ |) and thus 
|L(Tx0)| = |LT(L−1Lx0)| = |T̃Lx0| = |Lx0| = 1 . Hence, by CT, for all x ∈ X , 
�Lx� ≤ ‖x‖.

Let us then check that the CT of ‖ ⋅ ‖ entails that L ∶ (X, ‖ ⋅ ‖) → (X, � ⋅ �) is con-
tractive. By symmetry we shall also have that L−1 ∶ (X, � ⋅ �) → (X, ‖ ⋅ ‖) is contrac-
tive and so ‖ ⋅ ‖ and | ⋅ | are conjugate. As the unit ball of ‖ ⋅ ‖ is the closed convex 
hull of the orbit of x under the action of Isom(‖ ⋅ ‖) it suffices to see that if y = Tx 
for some T ∈ Isom(‖ ⋅ ‖) , then |Ly| = 1 . Which is easy: Ly = LTx = LTL−1Lx = T̃Lx 
and T̃  is an isometry of | ⋅ | .   ◻

Isom(X, ‖.‖) = L−1 Isom(X, ��� ⋅ ���)L.
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Constructions in [44] use vector valued spaces defined as follows.
Let X be a Banach space with a 1-unconditional basis E = (ek)k∈ℕ and (Yk)k∈ℕ be 

Banach spaces. Then

is the space of all sequences (zk)k∈ℕ such that for all k, zk ∈ Yk , and

is finite. When E is a standard basis of �p , we will sometimes write Z = (
∑

k∈ℕ ⊕Yk)�p
 

to mean the same as Z = (
∑

k∈ℕ ⊕Yk)E.
Rosenthal [128] characterized isometries of spaces of this form in the case 

when all spaces Yk are hilbertian and X is a pure space with a normalized 1-uncon-
ditional basis. A Banach space X with a normalized 1-unconditional basis {e�}�∈Γ 
is called impure if there exist j ≠ k in Γ so that (ej, ek) is isometrically equiva-
lent to the usual basis of 2-dimensional �2

2
 , and for all x, x� ∈ span(ej, ek) with 

‖x‖ = ‖x�‖ and for all y ∈ span{em ∶ m ≠ j, k} we have ‖x + y‖ = ‖x� + y‖ [128, 
Corollary 3.4]. Otherwise the space is called pure. The space �p , 1 ≤ p < ∞ , 
p ≠ 2 , is a natural example of a pure space.

Rosenthal proved the following result.

Theorem 2.17 [128, Theorem 3.12] Let X be a pure space with a 1-unconditional 
basis E = {e�}�∈Γ , (H� )�∈Γ be Hilbert spaces all of dimension at least 2, and let 
Z = (

∑
Γ ⊕H𝛾 )E.

Let P(Z) denote the set of all bijections � ∶ Γ → Γ so that

(a) {e�(�)}�∈Γ is isometrically equivalent to {e�}�∈Γ , and
(b) H�(�) is isometric to H� for all � ∈ Γ.

Then T ∶ Z → Z is a surjective isometry if and only if there exist � ∈ P(Z) 
and surjective linear isometries T� ∶ H� → H�(�) , for all � ∈ Γ , so that for all 
z = (z� )�∈Γ in Z, and for all � ∈ Γ,

Theorem 2.17 is valid for both real and complex spaces. For separable complex 
Banach spaces it was proved earlier by Fleming and Jamison [59], cf. also [88].

Dilworth and Randrianantoanina [44], using Theorem 2.17, described a count-
able number of different equivalent maximal norms on every Banach space with a 
1-symmetric basis, which is not isomorphic to �2.

Theorem  2.18 Suppose X = �p , 1 ≤ p < ∞ , p ≠ 2 , or, more generally, X is a 
pure Banach space with a 1-symmetric basis E = {ek}

∞
k=1

 , and X is not isomorphic 

Z =
(∑

k∈ℕ

⊕Yk

)

E

‖(zk)k‖Z ∶=
���
�

k∈ℕ

‖zk‖Yk ek
���X

(2)(Tz)�(�) = T� (z� ).
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to �2 . Then X admits countably many mutually non-conjugate equivalent maximal 
renormings.

Namely, for n ∈ ℕ, n ≥ 2 , let

where, for all k ∈ ℕ , Hk is isometric to �n
2
 . Then Zn is isomorphic to X, the isometry 

group of Zn is maximal, and, if n ≠ m , the groups Isom(Zn) and Isom(Zm) are not 
conjugate in GL(X).

Idea of proof It is easy to see that Zn is isomorphic to the direct sum of n copies of X 
and hence isomorphic to X itself since X has a symmetric basis.

By Theorem  2.17, all isometries of Zn have form (2), and, since the basis is 
1-symmetric and all Hk are isometric to each other, the set P(Zn) is equal to the set of 
all bijections of ℕ.

We claim that the group Isom(Zn) is maximal. Let’s first consider the case when 
� is the identity of ℕ and, for all k, Tk ∈ Isom(Hk) . Since Isom(Hk) = Isom(�n

2
) is the 

largest possible group of isometries of any n-dimensional space, it is impossible to 
renorm each Hk to increase the isometry group of Zn . So how can we renorm Zn to 
introduce additional isometries?

A first natural idea that comes to mind is to “glue” two or more, but finitely many, 
fibers of Zn and equip this new larger fiber with the norm that has the largest possible 
isometry group, i.e. the �2 norm. Say, if we put for all k ∈ ℕ , �Hk = H2k−1 ⊕2 H2k and 
consider �Zn = (

∑∞

k=1
⊕�Hk)E . Then, for all k, dim H̃k = 2n , and if � = �ℕ , there exists 

an isometry T̃k of H̃k so that T̃k(H2k−1) intersects both H2k−1 and H2k , so the operator 
T̃ ∶ Z̃n → Z̃n defined by T̃((̃zk)k) = (T̃ (̃zk))k is an isometry of Z̃n but not of Zn.

On the other hand, since the basis E is 1-symmetric, if we consider a permutation 
� of ℕ so that, say, �(1) = 3 and �(2) = 5 , and arbitrary isometries Tk ∶ Hk → H�(k) , 
then the operator T ∶ Zn → Zn such that for all z = (zk)k ∈ Zn , (Tz)�(k) = Tk(zk) is an 
isometry of Zn . However T is not an isometry of Z̃n , since, by Theorem 2.17, any 
isometry of Z̃n maps the fiber H̃1 either to itself or onto another fiber and we have 
that T(H̃1) intersects both H̃2 and H̃3.

Hence we have that Isom(�Zn) ⊈ Isom(Zn) and Isom(�Zn) ⊉ Isom(Zn) , and thus our 
“gluing” of fibers failed to produce a space with a larger isometry group.

It follows from [128] that if Z̃n = (Zn, ||| ⋅ |||) is an equivalent renorming of Zn so 
that Isom(�Zn) ⊇ Isom(Zn) , then �Zn = (

∑∞

k=1
⊕�Hk)E , where each new fibers H̃k is an 

�2 sum of a certain finite subcollection of the original fibers. The idea of the remain-
ing part of the proof is same as above.

The fact that isometry groups Isom(Zn) are mutually non-conjugate follows from 
(2), since for different values of n the dimensions of hilbertian fibers are different 
and E is pure, see [44, Proposition 3.4] and [128, Theorem 2].   ◻

The construction of Theorem 2.18 can be generalized to describe a continuum 
of different (pairwise non-conjugate) maximal renormings of Banach spaces 
Z that have the form Z = (

∑∞

k=1
⊕�

n(k)

2
)E, where E = (ek)

∞
k=1

 is a 1-symmetric 

Zn = Zn(X) = (

∞∑

k=1

⊕Hk)E,
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basis of a pure Banach space X that is not isomorphic to �2 . It follows from the 
Pełczyński decomposition method that the space Z is isomorphic to X if, for 
example, X = �p , with 1 < p < ∞ , or if X = U , Pełczyński’s space with a univer-
sal unconditional basis [112] mentioned in Sect. 1.5, see [44, Theorem 3.7] for 
details.

Note that, as Z is a separable Banach space, the collection of all equivalent norms 
on Z has cardinality � . Hence the maximal cardinality of a collection of pairwise 
non-conjugate maximal bounded subgroups of GL(Z) is exactly equal to �.

Corollary 2.19 Each of the spaces �p , for 1 < p < ∞ , p ≠ 2 , and the space U 
with a universal unconditional basis, admits a continuum of equivalent renormings 
whose isometry groups are maximal and pairwise non conjugate in the group of 
bounded isomorphisms.

The above results suggest the following questions:

Problem 2.20    

(a) Let H be a Hilbert space. Is the unitary group the unique, up to conjugacy, 
maximal bounded subgroup of GL(H)?

(b) Does there exist a separable Banach space X with a unique, up to conjugacy, 
maximal bounded subgroup of GL(X)?

(c) If yes, does X have to be isomorphic to a Hilbert space?

Comments:

(1) Problem 2.20(a) may be reformulated as asking whether the Hilbert space admits 
a maximal, “non-unitarizable” bounded group of automorphisms. See Sect. 3 
for more about this question.

(2) Theorem 2.18 applies in particular to the space S(T (2)) , the symmetrization of 
the 2-convexified Tsirelson space, see [37]. Indeed, it is known that S(T (2)) does 
not contain �2 , and it is easy to verify that for all k, l ∈ ℕ , ‖ek + el‖S(T (2)) = 1 , and 
thus the standard basis of S(T (2)) is pure. It is clear that the renormings of S(T (2)) 
described in Theorem 2.18 are not AT.

