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Abstract. We present new methods to obtain singular twisted sums X ⊕Ω X (i.e., exact
sequences 0 → X → X ⊕Ω X → X → 0 in which the quotient map is strictly singular),
where Ω is the centralizer arising from a complex interpolation schema and X is precisely
the interpolation space. We are mainly concerned with the choice of X as either a Hilbert
space or Ferenczi’s uniformly convex Hereditarily Indecomposable space. In the first case
our methods produce new singular twisted Hilbert spaces, of which the only one known was
the Kalton-Peck Z2 space. In the second case we obtain the first example of an H.I. twisted
sum of an H.I. space. We then use Rochberg’s description of iterated twisted sums to show
that there is a sequence Fn of H.I. spaces so that F2n is a singular twisted sum of Fn with
itself, while for n > k the space Fk ⊕Fn+m is a nontrivial twisted sum of Fn and Fk+m.

1. Introduction

For all unexplained notation see the background Sections 2 (exact sequences and quasi-
linear maps) and 3 (complex interpolation and centralizers).

This paper focuses on the study of the existence and properties of exact sequences

(1) 0 −−−−→ X
j−−−−→ E

q−−−−→ X −−−−→ 0,

in which the Banach spaceX has been obtained by complex interpolation. The exact sequence
will be called nontrivial when j(X) is not complemented in the middle space E, which will be
called a (nontrivial) twisted sum of X (or a twisting of X, or even a twisted X). The exact
sequence will be called singular when the operator q is strictly singular. The key example on
which all the theory is modeled is the Kalton-Peck twisted Hilbert space Z2 obtained in [32],
which provides the first and only known singular sequence

0 −−−−→ `2 −−−−→ Z2 −−−−→ `2 −−−−→ 0.

In [26] Kalton showed that exact sequences (1) are in correspondence with certain non-
linear maps F : X → X, called quasi-linear maps, so, they can be written in the form

(2) 0 −−−−→ X −−−−→ X ⊕F X −−−−→ X −−−−→ 0.

As in [10, 14], we will say that a quasi-linear map F is singular if the associated exact
sequence (2) is singular. In [32] Kalton and Peck refined the quasi-linear method to show
an explicit construction of (a special type of quasi-linear maps called) centralizers on Banach
spaces with unconditional basis. The main example are the so called Kalton-Peck maps:

Kφ(x) = xφ

(
− log

|x|
‖x‖

)
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where φ is a certain Lipschitz map. The choice of the function φr(t) = tr (when t ≥ 1),
φr(t) = t (when 0 ≤ t ≤ 1) and φr(t) = 0 (when t < 0); with 0 < r ≤ 1 will have a
especial interest for us. We will simply write K instead of Kφ1 . In [32] it is shown that
K is singular on `p spaces for 1 < p < ∞; in [14] for p = 1; and in [10] for the whole
range 0 < p < ∞. The Kalton-Peck map K on `2 can be also obtained as the centralizer
generated by the interpolation scale of `p spaces. Taking this as starting point, Kalton
unfolds in [28, 29] the existence of a correspondence between centralizers defined on Köthe
function spaces and interpolation scales of Köthe function spaces. This opens the door to
the possibility of obtaining nontrivial quasi-linear maps in Banach spaces generated by an
interpolation scale, even when no unconditional structure is present. Such is the point of view
we adopt in this paper to tackle the study of singular centralizers and singular quasi-linear
maps on Banach spaces obtained by complex interpolation. In the case of centralizers this
will lead us to obtain new singular twisted Hilbert spaces, and in the case of quasi-linear
maps we will obtain the first H.I. twisted sum of an H.I. space.