It is known that any symmetric weak Hilbert space is isomorphic to a Hilbert space, 
but in some sense the space S(T (2)) is very close to a weak Hilbert space, see [37, 
Note A.e.3 and Proposition A.b.10]. We do not know the answers to the following 
problems:

Problem 2.21 Does the space S(T (2)) admit an AT renorming? Does there exist a 
symmetric space not isomorphic to �2 which admits an AT renorming?



428 São Paulo Journal of Mathematical Sciences (2022) 16:406–458

1 3

2.4  Spaces with multiple almost transitive norms

In this section we consider the existence of different maximal renormings of the 
space Lp , for p ∈ [1,∞) different from 2. We show that an analogue of Theo-
rem 2.18 holds for Lp , and in this case it gives a countable family of mutually non-
conjugate equivalent almost transitive norms. All the results in this section seem to 
be new and we have included (more or less) full proofs.

Theorem 2.22 For p ∈ [1,∞) different from 2 the space Lp has at least countably 
many non-conjugate almost transitive norms.

Proof For each n ≥ 1 the space Lp is isomorphic to Lp(Hn) , where Hn is the n-dimen-
sional Hilbert space. In [70, Theorem 2.1] it was proved that the standard norm on 
Lp(Hn) is AT. The (AT) norms in Lp induced by an isomorphism onto Lp(Hn) are, 
however, not conjugate in GL(Lp) for different values of n because Lp(Hn) is iso-
metric to Lp(Hm) only if n = m , by results of Cambern and Greim; see [61, 8.2.11. 
Theorem].   ◻

The same occurs in C[0, 1]. Indeed Aizpuru and Rambla proved in [2, Proposi-
tion 6.2] that C0(P∗,Hn) is AT for all n ⩾ 2 no matter which field of scalars one 
considers. While the isometric type of these spaces effectively depends on n, by a 
classical result of Jerison [61, 7.2.16. Theorem], they are all isomorphic to C[0, 1] 
by Miljutin’s Theorem; see [4, Section 4.4] for a polished proof. Other “individual” 
AT renormings of C[0, 1] arise from [28, Theorem 3.4], [32, Examples 2.4 and 3.2] 
and [54, Corollary 6.9].

The Garbulińska space provides a more spectacular example:

Theorem 2.23 The Garbulińska space K has a continuum of mutually non-conju-
gate almost transitive norms.

Proof As remarked in [33, p. 1551], K is the peskiest Banach space there is. In par-
ticular K is isomorphic to each of the spaces Lp(K) for 1 ⩽ p < ∞ . To see this we 
observe that Lp(K) has the BAP for all p, 1 ≤ p < ∞ , and therefore it is isomorphic 
to a complemented subspace of K since the latter is complementably universal for 
the BAP. On the other hand, any space X is 1-complemented (as the space of con-
stant functions) in Lp(X) for any 1 ⩽ p ⩽ ∞ by means of the “obvious” projection 
P(f ) = ∫ 1

0
f (t)dt , where the integral is taken in the Bochner sense. An easy applica-

tion of Pełczyński decomposition method yields K ≃ Lp(K) for 1 ⩽ p < ∞.
Next we remark that Lp(K) is AT for 1 ⩽ p < ∞ by the result of Greim, Jamison 

and Kamińska already mentioned. For 1 ⩽ p < ∞ , let | ⋅ |p denote the AT renorm-
ing of K induced by some (fixed) isomorphism K → Lp(K) . We claim that (K, | ⋅ |p) 
and (K, | ⋅ |q) cannot be isometric if p ≠ q . To see this recall that an Lp-projection 
on a Banach space X is a projection P such that ‖x‖p = ‖Px‖p − ‖x − Px‖p for all 
x ∈ X . It is clear that Lp(K) (and so (K, | ⋅ |p) ) has non-trivial Lp-projections (think 
of multiplication by characteristic functions). But the only Banach space that admits 



429

1 3

São Paulo Journal of Mathematical Sciences (2022) 16:406–458 

nontrivial Lp-projections for two different values of p is �2
1
≈ �

2
∞

 (real case; see [21, 
Main theorem]) from which the claim follows.   ◻

By taking ultrapowers of the preceding examples, and using general representa-
tion results to describe the corresponding ultrapowers if necessary, we obtain:

Corollary 2.24 Let U be a free ultrafilter on the integers.

(a) For each p ∈ [1,∞) different from 2 the ultrapower (Lp)U has countably many 
pairwise non-conjugate transitive norms.

(b) (C[0, 1])U has countably many pairwise non-conjugate transitive norms.
(c) KU has a continuum of pairwise non-conjugate transitive norms.

Proof The case of KU is clear because ultrapowers of spaces with nontrivial Lp-pro-
jections have again nontrivial Lp-projections so we can use the ultrapowers of the 
norms in Theorem 2.23.

(b) Note that (C[0, 1])U ≃ C0(P∗)U by Miljutin’s Theorem. It is known that if L is 
a locally compact space, then C0(P∗)U is isometrically isomorphic (even as a ring) 
to C0(L

U) , with LU a “huge” locally compact space. Explicit descriptions are avail-
able. Now, the point is that for fixed n, the ultrapower C0(L,Hn)U is isometric with 
C0(L

U,Hn) . This can be proved in many ways. Perhaps the simplest one is to iden-
tify C0(L,Hn) with the injective tensor product of C0(L) and Hn . That said, we have 
that C[0, 1]U is isomorphic to each of the transitive spaces C0(P∗,Hn)U = C0(P

U
∗
,Hn) 

which cannot be isometric for different values of n because of Jerison’s result: [61, 
7.2.16 Theorem]: If Y is a strictly convex Banach space, then (X, Y) has the Banach-
Stone property for any Banach space X. If both X and Y are strictly convex, then 
(X,  Y) has the strong Banach-Stone property (which in particular implies that if 
C0(L1,X) is isometric to C0(L2, Y) then L1 is homeomorphic to L2 and X is isometric 
to Y.

(a) The Lp case is a bit trickier. Fix p ∈ [1,∞) and use that (Lp)U is isometric, 
even as a lattice, to Lp(�) for some “huge” measure � ; see Heinrich’s [77, Theo-
rem 3.3(ii)]. In any case one can assume � strictly localizable, by a result of Maha-
ram (cf. Lacey [96, Corollary on p. 137]). After that show that for each fixed n the 
space (Lp(Hn))U is isometric to Lp(�,Hn) ; one can use a basis of Hn or a tensor prod-
uct argument. Finally, dig into the details of Section  8.2 of Fleming–Jamison to 
check that [61, 8.2.11 Theorem] survives if the Hilbert spaces are finite-dimensional 
and one considers strictly localizable (instead of �-finite) measures.   ◻

Comments

(1) Rather curiously, we do not know whether the space K “itself” (i.e. in the 
Garbulińska norm) has non-trivial Lp-projections for some (necessarily unique) 
p ∈ [1,∞].
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(2) A separable version of Corollary 2.24 is clearly out of reach, as it would require 
an answer to the Mazur rotations problem in its isometric or isomorphic version. 
See Sect. 3 for discussion about transitive renormings of the Hilbert space.

(3) Regarding Theorem 2.22, we have been unable to decide whether the isometry 
groups of the spaces Lp(Hn) for different n’s are isomorphic either in the purely 
algebraic sense or when they are equipped with SOT or the norm topology. In the 
real case one can prove that for any n ≥ 2 , Isom(Lp) is not topologically isomorphic 
to Isom(Lp(Hn)) in the norm topologies because if T, L are different isometries of 
any Lp(�) , then ‖T − L‖ ⩾ 21∕p . Thus Isom(Lp) is discrete in the norm topology, 
while for each n ≥ 2 , Isom(Lp(Hn)) is not as it contains Isom(Hn).

(4) It is perhaps worth noticing the following application: if X is a real Lindenstrauss 
space (that is, X∗ is isometric to L1(�) for some measure � ), then Isom(X) is dis-
crete in the norm - just use the estimate in Comment (3) together with the natural 
isometric embedding of Isom(X) into Isom(X∗) . In this case the isometries are as 
far as they can be: ‖T − L‖ = 2 unless T = L . This applies, in particular to the 
Gurariy space.

2.5  Isometry groups not contained in any maximal bounded subgroup 
of the isomorphism group

In [44] Dilworth and Randrianantoanina showed that Problem 2.3 can have a nega-
tive answer even if GL(X) contains many maximal bounded subgroups. Namely they 
proved (constructively):

Theorem 2.25 Each of the spaces �p , for p ∈ [1,∞) different from 2, and U has a 
continuum of pairwise non conjugate renormings none of whose isometry groups is 
contained in any maximal bounded subgroup of the isomorphism group of �p.

Compare with Corollary  2.19. The idea of the proof is similar to the proof of 
Theorem  2.18. The essential difference is that this time the E-sums are taken of 
sequences of Hilbert spaces that are not of the same dimension, but are all of differ-
ent dimensions and, in addition, sums of dimensions of any two finite subcollections 
of fibers are never equal to each other, see [44, Section 4] for details.

Problem 2.26 Does there exist a separable Banach X space so that every bounded 
subgroup of GL(X) is contained in some maximal bounded subgroup of GL(X) ? Is 
this true for X = Lp?

Comments

(1) The conclusion of Theorem 2.25 is also true, for example, for the 2-convexified 
Tsirelson space T (2) and spaces of the form (

∑∞

n=1
⊕�

n
2
)E , where E is symmetric, 

pure, and not isomorphic to a Hilbert space. We note that T (2) is a weak Hilbert 
space.
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(2) We do not know whether T (2) or general weak Hilbert spaces, other than the 
Hilbert, have a maximal bounded subgroup of GL(X).

2.6  Almost‑transitivity, subspaces, and stabilizers

In the Hilbert space case we may note that the unitary group acts transitively not 
only on the sphere of X, but also on spheres of all infinite dimensional subspaces. 
We may ask to which extent this characterizes the Hilbert space. Some results in 
this direction were obtained in [44] as a consequence of Theorem 2.11 and known 
properties of Banach spaces.

Proposition 2.27 Let X be a subspace of Lp, 2 < p < ∞ , so that every subspace of X 
admits an almost transitive renorming, then X is isomorphic to �2.

In view of Proposition 2.27 (see also comments to this section) it is natural to 
ask:

Problem 2.28 Suppose that every subspace of a Banach space X admits an almost 
transitive renorming. Is X isomorphic to a Hilbert space?

Next we turn to some sufficient conditions on hyperplanes (i.e. 1-codimensional 
subspaces) which together with almost transitivity of X imply that X is isometric to 
a Hilbert space. The first result that we want to mention here is due to J. Talponen, 
who generalized an earlier result of Randrianantoanina [124] that all real AT spaces 
that have a 1-complemented hyperplane are isometric to a Hilbert space.

Theorem  2.29 [136, Theorem  2.3] Suppose that X is a real almost transitive 
Banach space and that for each 𝜀 > 0,X contains a (1 + �)-complemented hyper-
plane. Then X is isometric to a Hilbert space.

Another type of condition that is natural to consider is that the group Isom(X) 
acts almost transitively on some hyperplane on X. This by itself is not sufficient to 
conclude that X a Hilbert space, since Talponen [137] showed that the isometry 
group of L1 acts almost transitively on the hyperplane M = {f ∈ L1 ∶ ∫ 1

0
f = 0} (and 

leaves it invariant). Thus some additional conditions are necessary.
The results in the remaining part of this section are new, so we include their full 

proofs.
If x0 ∈ SX then we define

This is a closed subgroup of the isometry group, which under some natural hypoth-
eses, acts on the hyperplane Hx0

 generated by the norming functional of x0.
We investigate the case where the stabilizers act almost transitively on the appro-

priate hyperplane and obtain a partial answer to Mazur rotations problem.

Stabx0 (X) = {T ∈ Isom(X) ∶ Tx0 = x0}.
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Recall that by a theorem of Mazur [52, Theorem 8.2], the norm is Gâteaux differ-
entiable on a dense G� subset of SX when X is a separable Banach space. Thus, if X is 
separable and transitive, then the norm is Gâteaux differentiable at every point of SX 
and also strictly convex; see Sect. 1.7.

Note that the Gâteaux differentiability of the norm at some x ∈ SX , supported by 
the (unique) normalized funcional � , implies that the group Stabx(X) leaves invariant 
the hyperplane H0 = Ker� : indeed from Tx = x it is immediate to deduce T∗� = � 
and therefore that H0 is invariant.

Conversely, strict convexity implies the following:

Lemma 2.30 Assume X is a real Banach space and the norm in strictly convex at 
x. Let � be a support functional for x, and H0 = Ker� . If an isometry T satisfies 
T(H0) = H0 , then Tx = ±x.

Proof Let T ∈ Isom(X) with T(H0) = H0 . Since �(y) = 0 implies T∗�(y) = 0 , there 
exists a scalar c so that T∗� = c� = ±� . Therefore �(Tx) = ±1 . Strict convexity 
implies that Tx = ±x .   ◻

Summing up, we may note that on a separable transitive space, Tx = ±x if and 
only if T(H0) = H0 . Transitivity is however not needed for the next result:

Theorem 2.31 Let X be an almost transitive real Banach space. Suppose that for 
some x0 ∈ SX supported by � , Stabx0(X) acts almost transitively on SKer� . Then X is 
isometric to a Hilbert space.

Proof By Theorem 2.29, it is enough to prove that the hyperplane Ker� is 1-comple-
mented in X, that is, that the projection P(z)

def
= z − �(z)x0 has norm one.

Fix any z ∈ SX and let � = �(z) . Since Stabx0(X) acts almost transitively 
on SKer� , for every 𝜀 > 0 there exists an isometry T� ∈ Stabx0 (X) so that 
‖T�(z − �x0) − (−(z − �x0))‖ ≤ � . Hence

Since 𝜀 > 0 is arbitrary we get that ‖z − 2�x0‖ = ‖z‖ = 1 . Thus

which ends the proof.   ◻

We finish this section with an observation that Theorem 2.31 implies in particular 
that for any 1 ≤ p < ∞ , p ≠ 2 , and for all x0 ∈ SLp , the group Stabx0(Lp) does not act 
almost transitively on SKer� . This is easy to see directly in the case when x0(t) = 1 for 
all t ∈ [0, 1].

Lemma 2.32 If 1 ⩽ p < ∞, p ≠ 2 , then Stab1(Lp) does not act almost transitively 
on M = {f ∶ ∫ 1

0
f = 0}.

‖T�(z) − (2�x0 − z)‖ ≤ �.

‖P(z)‖ = ‖z − �x0‖ =
���
1

2

�
z + (z − 2�x0)

���� ≤ 1

2

�
‖z‖ + ‖z − 2�x0‖

� ≤ 1,
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Proof Every isometry in Stab1(Lp) is of the form T(f ) = f◦� where � is a measure 
preserving automorphism of [0,  1]. Consider h = 1[0,1∕2) − 1[1∕2,1] ∈ SM . Then for 
any T ∈ Stab1(Lp) the measure of the support of Th is also equal to 1. Thus, if f is 
any function in SM whose support has measure 𝜇 < 1 , we have

Therefore Stab1(Lp) does not act almost transitively on SM .   ◻

Comments:

(1) Proposition 2.27 is also true when X is a subspace of the Schatten class Sp(�2) , 
1 < p < ∞ , p ≠ 2 or of the non-commutative Lp[0, 1] , 2 < p < ∞ , and when 
X is a stable Banach space that admits a C2-smooth bump. However it is open 
whether it remains true when X is a subspace of Lp for 1 < p < 2 . In this case we 
only know that every subspace of X contains isomorphic (even almost isometric) 
copies of �2 , see [44] for details.

(2) Notice that Lemma 2.32 is true also in the case when p = 1 , despite the fact that, 
as we mentioned above, Talponen [137] showed that Isom(L1) acts almost tran-
sitively on SM ⊂ SL1 . Talponen also showed that in this case for all T ∈ Isom(L1) 
we have T(M) = M , but, of course, the conclusion of Lemma 2.30 does not hold.

(3) By the way, since every hyperplane of L1 is isomorphic to the whole space, the 
result of Talponen [137] mentioned above provides another AT renorming of L1 , 
different from those described in Theorem 2.22.

3  Maximal norms and unitarisable representations on spaces 
isomorphic to Hilbert spaces

In this section we focus on Mazur rotations problem on a space already known 
to be linearly isomorphic to the Hilbert space. The results presented in this sec-
tion are mainly from [56]. A way of understanding this concept is by consider-
ing the G-invariant norms corresponding to a bounded subgroup G ⩽ GL(X) on a 
Banach space X. In the language of representations, the question is to investigate 
the invariant norms for a representation of a group Γ , i.e. the norms for which the 
representation induces an action of Γ by isometries on X. Recall from Sect. 2 that 
if G is bounded, then

defines an equivalent G-invariant norm on X, i.e., G may be seen as a subgroup of 
Isom(X, ||| ⋅ |||) . Moreover, if ‖ ⋅ ‖ is uniformly convex, then so is ||| ⋅ ||| (see, e.g., 
[27, Lemma 1.1]; or used more recently from another perspective, [15, Proposition 
2.3]. However, if X is a Hilbert space and ‖ ⋅ ‖ is hilbertian, i.e., induced by an inner 

‖Th − f‖p ≥
�
�[0,1]⧵supp(f )

1
�1∕p

= (1 − �)1∕p.

���x��� = sup
T∈G

‖Tx‖
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product, then ||| ⋅ ||| will not, in general, be hilbertian. The unitarizability problem 
therefore asks which bounded subgroups of GL(H) admit invariant euclidean norms. 
It is a classical result of representation theory dating back to the beginning of the 
20th century that if G is a bounded subgroup of GL(ℂn) , then there is a G-invari-
ant inner product, or equivalently a G-invariant euclidean norm. B. Sz.-Nagy [134] 
showed that any bounded representation � ∶ ℤ → GL(H) is unitarizable, i.e., H 
admits an equivalent �(ℤ)-invariant inner product. This was extended by M. Day 
[42] and J. Dixmier [45] to any bounded representation of an amenable topological 
group, via averaging over an invariant mean.

In the opposite direction, the first example of a non-unitarizable bounded rep-
resentation of a (necessarily non-amenable) group in the Hilbert space is due to L. 
Ehrenpreis and F. I. Mautner [50].

Since, by a result of A. J. Ol’šhanskiĭ [111], there are non-amenable countable 
groups which do not contain a copy of �2 , it remains open whether the result of Sz.-
Nagy, Day and Dixmier admits a converse.