A description of the contents of the paper is in order: After this introduction and a
preliminary Section 2 on basic facts about exact sequences and quasi-linear maps, Section
3 takes root in Kalton’s work and so it contains an analysis of centralizers arising from
an interpolation schema; the analysis is centered in an interpolation couple (X0, X1) and
the centralizer Ωθ obtained at the interpolation space Xθ = (X0, X1)θ; although the results
extend (see subsection 5.3) to cover the case of a measurable family of spaces. We observe,
and derive a few consequences, from the fact that such centralizers admit an overall “Kalton-

Peck form” as Ωθ(x) = x log a0(x)
a1(x) , where a0(x)1−θa1(x)θ is a Lozanovskii factorization of |x|

with respect to the couple (X0, X1),
Section 4 contains the two fundamental estimates we will use through the paper: Lemma

4.2 (estimate for trivial maps) and Lemma 4.4 (general estimate for centralizers arising from
an interpolation schema). Section 5 contains several criteria for singularity based on the
previous two lemmata: the first two subsections treat the unconditional case and the third
one the conditional case which will be needed to cover H.I. spaces. In Section 6 we obtain new
singular twisted Hilbert spaces; we also complete previous results by showing that a certain
family of centralizers Kφ is singular under rather mild conditions, satisfied in particular by
the complex versions [30] of K. In Section 7 we connect the results about singular sequences
with the twisting of H.I. spaces: a twisted sum of two H.I. spaces is H.I. if and only if it is
singular; then we show that the difficulty of obtaining an H.I. twisting sum is that a nontrivial
twisted sum of two H.I. spaces can be decomposable. Note that it was known [23, Theorem
1] that such twisted sums should be at most 2-decomposable. Section 8 applies the previous
techniques to the quasi-linear map associated to the construction of Ferenczi’s H.I. space F
[21] by complex interpolation of a suitable family of Banach spaces. In Section 9 we complete
and improve the results in Sections 7 and 8 by showing that there is a sequence (Fn) of H.I.
spaces so that:

(i) For each n,m ≥ 1 there is a singular exact sequence

0 −−−−→ Fn −−−−→ Fn+m −−−−→ Fm −−−−→ 0.

(ii) For each k, n,m ≥ 1 with n > k there is a nontrivial exact sequence

0 −−−−→ Fn −−−−→ Fk ⊕Fn+m −−−−→ Fm+k −−−−→ 0.
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2. Exact sequences, twisted sums and quasi-linear maps

A twisted sum of two Banach spaces Y and Z is a space X which has a subspace M
isomorphic to Y with the quotient X/M isomorphic to Z. The space X is a quasi-Banach
space in general [32]. Recall that a Banach space is B-convex when it does not contain `n1
uniformly. Theorem 2.6 of [26] implies that a twisted sum of two B-convex Banach spaces is
isomorphic to a Banach space.

An exact sequence 0 → Y → X → Z → 0 with Y, Z Banach spaces and (bounded)
operators is a diagram in which the kernel of each arrow coincides with the image of the
preceding one. By the open mapping theorem this means that the middle space X is a
twisted sum of Y and Z.

Two exact sequences 0→ Y → X1 → Z → 0 and 0→ Y → X2 → Z → 0 are equivalent if
there exists an operator T : X1 → X2 such that the following diagram commutes:

0 −−−−→ Y
i−−−−→ X1

q−−−−→ Z −−−−→ 0∥∥∥ yT ∥∥∥
0 −−−−→ Y −−−−→

j
X2 −−−−→

p
Z −−−−→ 0

The classical 3-lemma (see [13, p. 3]) shows that T must be an isomorphism. An exact
sequence is said to split if it is equivalent to the trivial sequence 0→ Y → Y ⊕ Z → Z → 0.

A map F : Z → X is called quasi-linear if it is homogeneous and there is a constant M
such that ‖F (u+ v)− F (u)− F (v)‖ ≤M‖u+ v‖ for all u, v ∈ Z. There is a correspondence
(see [13, Theorem 1.5.c, Section 1.6]) between exact sequences 0 → Y → X → Z → 0 of
Banach spaces and a special kind of quasi-linear maps ω : Z → X, called z-linear maps,
which satisfy ‖ω(

∑n
i=1 ui) −

∑n
i=1 ω(ui)‖ ≤ M

∑n
i=1 ‖ui‖ for all finite sets u1, . . . , un ∈ Z.