Problem 3.1 (Dixmier’s unitarizability problem) Suppose Γ is a countable group 
all of whose bounded representations on H are unitarizable. Is Γ amenable?

In [56] Ferenczi and Rosendal investigate the relation of certain non-unitarizable 
representations with the notions of maximality, almost transitivity, or transitivity of 
norms, through the following problem:

Problem 3.2 [Ferenczi-Rosendal, 2017] Find a non-unitarizable representation on 
the Hilbert space which admits an equivalent invariant maximal (resp. almost transi-
tive, transitive) norm.

In the case of a positive answer, a maximal (resp. AT, transitive) non-hilbertian 
norm on H would be obtained, and the Hilbert space would admit non-conjugate 
maximal norms (see Problem 2.20). In the last case, there would exist a transitive, 
non-hilbertian norm on H , and therefore a negative answer to the isometric version 
of Mazur rotations problem.

We focus here on a specific class of possibly non-unitarizable representations, 
which first appeared in [119]: triangular representations on a direct sum of two Hil-
bert spaces, where the diagonal elements of the matrix are unitary and where the 
upper right element is called a derivation.

Precisely, suppose that � ∶ Γ → U(H) is a unitary representation. A bounded 
derivation associated to � is a uniformly bounded map d ∶ Γ → B(H) so that 
d(gf ) = �(g)d(f ) + d(g)�(f ) for all g, f ∈ Γ . This is simply equivalent to requiring 
that

�d(g) =

(
�(g) d(g)
0 �(g)

)
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defines a bounded representation of Γ on H⊕H . The representation �d is unita-
rizable exactly when d is inner, i.e., d(g) = �(g)A − A�(g) for some bounded linear 
operator A on H (a classical result whose proof may be found, e.g., in [56]).

Of course such a representation �d cannot be transitive or almost transitive, since 
it leaves the first summand invariant. Citing [56] this leads to the study of “bounded 
groups G ⩽ GL(H⊕H) containing �d[Γ] for � and d as above, which are potential 
examples of maximal non-unitarizable groups”:

Proposition 3.3 ([56]) Suppose that � ∶ Γ → U(H) is a unitary representation of a 
group Γ on a separable infinite-dimensional Hilbert space H and let d be a bounded 
derivation associated to � . Consider the assertions

(1) There is an almost transitive bounded subgroup G of GL(H1 ⊕H2) containing 
�d[Γ].

(2) There is a �d[Γ]-invariant norm on H1 ⊕H2 with moduli of convexity and 
smoothness of power type 2.

(3) There is a �d[Γ]-invariant norm on H1 ⊕H2 such that the H1-nearest point map 
H1 ⊕H2 → H1 is well-defined and Lipschitz.

(4) There is a homogeneous Lipschitz map � ∶ H2 → H1 such that 
d(a) = �(a)� − ��(a).

(5) The group �d[Γz] is unitarizable for z outside of a Gauss null subset of H2 , where 
Γz = {a ∈ Γ ∶ �(a)(z) = z}.

Then (1) ⟹ (2) ⟹ (3) ⟹ (4) ⟹ (5).

Proof The idea of the proof is as follows. From (1) one deduces that the G-invariant 
norm supg∈G ‖gx‖2 (which has modulus of convexity of power type 2) is a multi-
ple of any given G-invariant norm on H = H1 ⊕H2 . The same holds for the dual 
norm to the G-invariant norm supg∈G ‖g∗�‖2 , defined on the dual, and this norm 
has modulus of smoothness of power type 2. So there is a G-invariant (and in par-
ticular �d[Γ]-invariant) norm with both moduli of power type 2. The implication 
(2) ⟹ (3) follows from classical estimates relating the modulus of continuity of 
the nearest point to the moduli of convexity and smoothness, which appear in [23] 
as Theorem 2.8. Since the H1-nearest point map n ∶ H1 ⊕H2 → H1 is equivariant 
under translation by any vector in H1 and under isometries in �d[Γ] , it is given by 
the formula: n(x, y) = x + �(y) . The map �(y) = n(0, y) is Lipschitz and the identity 
d(a)(x) = �(a)�(x) − �(�(a)x) follows from the relation n(T(x, y)) = T(n(x, y)) for 
any T = �d(a).

(4) ⟹ (5) Outside of a Gauss null set the map � is Gâteaux differentiable [23, 
Theorem 6.42]. Derivating the relation above for a ∈ Γz , � �(z) witnesses that d(a) is 
a linear derivation for the group �d[Γz] .   ◻

It may be interesting to note here that geometric properties of general Banach 
spaces (such as uniform convexity or smoothness) are relevant even to the seemingly 
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trivial case of a Hilbert space. For example, choosing to see a bounded group on H 
as an isometric group on some non-hilbertian renorming X of H allows to use rela-
tions of the nearest point map with convexity or smoothness of the norm of X.

Corollary 3.4 Suppose that � ∶ Γ → U(H) is a unitary representation of a group 
Γ on a separable Hilbert space H and d ∶ Γ → B(H) is an associated non-inner 
bounded derivation. Suppose that G ⩽ GL(H⊕H) is a bounded almost transitive 
subgroup containing �d[Γ] . Then there is a homogeneous Lipschitz non-linear map 
� ∶ H → H defining the derivation by d(a) = �(a)� − ��(a).

The authors of [56] call Lipschitz inner a bounded derivation of the form 
d(g) = [L, g] , for L Lipschitz homogeneous on H , and ask the following natural 
question [56, end of Section 3]:

Problem 3.5 Does there exist a Lipschitz inner derivation on H which is not inner?

It is unclear whether differentiability techniques may be used to obtain that every 
Lipschitz inner derivation is inner. Those techniques usually do not have any kind of 
invariance or equivariance with respect to the action of the isometry group and this 
seems to be an unsurmountable problem.

Comments:

(1) The survey [118] by G. Pisier and also [51, 109] contain the present state of 
affairs on Dixmier’s problem.

(2) F. Cabello Sánchez [25] gives some partial restrictions on transitive renormings 
of the separable Hilbert space. Such renormings must be twice Gâteaux differ-
entiable everywhere apart from zero, and the duality mapping must be Gâteaux 
differentiable everywhere apart from zero. For recent results regarding AT or 
transitivity of certain “Schatten restricted” renormings of the Hilbert space, see 
[107].

(3) It is a classical geometric problem in Banach space theory whether a (necessarily 
superreflexive) space admitting an equivalent norm with modulus of convexity 
of power type p, and another with modulus of smoothness of power type q, must 
admit an equivalent norm with both properties. Although such results hold for the 
LUR property, through Baire category methods on the set of equivalent norms, 
[43, Section II.4], the same method does not apply to uniformly convex norms. 
It was noticed by C. Finet [58] that this would hold if every superreflexive space 
admitted an equivalent almost transitive norm (indeed every almost transitive 
norm on a superreflexive space must have modulus of convexity of optimal power 
type). But this hope was shattered by the example of [55] and later by those of 
[44]. When p = q = 2 the question becomes trivial because of Kwapień’s theorem 
[95]. However, given a bounded group G of automorphisms on the space, the 
version of this problem for G-invariant norms remains open, even for p = q = 2 
(note that on the Hilbert space it is only relevant for non unitarizable groups):
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Problem 3.6 Assume G is a bounded group of automorphisms on the Hilbert space 
H , and that there exist G-invariant norms on H with modulus of convexity (resp. 
modulus of smoothness) of power type 2. Must there exist a G-invariant norm on H 
with these two properties?

4  Multidimensional Mazur problem

As a general principle, we wish to identify properties of Banach spaces which are 
stronger than transitivity, satisfied by Hilbert spaces, and for which however there 
exist non-hilbertian non-separable examples. Any positive solution to the Mazur 
rotations problem would need to solve the rotations problem associated to this 
stronger version of transitivity as a first step. The direction explored for this in this 
section is multidimensionality, and its results are mainly from the recent paper [54].

4.1  Ultrahomogeneity

Ultrahomogeneity (or ultratransitivity) of a Banach space is the multidimensional 
version of the transitivity property. The term “ultrahomogeneity” is closer to tradi-
tion in the Fraïssé theory and this explains the choice of this term in the paper [54], 
to which we adhere.

It is undisputable that all 1-dimensional spaces are mutually isometric. In higher 
dimensions, however, a global isometry on a space can only send a finite dimen-
sional subspace onto another if those were isometric to begin with.

Definition 4.1 (Ultrahomogeneity) A Banach space X is said to be ultrahomogene-
ous (UH) when for every finite dimensional subspace E ⊂ X every isometric embed-
ding E → X extends to a global (surjective) isometry of X.

Less clearly, X is UH if for every finite dimensional E ⊂ X the canonical action 
Isom(X) ↷ Emb(E,X) is transitive (see Sect. 1.2 for the definition of Emb(E,X)).

Note that any ultrahomogeneous space (or norm) is in particular transitive. As a 
consequence of the existence of orthogonal complements in Hilbert spaces:

Fact 4.2 Hilbert spaces are ultrahomogeneous.

Problem 4.3 (Multidimensional Mazur problem) Is every separable infinite dimen-
sional ultrahomogeneous Banach space isometric (or isomorphic) to the Hilbert space?

Similarly as for the one-dimensional problem, this leads quite naturally to two 
separate questions namely: Is every separable UH Banach space isomorphic to a 
Hilbert space? Is every UH renorming of a Hilbert space Euclidean?



438 São Paulo Journal of Mathematical Sciences (2022) 16:406–458

1 3

Is there any other (nonseparable) UH space in sight? Yes, ultrapowers of the 
Gurariy space or of Lp-spaces for appropriate values of p, with respect to CI ultrafil-
ters. See below.

Comments:

The two-dimensional part of the UH property (that any isometric embedding of a 
two-dimensional subspace extends to a surjective isometry) is not to be confused 
with the notion of 2-transitivity (whenever x, y, x′, y′ belong to the sphere, and 
d(x, y) = d(x�, y�) , then there exists a surjective isometry sending x to x′ and y to 
y′ ). The second one is much stronger and already implies that the space is iso-
metrically hilbertian (no separability needed): Ficken [57] proved that if for all 
x, y ∈ SX there exists T ∈ Isom(X) with T(x) = y and T(y) = x , then X is isometric 
to a Hilbert space, see also [6, Condition 2.8].

4.2  Approximate ultrahomogeneity

Let us introduce the following “approximate” version of UH, taken from [54]:

Definition 4.4 A Banach space X is called approximately ultrahomogeneous (AUH) 
when for every finite dimensional subspace E of X, every isometric embedding 
u ∶ E → X and every 𝜀 > 0 there is an isometry U of X such that ‖u�E − U‖ < 𝜀.

Thus X being AUH exactly means that the canonical action of 
Isom(X) on Emb(E,X) is almost transitive (i.e. has dense orbits), where Emb(E,X) 
is equipped with the metric induced by the operator norm; informally, this means 
that any partial isometry between finite dimensional subspaces can be well 
approximated by a global isometry.

The following sums up the known examples of separable, non hilbertian, AUH 
spaces.

Theorem 4.5 The following spaces are AUH, but not UH:

(a) The Gurarij space G.
(b) Lp , for p ≠ 2, 4, 6, 8,…

The AUH character of G is a relatively recent result by Kubiś and Solecki [94]. 
The Gurariy space is the only universal, separable AUH Banach space. The part 
concerning Lp spaces was essentially established by Lusky in the late 1970s [102] 
elaborating on the Plotkin/Rudin equimeasurability theorem. It is clear that these 
spaces cannot be UH because they are not even transitive. It is a remarkable fact 
that the Lp spaces, for p = 4, 6,… fail to be AUH. This follows from work of Ran-
drianantoanina [123] who, as part of an answer to a question of H.P. Rosenthal 
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[127], showed that those spaces contain isometric copies of certain finite dimen-
sional spaces with very different projection constants; see details in [54]. This is 
quite surprising since for p ∈ (1,∞) different from 2, the groups Isom(Lp) are all 
topologically isomorphic to each other, including p even, both in the SOT and in 
the norm topology. However, their canonical actions on Emb(E, Lp) turn out to 
have very different properties, depending on whether or not p is an even integer.

The Garbulińska space K described in Sect. 1.5 provides a more “canonical” 
example of an AT space which is not AUH. This can be seen as follows. Every 
Banach space with a skeleton (in particular, a finite dimensional one) is isometric 
to a 1-complemented subspace of K . This applies to �2n

∞
 and �n

1
 . But �2n

∞
 contains 

an isometric copy of �n
1
 whose projection constant is large (let us be foolhardy: it 

is exactly 2m + 1

22m

(
2m

m

)
 , where m is the integer part of 1

2
(n − 1) , proved by Grün-

baum in 1960, [74]). Thus K contains well- and bad-complemented subspaces 
isometric to �n

1
 so that it canot be AUH, and neither can its ultrapowers.

As we already mentioned, there exist non-separable ultrahomogeneous spaces. 
A method of finding them used in [13, Chapters 3 and 4], and then in [54], has 
been to investigate weaker forms of transitivity of separable spaces, with the 
objective of then taking ultrapowers. What catches us off-guard is that the AUH 
of a Banach space does not automatically imply UH of its ultrapowers. The rea-
son for this is that, in general, an isometric embedding u ∶ E → [Xi]U can arise 
from a family of �i-isometric embeddings ui ∶ E → Xi with �i → 0 along U .

Nevertheless, the Gurariy space, being separable and of almost universal 
disposition, has the following “perturbed” version of UH that is much easier to 
establish than AUH and was known to Gurariy himself:

Lemma 4.6 Let u ∶ E → F be a �-isometry acting between two finite dimensional 
subspaces of G . Then, for every 𝜀 > 𝛿 there is a surjective �-isometry U of G extend-
ing u.

Curiously enough, no isometry sensu stricto is involved in the preceding state-
ment. As a consequence we have the following result [13, Proposition 4.16]:

Proposition 4.7 Ultrapowers of the Gurariy space built on countably incomplete 
ultrafilters are ultrahomogeneous.

The density character of any such space is at least the continuum; we do not 
know if there are examples whose density character is ℵ1 ; see Sect. 1.5 and the 
comments around [35, Proposition 4.2].

And what about ultrapowers of Lp ? Keep reading.
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4.3  Fraïssé Banach spaces

One of the main technicalities of the definition of a Fraïssé Banach space from 
[54] is that it is expressed in terms of the canonical actions of the linear isom-
etry group, not only on the spaces Emb(E,X) of isometric embeddings, but also 
on Emb�(E,X) , the class of �-isometric embeddings, which is equipped with the 
distance induced by the norm. As the reader may guess, the canonical action 
Isom(X) ↷ Emb�(E,X) is defined by (g, T) ↦ g◦T  . Also, the action of a subgroup 
G of Isom(X) on Emb�(E,X) is said to be �-transitive if for any T ,U ∈ Emb�(E,X) , 
there exists g ∈ G such that ‖g◦T − U‖ ⩽ �.

Following a terminology inspired by the Fraïssé theory (but without using the 
abstract setting of model theory which is common in the general Fraïssé theory), 
given a Banach space X, we denote by Age (X) the set of all finite dimensional 
subspaces of X, and by Age k(X) the set of its k-dimensional subspaces. Our pres-
entation of the results of [54] is slightly modified to point out the role of the 
dimension.

Definition 4.8 (Ferenczi, López-Abad, Mbombo, Todorcevic [54]) Let k ∈ ℕ . A 
Banach space X is k-Fraïssé if and only if for every 𝜀 > 0 there is 𝛿 = 𝛿k(𝜀) > 0 such 
that for every E ∈ Age k(X) , the action Isom(X) ↷ Emb�(E,X) is �-transitive. A 
Banach space X is Fraïssé if and only if it is k-Fraïssé for every k ∈ ℕ.

Since isometric embeddings are �-isometric for any 𝛿 > 0 , Fraïssé ⟹ (AUH). 
We pass to an important characterization of the Fraïssé property indicating that the 
possibility of choosing � uniformly on subspaces of dimension k is related to the 
closedness of Agek(X) in the Banach-Mazur compactum.

Definition 4.9 A space X is weak k-Fraïssé if and only if for every E ∈ Age k(X) 
and every 𝜀 > 0 , there is 𝛿 = 𝛿E(𝜀) > 0 such that the action Isom(X) ↷ Emb�(E,X) 
is �-transitive.

The following is proved in [54, proof of Theorem 2.12]:

Lemma 4.10 The following are equivalent for X Banach and k ∈ ℕ : 

(1) X is k-Fraïssé,
(2) X is weak k-Fraïssé and Agek(X) is compact in the Banach–Mazur (pseudo) 

distance.

And therefore

Proposition 4.11 For a Banach space X the following are equivalent: 
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(1) X is Fraïssé,
(2) X is weak Fraïssé and for all k ∈ ℕ , Agek(X) is compact in the Banach–Mazur 

(pseudo) distance.

Comments:

Given a (hereditary) class F  of finite (or sometimes finitely generated) structures, 
the Fraïssé theory (Fraïssé 1954, [63]) investigates the existence of a countable 
structure A , universal for F  and ultrahomogeneous (any isomorphism between 
finite substructures extends to a global automorphism of A ). The “Fraïssé cor-
respondence” shows that this is equivalent to certain “amalgamation properties” 
of F  . In this case A is unique up to an isomorphism and called the Fraïssé limit 
of F  . Analogies of this situation with the ultrahomogeneity properties of Banach 
spaces considered in their paper led to the use of the Fraïssé terminology in [54].

4.4  Examples of Fraïssé Banach spaces

As expected, the list of usual suspects provides examples of Fraïssé spaces:

Theorem 4.12 The following Banach spaces are Fraïssé: 

(a) Hilbert spaces (with � = �),
(b) the Gurariy space (with � = 2�),
(c) The spaces Lp   for finite p ≠ 4, 6, 8,…

However Lp is not Fraïssé for p = 4, 6, 8,… since is not AUH.
Part (a) is very easy: it consists in showing that every �-isometric embedding 

between finite dimensional Hilbert spaces is at distance � from a true isometric embed-
ding, see [54, Example 2.4] for details. Part (b) is due to Kubiś and Solecki [94, Theo-
rem 1.1]. Part (c) is a recent result by Ferenczi, López-Abad, Mbombo and Todorcevic 
[54, Theorem 4.1].

Comments:

(1) Citing Lusky [102], “We show that a certain homogeneity property holds for 
Lp; p ≠ 4, 6, 8,… which is similar to a corresponding property of the Gurariy 
space...” The Fraïssé Banach space definition gives a more precise meaning to 
this similarity.