0 → Y
j→ Y ⊕F Z

p→ Z → 0 in which Y ⊕F X means the vector space Y × X endowed
with the quasi-norm ‖(y, x)‖F = ‖y − F (x)‖ + ‖x‖. The embedding is j(y) = (y, 0) while
the quotient map is p(y, z) = z. When F is z-linear, this quasi-norm is equivalent to a norm
[13, Chapter 1]. On the other hand, the process to obtain a z-linear map out from an exact

sequence 0 → Y
i→ X

q→ Z → 0 of Banach spaces is the following one: get a homogeneous
bounded selection b : Z → X for the quotient map q, and then a linear ` : Z → X selection
for the quotient map. Then ω = b− ` is a z-linear map. The commutative diagram

0 −−−−→ Y
i−−−−→ X

q−−−−→ Z −−−−→ 0∥∥∥ yT ∥∥∥
0 −−−−→ Y −−−−→

j
Y ⊕ω Z −−−−→

p
Z −−−−→ 0

obtained by taking as T : X → Y ⊕ω Z the operator T (x) = (x − `qx, qx) shows that the
upper and lower exact sequences are equivalent. Two quasi-linear maps F, F ′ : Z → Y are
said to be equivalent, denoted F ≡ G, if the difference F − F ′ can be written as B + L,
where B : Z → Y is a homogeneous bounded map and L : Z → Y is a linear map. Of course
that two quasi-linear maps are equivalent if and only if the associated exact sequences are
equivalent. Thus, two exact sequences

0→ Y → Y ⊕Ω Z → Z → 0 and 0→ Y → Y ⊕Ψ Z → Z → 0
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(or two quasi-linear maps Ω,Ψ) are equivalent (Ω ≡ Ψ) if there exists a commutative diagram

0 −−−−→ Y −−−−→ Y ⊕Ω Z −−−−→ Z −−−−→ 0

α

y β

y yγ
0 −−−−→ Y −−−−→ Y ⊕Ψ Z −−−−→ Z −−−−→ 0

with α = idY and γ = idZ . Imposing other conditions on the maps α, β, γ yields other
notions of equivalence appeared in the literature:

(1) Projective equivalence [32]: asking α, γ to be scalar multiples of the identity. Equiv-
alently, Ω ≡ µΨ for some scalar µ.

(2) Isomorphic equivalence [7, 15]: asking α, β, γ to be isomorphisms. In quasi-linear
terms, this means that αΩ ≡ Ψγ.

(3) Bounded equivalence [28, 29] (see Section 3 below): asking that Ω−Ψ is bounded.
(4) We will need in this paper “permutative projective equivalence”: asking TσΩ ≡ µΨTσ

for some scalar µ and some operator Tσ(
∑

i xiei) =
∑

i xieσ(i) induced by a permuta-
tion σ of the integers. When µ = 1 we will just say that Ω and Λ are permutatively
equivalent.

A few facts about the connections between quasi-linear maps and the associated exact
sequences will be needed in this paper, and can be explicitly found in [16]. Given an exact
sequence 0 → Y → X → Z → 0 with associated quasi-linear map F and an operator
α : Y → Y ′, there is a commutative diagram

(3)

0 −−−−→ Y
i−−−−→ X

q−−−−→ Z −−−−→ 0

α

y T

y ∥∥∥
0 −−−−→ Y ′

i′−−−−→ X ′
q′−−−−→ Z −−−−→ 0.

The lower sequence is usually called the push-out sequence, its associated quasi-linear map
is (equivalent to) α ◦ F , and the middle space X ′ is called the push-out space. When F is
z-linear, so is α ◦F . Given a commutative diagram like (3) the diagonal push-out sequence is
the exact sequence generated by the quasi-linear map F ◦ q′, and is equivalent to the exact
sequence

0 −−−−→ Y
d−−−−→ Y ′ ⊕X m−−−−→ X ′ −−−−→ 0

where d(y) = (−αy, iy) and m(y′, x) = i′y′ + Tx.

3. Complex interpolation and centralizers

Here we explain the connections between complex interpolation, twisted sums and quasi-
linear maps that we use throughout the paper.