(2) The proof of Theorem 4.12(c) is quite technical and will not be presented here. 
It is based on proving an approximate equimeasurability principle, a continu-
ous statement extending the classical equimeasurability principle of Plotkin and 
Rudin, see [54, Section 4.2]. This result implies a local statement about exten-
sion of almost isometric embeddings which is equivalent to the weak Fraïssé 
property for Lp . The other ingredient is the classical fact from the theory of Lp
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-spaces, that Agek(Lp) is compact in the Banach-Mazur distance. One then con-
cludes the proof by Proposition 4.11.

(3) An optimal estimative of the values of �k(�) appearing in the Fraïssé property for 
the space Lp remains to be computed. In particular, it is unclear whether � could 
be chosen uniformly in k, see the next item.

(4) The estimates obtained on � in the cases of the Hilbert space and the Gurariy 
space witness that � may be chosen independently of the dimension of the 
subspace E. This leads to the following definition, see [54, p. 5], as well as 
[100] in a much more general context: a Banach space X is stable Fraïssé if for 
every 𝜀 > 0 there is 𝛿 = 𝛿(𝜀) > 0 such that for every E ∈ Age (X) , the action 
Isom(X) ↷ Emb�(E,X) is �-transitive. Please note that the meaning of the adjec-
tive “stable” here has nothing to do with stable spaces in the sense of Krivine-
Maurey. The following natural question is open:

Problem 4.13 Are the spaces Lp , for finite p ≠ 4, 6, 8… , stable Fraïssé?

4.5  Embeddings and isometries between Fraïssé spaces

The following properties of Fraïssé Banach spaces may be thought of as natural 
counterparts to their “exact” equivalent statements in the Fraïssé theory, relating 
an ultrahomogeneous countable structure to its finite parts.

Recall that a space Y is finitely representable in X if for any finite dimensional 
subspace E of Y and any 𝜀 > 0 , there exists a finite dimensional subspace F of 
X such that dBM(E,F) < 1 + 𝜀 . This is a basic notion of local theory of Banach 
spaces, which aims to compare the finite dimensional structures of spaces “up to 
arbitrarily small perturbation”.

Proposition 4.14 Assume X is Fraïssé, and that Y is separable. Then the following 
are equivalent: 

(1) Y is finitely representable in X.
(2) Every finite dimensional subspace of Y embeds isometrically in X.
(3) Y embeds isometrically in X.

Therefore embeddings into Fraïssé spaces are exactly prescribed by the nat-
ural order relation between the respective local structures. In particular, by the 
Dvoretzky’s theorem about finite representability of the Hilbert space in infinite 
dimensional Banach spaces (cf. [65]), all Fraïssé spaces must contain an isomet-
ric copy of the Hilbert space H:

Proposition 4.15 The Hilbert space is the minimal separable Fraïssé space.



443

1 3

São Paulo Journal of Mathematical Sciences (2022) 16:406–458 

Let for F,G  classes of finite dimensional spaces, F ≡ G  mean that any ele-
ment of F  has an isometric copy in G  and conversely. By means of a back-and-
forth argument it is proven in [54, Proposition 2.22 and Theorem 2.19] that sepa-
rable AUH (resp. Fraïssé) spaces are uniquely isometrically determined (among 
spaces with the same property) by their age modulo ≡ (resp. by their local struc-
ture). Precisely:

Proposition 4.16 Assume X and Y are separable AUH spaces. Then the following 
are equivalent:

(1) Age(X) ≡ Age(Y),
(2) X and Y are isometric.

If furthermore X and Y are assumed to be Fraïssé spaces, then (1)&(2) are also 
equivalent to 

(3) X is finitely representable in Y and vice-versa.

A consequence of Proposition 4.16 is that any separable Fraïssé space which does 
not have non-trivial cotype must be isometric to the Gurariy space. Indeed, �∞ is 
finitely representable in such a space, and therefore condition (3) of Proposition 4.16 
may be applied.

4.6  Internal characterizations: amalgamation

In [54] are also obtained internal characterizations of those classes of finite dimen-
sional spaces corresponding to the age of some Fraïssé space (“amalgamation 
properties”).

Definition 4.17 A class F  of finite dimensional spaces has the Fraïssé amalga-
mation property if whenever E,F,G ∈ F  with dim E = k , and � ∈ Emb�(E,F) , 
� ∈ Emb�(E,G) , there are K ∈ F  and isometric embeddings i ∶ F → K and 
j ∶ G → K such that ‖i◦� − j◦�‖ ≤ �.

It is not hard to check that the age of a Fraïssé Banach space must satisfy the 
Fraïssé amalgamation property. Conversely and more importantly, the amalgamation 
property is equivalent to the existence of an associated Fraïssé space X, which, by 
Proposition 4.16, in the separable case, is uniquely determined.

Definition 4.18 For a class F  with the Fraïssé amalgamation property, there exists 
an isometrically unique separable Fraïssé space X such that Age(X) ≡ F  . In this 
case it is said that X is the Fraïssé limit of F .
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Question 4.19 Are there other examples of amalgamation classes, apart from the 
classes of finite dimensional subspaces of Lp for p ≠ 4, 6, 8… , or the class of all 
finite dimensional normed spaces?

It may be that a hypothetical new separable Fraïssé space will appear not as a 
“preexisting space” such as the Lp ’s but rather as a “new space” defined as the limit 
of a new amalgamation class.

4.7  Fraïssé is an ultraproperty

In the same spirit as the relation between AT and transitivity in Sect. 1, there exist 
characterizations of the Fraïssé property through ultrapowers. This point of view 
allows for formulations of the Fraïssé property without use of epsilontics.

Given an ultrafilter U , denote by (Isom(X))U the subgroup of isometries of XU of 
the form (Ti)U , where each Ti ∈ Isom(X) . Note that (Ti)U is (correctly) defined on XU 
by (Ti)U[(xi)] = [(Txi)].

We state here k-dimensional versions of some general properties proved in [54].

Proposition 4.20 Let U be a free ultrafilter on ℕ . For a Banach space X and k ⩾ 1 
the following are equivalent:

(1) X is weak k-Fraïssé (respectively, X is k-Fraïssé).
(2) For every E ∈ Age k(X) (respectively, for every E ∈ Age k(XU) ), the action 

(Isom(X))U ↷ Emb(E,XU) is almost transitive.
(3) For every E ∈ Age k(X) (respectively, for every E ∈ Age k(XU) ), the action 

(Isom(X))U ↷ Emb(E,XU) is transitive.

Note the difference between finite dimensional subspaces of X and finite dimen-
sional subspaces of XU . By classical results of local theory and ultraproducts, the 
elements of Age (XU) are exactly those belonging to the closure of the set Age (X) 
with respect to the Banach-Mazur distance. As an illustration, every finite dimen-
sional subspace of Lp is a limit (in the Banach-Mazur distance) of a sequence of 
finite dimensional subspaces of �p ; Age (Lp) is closed but Age (�p) is not.

Several equivalent characterizations of the Fraïssé property appear in [54] and 
follow essentially from Proposition 4.20. Informally and under some restrictions, 
we see that UH, AUH and the Fraïssé property induced by isometries on the space, 
become indistinguishable in its ultrapowers.

Proposition 4.21 The following are equivalent for a Banach space X:

(1) X is Fraïssé.
(2) The action (Isom(X))U ↷ Emb(E,XU) is almost transitive for every E ∈ Age (XU).
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(3) The action (Isom(X))U ↷ Emb(E,XU) is transitive for every E ∈ Age (XU) .
(4) The action (Isom(X))U ↷ Emb(Z,XU) is transitive for every separable Z ⊂ XU.
(5) XU is Fraïssé and (Isom(X))U is SOT-dense in Isom(XU)

Corollary 4.22 The non-separable Lp-space (Lp)U is ultrahomogeneous for each 
p ∈ [1,∞) different from 4, 6, 8…

Comments:

(1) The proof of Proposition 4.21 in [54] essentially follows the argument given by 
Avilés, Cabello Sánchez, Castillo, González and Moreno in [13, Section 4.3.3]. 
A natural version of Corollary 4.22 for the Gurariy space was also obtained 
by these authors [13, Proposition 4.16]. The spaces in Corollary 4.22 seem to 
be the only known super-reflexive ultrahomogeneous examples (if p > 1 ). The 
existence of separable ultrahomogeneous spaces other than the Hilbert space 
still remains unknown, cf. Problem 4.3.

(2) In Corollary 2.24(a) we observed that when p ≠ 2 , (Lp)U admits infinitely many 
non-isometric transitive renormings. However, while (Lp)U is ultrahomogene-
ous in its natural norm by Corollary 4.22, it is not with respect to the norms 
transferred from (Lp(�n

2
))U for n ⩾ 2 . Indeed these spaces admit both a 1-com-

plemented isometric copy of �2
2
 and another which is not 1-complemented (the 

copy induced by an isometric embedding of �2
2
 into Lp , whose best constant of 

complementation is computed in [67, 68]: relapsing into bad habits let us add 
that it is exactly 

√
Γ(1∕2)Γ(p∕2 + 1)∕Γ(p∕2 + 1∕2) ). It is not known whether or 

not there exist spaces with two or more UH renormings.

4.8  Local versions of the Fraïssé property

If one wants to deduce some properties of the isometry group Isom(Lp) from combi-
natorial properties of embeddings between subspaces of Lp , general subspaces of Lp 
do not seem easy to handle. Auspiciously, and not unexpectedly, a lot can be said on 
the general structure of the space Lp just from its finite-dimensional �p-subspaces. In 
this direction we recall a result of Schechtman [130] (and Dor [46] for p = 1 ) - as 
observed by Alspach [5].