3.1. Complex interpolation and twisted sums. We describe the complex interpolation
method for a pair of spaces following [5]. Other general references are [17, 29, 31, 36].

Let S denote the closed strip {z ∈ C : 0 ≤ <z ≤ 1} in the complex plane, and let S◦
be its interior. Given an admissible pair (X0, X1) of complex Banach spaces, we denote
by H = H(X0, X1) the space of functions g : S → Σ := X0 + X1 satisfying the following
conditions:

(1) g is ‖ · ‖Σ-bounded and ‖ · ‖Σ-continuous on S, and ‖ · ‖Σ-analytic on S◦;
(2) g(it) ∈ X0 for each t ∈ R, and the map t ∈ R 7→ g(it) ∈ X0 is bounded and continuous;
(3) g(it + 1) ∈ X1 for each t ∈ R, and the map t ∈ R 7→ g(it + 1) ∈ X1 is bounded and

continuous;
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The space H is a Banach space under the norm ‖g‖H = sup{‖g(j + it)‖j : j = 0, 1; t ∈ R}.
For θ ∈ [0, 1], define the interpolation space

Xθ = (X0, X1)θ = {x ∈ Σ : x = g(θ) for some g ∈ H}
with the norm ‖x‖θ = inf{‖g‖H : x = g(θ)}. So (X0, X1)θ is the quotient of H by ker δθ, and
thus it is a Banach space.

For 0 < θ < 1, we will consider the maps δnθ : H → Σ –evaluation of the nth-derivative
at θ– that appear in Schechter’s version of the complex method of interpolation [37]. Note
that δθ ≡ δ0

θ is bounded by the definition of H, and this fact and the Cauchy integral formula
imply the boundedness of δnθ for n ≥ 1 (see also [9]). We will also need the following result
(see [12, Theorem 4.1]):

Lemma 3.1. δ′θ : ker δθ → Xθ is bounded and onto for 0 < θ < 1.

Lemma 3.1 provides the connection with exact sequences and twisted sums through the
following push-out diagram:

(4)

0 −−−−→ ker δθ
iθ−−−−→ H δθ−−−−→ Xθ −−−−→ 0

δ′θ

y y ∥∥∥
0 −−−−→ Xθ −−−−→ PO −−−−→ Xθ −−−−→ 0

whose lower row is obviously a twisted sum of Xθ.
Apart from the obvious description as a push-out space, PO can be represented as:

(1) A twisted sum space. Let Bθ : Xθ → H be a bounded homogeneous selection for δθ,
and let Lθ : Xθ → H be a linear selection. The map ωθ = Bθ − Lθ : Xθ → ker δθ is an
associated quasi-linear for the upper sequence in diagram (4). The lower push-out sequence
will then comes defined by the quasi-linear map δ′θωθ. Hence, PO ' Xθ ⊕δ′θωθ Xθ.

(2) A derived space. With the same notation as above, set

dδ′θBθ(Xθ) = {(y, z) ∈ Σ× Σ : z ∈ Xθ, y − δ′θBθz ∈ Xθ}

endowed with the quasi-norm ‖(y, z)‖d = ‖y − δ′θBθz‖Xθ + ‖z‖Xθ . This is a twisted sum of
Xθ since the embedding y → (y, 0) and quotient map (y, z)→ z yield an exact sequence

0 −−−−→ Xθ −−−−→ dδ′θBθ(Xθ) −−−−→ Xθ −−−−→ 0.

Moreover, the two exact sequences

0 −−−−→ Xθ −−−−→ Xθ ⊕δ′θωθ Xθ −−−−→ Xθ −−−−→ 0

‖
yT ‖

0 −−−−→ Xθ −−−−→ dδ′θBθ(Xθ) −−−−→ Xθ −−−−→ 0.

are isometrically equivalent via the isometry T (y, z) = (y + δ′θLθz, z).