Theorem  4.23 (Dor–Schechtman) Let 1 ⩽ p < ∞ be fixed. For every 𝜀 > 0 there 
exists 𝛿 > 0 , depending only on � and p, so that for every n and every �-isometry 
u ∶ �

n
p
→ Lp , there is an isometric embedding ũ ∶ �

n
p
→ Lp such that ‖u − ũ‖ < 𝜀.

In other words, a form of the Fraïssé property in Lp is satisfied when “restricted” 
to subspaces of Lp isometric to an �n

p
 (including p = 4, 6, 8… ). As commented ear-

lier there is no hope to extend this to general finite dimensional subspaces when 
p = 4, 6, 8…
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With this example in mind, it is possible and useful to develop a Fraïssé theory 
with respect to restricted classes of finite dimensional subspaces, which are not the 
age of any X, because they are not hereditary. In this sense this may be called a 
“local version” of the Fraïssé theory for Banach spaces. Informally, given a class F  
of finite dimensional Banach spaces, the F-Fraïssé spaces are those for which the 
natural actions on �-embeddings are �-transitive, provided that the embeddings have 
as domain an element of F  . For Lp the authors of [54] use Theorem 4.23 to give 
meaning to the affirmation:

Theorem 4.24 For any p ∈ [1,∞) , even or not, Lp is the Fraïssé limit of the class 
(�n

p
)n.

4.9  Fraïssé and extreme amenability

Recall from Sect.  1.2 that a topological group G is called extremely amenable 
(EA) when every continuous action G ↷ K on a compact K has a fixed point. 
The Fraïssé theory is related to this notion through the celebrated KPT corre-
spondence (Kechris/Pestov/Todorcevic 2005 [92]), a combinatorial characteriza-
tion of the extreme amenability of an automorphism group in terms of a Ramsey 
property of Age: as a beautiful example, Pestov’s result that the group of order 
preserving automorphisms of the rationals is extremely amenable [116] may be 
seen as combination of “ (ℚ,<) is the Fraïssé limit of finite ordered sets” and of 
the classical finite Ramsey theorem on ℕ . The authors of [54] use a form of the 
KPT correspondence for metric structures which applies without difficulty to the 
isometry group of a Fraïssé, or even AUH, Banach space X.

Definition 4.25 A collection F  of finite dimensional normed spaces has the 
Approximate Ramsey Property (ARP) when for every F,G ∈ F  and r ∈ ℕ, 𝜀 > 0 
there exists H ∈ F  such that every coloring c of Emb(F,H) into r colors admits 
an embedding � ∈ Emb(G,H) which is �-monochromatic for c: there exists a 
color i so that for all u ∈ Emb(F,G) there is v ∈ Emb(F,H) such that c(v) = i and 
‖v − �u‖ ⩽ �.

Theorem  4.26 (KPT correspondence for Banach spaces) For an AUH Banach 
space X the following are equivalent: 

(1) Isom(X) is extremely amenable in the SOT.
(2) Age (X) has the approximate Ramsey property.

The KPT correspondence turns out to extend to the setting of �n
p
-subspaces of 

Lp . This means that one can expect to prove the extreme amenability of Isom(Lp) 
through internal properties, i.e. through an approximate Ramsey property of the 
class of isometric embeddings between �n

p
’s. This expectation was fulfilled for 

p = ∞ in [18], and then for 1 ⩽ p < ∞, p ≠ 2 , in [54]:
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Theorem  4.27 (Ramsey theorem for embeddings between �
n
p
’s) Given 

1 ⩽ p ≤ ∞, p ≠ 2 , integers d, m, r, and 𝜀 > 0 there exists n = np(d,m, r, �) such that 
whenever c is a coloring of Emb(�d

p
,�n

p
) into r colors, there exists some isometric 

embedding � ∶ �
m
p
→ �

n
p
 which is �-monochromatic.

The proofs of these two results are quite complex and beyond the scope of 
this survey. The proof obtained in [54] for p ≠ 2 , as well as the estimates on 
np(d,m, r, �) that would follow from it (but are not computed by the authors), do 
not extend to the Hilbert space, due to the different nature of isometric embed-
dings between finite dimensional subspaces in this case. Theorem  4.27 is still 
valid for p = 2 , but as a consequence of Theorem 4.26 and of Gromov–Milman’s 
result [65] about extreme amenability of the unitary group, see the following 
comments.

The Fraïssé spaces encountered in [17, 18, 54] were known to have extremely 
amenable isometry groups when equipped with the strong operator topology:

Example 4.28 The isometry group of Lp , for any 1 ⩽ p < ∞, p ≠ 2 , and the isometry 
group of G are extremely amenable in the SOT.

The extreme amenability of Isom(Lp) for p ∈ [1,∞), p ≠ 2 was proved in 2006 
by Giordano and Pestov [66], and the methods of [54] allow to recover this result 
through Theorem  4.27 and the KPT correspondence for Banach spaces. In any 
case this statement refers to one group only because Choksi and Kakutani proved 
long time ago that the groups Isom(Lp) are all topologically isomorphic in the 
SOT for p ∈ [1,∞) , see [39, Theorem 8].

The extreme amenability of Isom(G) is a recent result by Bartosová, López-Abad, 
Lupini, and Mbombo [17, 18], and may be seen as a corollary of the combination of 
the KPT correspondence and Theorem 4.27 for p = ∞.

When p = 2 the isometry group of Lp is the unitary group whose extreme amena-
bility was established in 1983 by Gromov and Milman [73].

The KPT correspondence for Banach spaces also implies new results for some 
non-separable versions of those spaces. As a consequence of Gromov–Milman’s 
result and of Theorem 4.26, the unitary group of any infinite dimensional Hilbert 
space is extremely amenable in the SOT, regardless of its density character. From 
Theorem 4.26, the result that Lp, 1 ⩽ p < ∞ is Fraïssé, and Proposition 4.21, we also 
have:

Example 4.29 For 1 ⩽ p < ∞, p ≠ 2 the isometry group of any ultrapower of Lp with 
respect to a free ultrafilter on the integers is extremely amenable in the SOT.

Comments:

(1) The Gromov–Milman [73] result of extreme amenability of U(H) is based on 
the concentration of measure phenomenon. The result of Giordano-Pestov [66] 
for Lp also uses concentration of measure and a general description of Isom(Lp) 
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as a topological group. In [54] and for p not even this may be recovered by the 
above considerations through the fact that Lp is AUH and through the Ramsey 
property; for p even, the local version of the Ramsey property, Theorem 4.27, 
needs to be used. The extreme amenability of the isometry group of the Gurariy 
space relies on its AUH property and the Ramsey property for embeddings 
between finite dimensional spaces (or equivalently, between �n

∞
-spaces).

(2) There are some precursors of the Ramsey result Theorem 4.27. In [110], Odell-
Rosenthal-Schlumprecht (1993) proved that that for every 1 ≤ p ≤ ∞ , every 
m, r ∈ ℕ and every 𝜀 > 0 there is n ∈ ℕ such that for every coloring c of the 
unit sphere of �n

p
 into r colors there is Y ⊂ �

n
p
 isometric to �m

p
 so that SY is �

-monochromatic. Note that Odell-Rosenthal-Schlumprecht is the case d = 1 in 
Theorem 4.27. Matoušek-Rödl (1995) [104] gave a combinatorial proof of the 
[110] result for 1 ≤ p < ∞.

(3) The authors of [54] also develop a Fraïssé theory by restricting the type of 
embeddings, for example by analyzing lattices, where now isometries and 
embeddings (resp. �-embeddings) must respect (resp. maybe up to � ) the lattice 
structure. In this manner Fraïssé Banach lattices, i.e. certain unique universal 
objects for classes of finite dimensional lattices with an approximate lattice 
ultrahomogeneity property, are defined [54, Definition 6.1].

  For example, Lp is a Fraïssé Banach lattice for p ∈ [1,∞) which is the “lattice 
Fraïssé” limit of its finitely generated sublattices, clearly isometric to the cor-
responding �n

p
 . For p = ∞ they define a new object which they call the “Gurariy 

M-space”, proving that there exists a renorming of C[0, 1] as an M-space which 
is the lattice Fraïssé limit of the class of �n

∞
 ’s finite lattices.

(4) The “Gurariy M-space” cited in the previous item is inspired by a couple of con-
structions from [28]; namely an M-space, which is transitive and easier to define, 
albeit non-separable (the ultraproduct of the lattices Lp for p tending to ∞ ) and a 
family of separable AT M-spaces some of which (all?) might be isometric to the 
“Gurariy M-space” ... or not. Avilés and Tradacete [14] and M.A. Tursi [139] 
recently and independently studied amalgamation properties for Banach lattices: 
Avilés and Tradacete constructed a (necessarily non-separable) Banach lattice of 
universal disposition for separable lattices. Tursi’s paper contains, among other 
things, the construction of a separable approximately ultrahomogeneous Banach 
lattice. In the even more recent [89], Kawach and López-Abad study amalgama-
tion and Fraïssé properties for Fréchet spaces.

5  Questions and problems

In this final section we gather and discuss a number of problems that arise naturally 
from the contents of the survey. We have classified them according to the topics cov-
ered in the preceding sections, although the borders are quite permeable.
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Local questions, ultraproducts, finite dimensional objects It is clear (use the 
√
dim  

estimate for the ellipsoid of minimal volume or an ultraproduct argument) that for 
each finite n there is a function fn ∶ [0, 2] → [1,∞) with fn(�) → 1 as � → 0 so that 
if E is n-dimensional and �-transitive, then dBM(E,�n

2
) ⩽ fn(�) . See the comments 

closing Sect. 1.5.