Thus, we can pretend that the quasi-linear map naturally associated to the push-out se-
quence is δ′θBθ, sometimes much more intuitive than the true quasi-linear map δ′θ(Bθ − Lθ).
Such map has been sometimes called “the Ω-operator”. Needless to say, the Ω-operator
depends on the choice of Bθ. The difference between two associated Ω-operators must be
bounded:

‖δ′θ(B̃θ −Bθ)x‖Xθ ≤ ‖δ
′
θ | ker δθ

‖(‖B̃θ‖+ ‖Bθ‖)‖x‖Xθ .
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The derived space admits the following useful representation (see [36, p.323] for an em-
bryonic finite-dimensional version; also quoted in [18, p.218]; see [12, Prop.7.1] for a general
version involving two compatible interpolators and [9] for a rather complete exposition, vari-
ations and applications of that representation.

Proposition 3.2.

dδ′θBθ(Xθ) = {
(
f ′(θ), f(θ)

)
: f ∈ H},

and the quotient norm of H/(ker δθ ∩ ker δ′θ) is equivalent to the quasi-norm ‖(·, ·)‖d.

Proof. That
(
f ′(θ), f(θ)

)
∈ dδ′θBθ(X) is clear: since f −Bθ(f(θ)) ∈ ker δθ, by Lemma 3.1 one

has

f ′(θ)− δ′θBθ(f(θ)) = δ′θ(f −Bθ(f(θ))) ∈ Xθ.

Conversely, let (y, z) ∈ dδ′θBθ(X). We have z ∈ Xθ, so Bθz ∈ H. Since y − δ′θBθz ∈ Xθ,

there exists g ∈ ker δθ such that y−δ′θBθz = g′(θ). Thus taking f = Bθz+g we have f(θ) = z
and f ′(θ) = y, and the equality is proved.

For the equivalence, given (y, z) ∈ dδ′θBθ(X), take f ∈ H with ‖f‖ ≤ 2 dist(f, ker δθ∩ker δ′θ)

such that y = f ′(θ) and z = f(θ). Then ‖z‖Xθ = dist(f, ker δθ) and

‖y − δ′θBθz‖Xθ = ‖δ′θ(f −Bθz)‖Xθ .

Since f −Bθz ∈ ker δθ, we get

‖(y, z)‖d ≤ ‖δ′θ | ker δθ
‖(1 + ‖Bθ‖)‖f‖+ ‖f‖ ≤ 2(‖δ′θ | ker δθ

‖(1 + ‖Bθ‖) + 1) dist(f, ker δθ ∩ δ′θ),

and there exists a constant C so that dist(f, ker δθ ∩ δ′θ) ≤ C‖(y, z)‖d by the open-mapping
theorem. �

Remark 3.3. In Section 8 we will need to consider the complex interpolation method associ-
ated to a family (X(0,t), X(1,t))t∈R of complex Banach spaces given in [17]. For this method
the results mentioned here remain valid because it is a special case of the general method of
interpolation considered in [31, Section 10].

3.2. Centralizers. Here we consider Köthe function spaces X over a measure space (Σ, µ)
with their L∞-module structure. As a particular case, we have Banach spaces with a 1-
unconditional basis with their associated `∞-structure. We denote by L0 the space of all
µ-measurable functions, and given g ∈ L0, we understand that ‖g‖X <∞ implies g ∈ X.

Definition 1. A centralizer on a Köthe function space X is a homogeneous map Ω : X → L0

such that ‖Ω(ax)− aΩ(x)‖X ≤ C‖x‖X‖a‖∞ for all a ∈ L∞ and x ∈ X.

A centralizer on X will be denoted by Ω : X y X. This notion coincides with that of
Kalton’s “strong centralizer” introduced in [28].

Centralizers arise naturally in a complex interpolation scheme in which the interpolation
scale of spaces share a common L∞-module structure: in such case, the space H also enjoys
the same L∞-module structure in the form (u · f)(z) = u · f(z). In this way, the fundamental
sequence of the interpolation scheme 0 → ker δθ → H → Xθ → 0 is an exact sequence in
the category of L∞-modules. In an interpolation scheme starting with a couple (X0, X1) of
Köthe function spaces, the map δθ

′Bθ is a centralizer on Xθ. We will denote it by Ωθ.