5.1 Can the hypothesis on the dimension be removed? That is, is it true that for 
every 𝜀 > 0 there exist 𝛿 > 0 so that every finite dimensional �-transitive (or �
-asymptotically transitive) space is (1 + �)-close to the Hilbert space of the corre-
sponding dimension?

An obvious ultraproduct argument in combination with Theorem 2.29 shows that 
the answer is affirmative if we moreover require the existence of a (1 + �)-comple-
mented hyperplane.

Banach spaces that arise as ultraproducts of families of finite dimensional ones 
are called hyperfinite in nonstandard ambients, see for instance [79]. A couple of 
closely related questions are:

5.2 Is every hyperfinite transitive (or even ultrahomogeneous) space (isometric or 
isomorphic to) a Hilbert space?

5.3 (Henson and Moore [79, Problem 5], Plichko) Do hyperfinite spaces of univer-
sal disposition exist?

5.4 (F. Cabello Sánchez)   Let X be a space with an (almost) transitive norm and 
which admits a non trivial finite-dimensional isometry. Must X be hilbertian?

The answer is affirmative if the hypothesized finite-dimensional isometry is a 
rank-one perturbation of the identity (see [19, Section 3]). Also, by [55, Corollary 
4.14], if X is separable, reflexive, and satisfies the hypotheses in Problem 5.4, then X 
must have a Schauder basis. With an eye on Theorem 2.29 we can ask:

5.5 (F. Cabello Sánchez)   Let X be a space with an (almost) transitive norm and 
which admits a 1-complemented subspace of finite codimension greater than 1. 
Must X be hilbertian?

Let GLf (X) denote the group of automorphisms of X that have the form �X + F 
where F is a finite-rank operator. [55, Problem 8.11] asked to find a separable space 
X and a bounded subgroup of GLf (X) which is infinite and discrete in the SOT. This 
was solved in [7] with an example on c0 . The question remains in reflexive spaces:
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5.6 Find a separable reflexive space X and a bounded subgroup of GLf (X) which is 
infinite and discrete in the SOT.

In the same vein we ask:

5.7 If X is separable reflexive and a bounded subgroup G of GLf (X) is discrete in 
the SOT, does it imply that all orbits of the action of G on the sphere are discrete? 
Or at least, not dense in SX?

Maximality of the norm, renormings Not surprisingly, the hottest issue in this line is 
about norms on Hilbert spaces:

5.8 (Sect. 2.4, Problem 2.20)  

(a) Does the Hilbert space have a unique, up to conjugacy, maximal bounded sub-
group of automorphisms?

(b) Does there exist a separable Banach space X with a unique, up to conjugacy, 
maximal bounded subgroup of GL(X)?

(c) If yes, does X have to be isomorphic to a Hilbert space?

Note that, while the isometric part of Mazur problem asks whether every (almost) 
transitive renorming of a Hilbert space is Euclidean, Part (a) is asking if this is true 
even for maximal renormings. Concerning the possible impact that the existence of 
AT norms can have regarding the isomorphic structure of the underlying space:

5.9 ([55, Problem 8.14])  Let X be a separable, reflexive, Banach space with an AT 
norm. Does it follow that X has a Schauder basis?

This was originally asked for CT norms. However, as we already mentioned, CT 
and AT are equivalent notions for reflexive spaces and imply uniform convexity and 
uniform smoothness of the norm; cf. [19, Corollary 6.9]. Without the hypothesis of 
reflexivity the answer is no in view of Lusky’s [103]. By [55, Corollary 4.14], the 
answer is affirmative when there exists a power bounded operator in GLf (X).

5.10 Assume that X is a (complex) HI space. Show that X does no admit an almost 
transitive norm, or even, that the isometry group acts almost trivially on X.

By [55, Corollary 6.7] the answer to this problem is affirmative when X is a sepa-
rable reflexive HI space without a Schauder basis.

All the examples appearing in Theorem 2.11 are, in some sense, “far from being 
Hilbert”. One may wonder if there exist counterexamples within the most popular 
classes of spaces that are “close to being Hilbert”:
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5.11 Find a weak Hilbert space, an asymptotically hilbertian space, or even a near 
Hilbert space that does not admit an AT renorming.

Please note that asymptotically hilbertian is not the same as asymptotic (or 
Asymptotic) �p space for p = 2 ; see Theorem 2.11. The definition of weak-Hilbert 
and asymptotically hilbertian spaces, as well as various characterizations, can be 
seen in Pisier [117]; a near Hilbert space is just a Banach space having type 2 − � 
and cotype 2 + � for every 𝜀 > 0 . These include all “twisted Hilbert spaces”, in par-
ticular the Kalton-Peck spaces [86]. Going in the opposite direction (see the com-
ments closing Sect. 2.2):

5.12 Does there exist any symmetric space not isomorphic to �2 which admits an 
almost transitive renorming?

5.13 Are the Hilbert spaces the only (almost) transitive spaces with property (M)?

5.14 Does there exist a separable Banach space so that every bounded subgroup of 
GL(X) is contained in some maximal bounded subgroup of GL(X) ? Is this true for Lp 
or Kadec’ complementably universal space?

In view of Theorem 2.10 this problem could have different answers for Lp and K 
since the latter contains a complemented copy of each separable HI space with the 
BAP.

5.15 Does T (2) , the 2-convexified Tsirelson space, or do more general weak Hilbert 
spaces, other than the Hilbert space, have a maximal bounded subgroup of GL(X)?

5.16 (Dilworth and Randrianantoanina [44, Problem 1.1])  Suppose that every sub-
space of a Banach space X admits an equivalent almost transitive renorming. Is X 
isomorphic to a Hilbert space?

Going back to the genuine Mazur affairs we find the following question, espe-
cially the case p = 1 , most itching:

5.17 Does Lp admit a transitive renorming for some p ≠ 2?

Problems relative to Fraïssé or homogeneous spaces Here, the fundamental ques-
tion seems to be Problem 4.3, namely

5.18 (Multidimensional Mazur problem) Is every separable ultrahomogeneous 
Banach space isometric (or isomorphic) to the Hilbert space?

Even in this setting the gap between an eventual affirmative answer and the exist-
ing knowledge is sideral.
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5.19 ([54, Problem 2.9]) Are the Gurariy space and the spaces Lp for p ≠ 4, 6, 8,… 
the only separable Fraïssé spaces? or even AUH spaces?

Variants of this problem were suggested to us by G. Godefroy, based on the well-
known fact that the norm on Lp is a C∞-smooth norm exactly when p is even (see 
[43, Chapter V] for much more information on this, in particular for a proof that the 
canonical norm of Lp is optimal regarding smoothness for 1 < p < ∞ ). For example:

5.20 Show that the Hilbert space is the only separable Fraïssé (or even AUH) space 
with a C∞-smooth norm.

5.21 Show that a C∞-smooth norm which is Fraïssé (or even AUH) is necessarily 
ultrahomogeneous.

Note that any Fraïssé renorming of the Gurariy space must be isometric to the 
Gurariy space itself. Indeed, cotype considerations imply that �∞ is finitely repre-
sentable in such space, and then we may apply the observation after Proposition 
4.16. The question seems to remain open for Lp:

5.22 Let 1 ≤ p < ∞ . Is any Fraïssé norm on Lp conjugate to the usual norm?

The multidimensional version of Problem 5.17 is:

5.23 Show that Lp does not admit an ultrahomogeneous renorming.

5.24 ([54, Problem 2.6]) Are the Gurariy space and the Hilbert space the only sepa-
rable stable Fraïssé Banach spaces?

In particular,

5.25 (Problem 4.13) Are the spaces Lp , p ≠ 2, 4, 6,… stable Fraïssé?

In relation to [54, Proposition 2.14] we may ask:

5.26 Is every (separable) AUH space necessarily Fraïssé? Is every ultrahomoge-
neous space Fraïssé? Is every space having an ultrahomogeneous (“countable”) 
ultrapower Fraïssé?

The Banach–Gromov “conjecture” Following a suggestion of the referee, we close 
with a few remarks on another problem in Banach’s book (remarques au Chapitre 
XII, p. 215) concerning isometric characterizations of Hilbert spaces.

5.27 (Banach) Let X be a Banach space such that, for some 2 ≤ n < ∞ , all n-dimen-
sional subspaces of X are isometric. Must X be a Hilbert space?
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The hypothesis on X in this problem is somehow “dual” to that appearing in 
Mazur’s: note that all hyperplanes in a reflexive transitive space are mutually 
isometric.

An affirmative answer for n = 2 (real case) was quickly provided by Auer-
bach, Mazur, and Ulam in [12] and then for infinite-dimensional X and any n by 
Dvoretzky [48] (the complex version of Dvoretzky’s theorem was established later 
by Milman [108]) making it clear that Banach’s question reduced to considering 
hyperplanes in finite-dimensional spaces. In 1967, Gromov [72] solved the problem 
in the affirmative for even n and all X (real or complex), for odd n and real X with 
dim (X) ⩾ n + 2 , and for odd n and complex X with dim (X) ≥ 2n , which also settled 
the problem in any infinite dimensional X. Thus, the first integer for which Banach’s 
problem remains open is 3. We refer ther reader to Soltan [133, Section 6] for more 
information on this topic and to [24] for a recent result.
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