For a centralizer Ω : X y X on a Köthe function space X, it was proved in [28, Lemma
4.2] that there exists M > 0 such that ‖Ω(u+v)−Ω(u)−Ω(v)‖X ≤M(‖u‖X +‖v‖X). So we
can assume that Ω is a quasi-linear map. The smallest of the constants M above will be called
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ρ(Ω). For example, Ω : X y X induces an exact sequence in the category of (quasi-)Banach
L∞-modules 0→ X → dΩ(X)→ X → 0, where

dΩ(X) = {(w, z) ∈ L0 ×X : w − Ωz ∈ X}

endowed with the quasi-norm ‖(w, z)‖Ω = ‖w−Ωz‖X+‖z‖X ; with embedding y → (y, 0) and
quotient map (w, z) → z. The derived space dΩ(X) admits a L∞-module structure defined
by a(w, z) = (aw, az). Kalton proved in [28, Section 4] that every self-extension of a Köthe
function space X is (equivalent to) the extension induced by a centralizer on X. Sometimes
we will take the restriction of Ω to a closed subspace Y of X, and consider dΩ(X,Y ) defined
in the same way as a subspace of L0 × Y .

A centralizer Ω : X y X is said to be bounded when it takes values in X and ‖Ω(x)‖ ≤
C‖x‖ for all x ∈ X. Two centralizers Ω1 : X y X and Ω2 : X y X are equivalent if and
only if the induced exact sequences are equivalent, which happens if and only if there exists
a linear map L : X → L0 so that Ω1−Ω2−L is bounded. Two centralizers Ω1 : X y X and
Ω2 : X y X are said to be boundedly equivalent when Ω1 − Ω2 is bounded. The interest in
this notion (which, to some extent, plays the role of triviality for quasi-linear maps) stems
from the following outstanding result of Kalton [29, Theorem 7.6]:

Theorem 3.4. Let X be a separable superreflexive Köthe function space. Then there exists a
constant c (depending on the concavity of a q-concave renorming of X) such that if Ω : X y X
is a real centralizer on X with ρ(Ω) ≤ c, then

(1) There is a pair of Köthe function spaces X0, X1 such that X = (X0, X1)1/2 and
Ω− Ω1/2 is bounded.

(2) The spaces X0, X1 are uniquely determined up to equivalent renorming.

An example is in order: taking the couple (`1, `∞), the map B(x) = x2(1−z) is a homo-
geneous bounded selection for the evaluation map δ1/2 : H → `2; hence the interpolation

procedure yields the centralizer −2K; while the couple (`p, `p∗) yields −2(1
p −

1
p∗ )K. As we

see the two centralizers are the same up to the scalar factor. Theorem 3.4 shows however
that the scalar factor cannot be overlooked: it actually determines the end points X0, X1 in
the interpolation scale (see also Proposition 3.8). We note for future use that the condition
on ρ(Ω), which is necessary for existence, is not necessary for uniqueness:

Proposition 3.5. Let X be a separable superreflexive Köthe function space. Assume that
X = (X0, X1)θ = (Y0, Y1)θ, where 0 < θ < 1 and Xi, Yi are Köthe function spaces, and that
the associated maps ΩX and ΩY are boundedly equivalent. Then X0 = Y0 and X1 = Y1.

Proof. Following Kalton’s notation and proof, since ΩX and ΩY are boundedly equivalent, Ω
[1]
X

and Ω
[1]
Y are boundedly equivalent. Hence on a suitable strict semi-ideal, ΦΩX is equivalent

to ΦY1 −ΦY0 , while (1− θ)ΦY0 + θΦY1 is equivalent to ΦX . Thus, up to equivalence ΦY0 and
ΦY1 are uniquely determined. [29, Proposition 4.5] shows then that the spaces Y0 and Y1 are
unique up to equivalence of norm. �

3.3. Centralizers and Lozanovskii’s decomposition. Here we obtain a formula for the
centralizer Ωθ attached to the interpolation of a couple of Köthe function spaces (X0, X1).

Let 0 < θ < 1, and suppose that one of the spaces X0, X1 has the Radon-Nikodym
property. The Lozanovskii decomposition formula allows us to show (see [31, Theorem 4.6])

that the complex interpolation space Xθ is isometric to the space X1−θ
0 Xθ

1 , with

‖x‖θ = inf{‖y‖1−θ0 ‖z‖θ1 : y ∈ X0, z ∈ X1, |x| = |y|1−θ|z|θ}.
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By homogeneity we may always assume that ‖y‖0 = ‖z‖1 for y, z in this infimum. When
‖y‖0, ‖z‖1 ≤ K‖x‖θ we shall say that |x| = |y|1−θ|z|θ is a K-optimal decomposition for x.
When x is finitely supported or X is uniformly convex a 1-optimal (or simply, optimal) de-
composition may be achieved. A simple choice of Bθ(x) can be made for positive x as follows:
Let a0(x), a1(x) be a (1+ε)-optimal (or optimal when possible) Lozanovskii decomposition for
x. Since ‖x‖θ = ‖a0(x)‖0 = ‖a1(x)‖1, set Bθ(x) ∈ H given by Bθ(x)(z) = |a0(x)|1−z|a1(x)|z.
One thus gets for positive x the formula:

(5) Ωθ(x) = δ′θBθ(x) = |a0(x)|1−θ|a1(x)|θ log
|a1(x)|
|a0(x)|

x = x log
|a1(x)|
|a0(x)|

.

Using Bθ(x) = (sgn x)Bθ(|x|) for general x one still gets

Ωθ(x) = x log
|a1(x)|
|a0(x)|

.

Recall that a unit u ∈ L∞ is an element which only takes the values ±1. Thus one has:

Lemma 3.6. The centralizer Ωθ = δ′θBθ on Xθ = (X0, X1)θ satisfy the following properties:

(1) Ωθ(ux) = uΩθ(x) for every unit u and x ∈ Xθ;
(2) supp Ωθ(x) ⊂ suppx for every x ∈ Xθ;
(3) when X1 and X2 are spaces with an unconditional basis (en), Ωθ(en) = 0 for all n.

The Lozanovskii approach can be used to make explicit the Kalton correspondence between
centralizers and interpolation scales in some special cases: Recall that the p-convexification
of a Köthe function space X is defined by the norm ‖|x‖| = ‖|x|p‖1/p. Conversely, when X

is p-convex, the p-concavification of X is given by ‖|x‖| = ‖|x|1/p‖p. Modulo the fact that
every uniformly convex space may be renormed to be p-convex for some p > 1, the following
proposition interprets Kalton-Peck maps defined on uniformly convex spaces as induced by
specific interpolation schemes.

Proposition 3.7. Let 0 < θ < 1 < p <∞, and let X be a Banach space with unconditional
basis (respectively a Köthe function space). Then Xθ = (`∞, X)θ (respectively (L∞(µ), X)θ)
is the θ−1-convexification of X, and the induced centralizer on Xθ is

Ω(x) = θ−1 x log(|x|/||x||θ).
Conversely if X is p-convex and Xp is the p-concavification of X then X = (`∞, X

p)1/p

(respectively X = (L∞(µ), Xp)1/p), and the induced centralizer is defined on X by

Ω(x) = p x log(|x|/||x||).
Proof. We write down the proof for unconditional basis, the other being analogous. For
normalized positive x in Xθ, write x = a0(x)1−θa1(x)θ and look for such a (normalized)
decomposition which is optimal. Since a0(x) ∈ `∞, a0(x) will have constant coefficients
equals to 1 on the support of x: otherwise, we may increase the non 1 coordinates of a0(x)
to 1, therefore diminishing the corresponding coordinates of a1(x) and non-increasing the
norm of a1(x) by 1-unconditionality, and still get something optimal. So a0(x) = 1supp(x)

and x = a1(x)θ. Therefore ‖x‖θ = ‖a1(x)‖θ = ‖x1/θ‖θ. So Xθ is the θ−1-convexification of
X and

Ωθ(x) = x log(a1(x)/a0(x)) =
1

θ
x log(x).

As for the converse, note that when we interpolate `∞ and some Y we have |a1(x)| = |x|p
for x normalized in Yθ, so if we interpolate `∞ and Y = X(p) we obtain for such x

‖x‖Yθ = 1 = ‖a1(x)‖Y = ‖|x|p‖Y = ‖(|x|p)θ)‖pX = ‖x‖pX ,
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therefore X = Yθ = (`∞, X
(p))θ.

The second part of the proposition is an immediate consequence of the first one. �

The following result shows the reason behind the constant factor which appears multiplying
a centralizer.

Proposition 3.8. Let (X0, X1) be an admissible pair of Köthe function spaces and for
0 < α < β < 1, consider also the admissible pair (Xα, Xβ). Let Ω (resp. Ω′) denote
the centralizers generated by the couple (X0, X1) (resp. (Xα, Xβ)). Assume that for some
α < θ < β and 0 < ρ < 1 one has (X0, X1)θ = (Xα, Xβ)ρ. Then Ω′ρ = (β − α)Ωθ.

Proof. It is easy to check (see [31, Theorem 4.5]) that ρ is given by α(1 − ρ) + βρ = θ. Let
us consider the centralizers

Ωθ(x) = x log
|a1(x)|
|a0(x)|

and Ω′ρ(x) = x log
|aβ(x)|
|aα(x)|

.

Since x = a0(x)1−θa1(x)θ, 1− θ = (1− α)(1− ρ) + (1− β)ρ and θ = α(1− ρ) + βρ we get

x =
(
a0(x)1−αa1(x)α

)1−ρ(
a0(x)1−βa1(x)β

)ρ
.

Thus taking aα(x) = a0(x)1−αa1(x)α and aβ(x) = a0(x)1−βa1(x)β it is not difficult to check

that the minimality of x = a0(x)1−θa1(x)θ implies the minimality of x = aα(x)1−ρaβ(x)ρ, and
the equality Ω′ρ(x) = (β−α)Ωθ(x) follows from the properties of the logarithm function. �

Next we describe the centralizers associated to Orlicz function spaces over a measure space
(Σ, µ). Recall that an N -function is a map ϕ : [0,∞) → [0,∞) which is strictly increasing,
continuous, ϕ(0) = 0, ϕ(t)/t → 0 as t → 0, and ϕ(t)/t → ∞ as t → ∞. An N -function
ϕ satisfies the ∆2-property if there exists a number C > 0 such that ϕ(2t) ≤ Cϕ(t) for all
t ≥ 0. For 1 < p <∞, ϕ(t) = tp is N -function satisfying the ∆2-property.

When an N -function ϕ satisfies the ∆2-property, the Orlicz space Lϕ(µ) is given by

Lϕ(µ) = {f ∈ L0(µ) : ϕ(|f |) ∈ L1(µ)}.
The following result was proved in [25], and a clear exposition can be found in [11].

Proposition 3.9. Let ϕ0 and ϕ1 be two N -functions satisfying the ∆2-property, and let

0 < θ < 1. Then the formula ϕ−1 =
(
ϕ−1

0

)1−θ(
ϕ−1

1

)θ
defines an N -function ϕ satisfying the

∆2-property, and
(
Lϕ0(µ), Lϕ1(µ)

)
θ

= Lϕ(µ).

Next we give an expression for the centralizer associated to a Hilbert space obtained by
complex interpolation of Orlicz spaces. Note that once we have defined a centralizer Ω for
non-zero 0 ≤ f ∈ X, we can define Ω(0) = 0 and Ω(g) = g · Ω(|g|/‖g‖) for 0 6= g ∈ X.

Proposition 3.10. Let ϕ0 and ϕ1 be two N -functions satisfying the ∆2-property and such
that t = ϕ−1

0 (t) · ϕ−1
1 (t). Then

(
Lϕ0(µ), Lϕ1(µ)

)
1/2

= L2(µ) and the induced centralizer is

Ω1/2(f) = f log
ϕ−1

1 (f2)

ϕ−1
0 (f2)

= 2f log
ϕ−1

1 (f2)

f
(0 ≤ f ∈ L2(µ), f 6= 0).

Proof. First we consider the general case ϕ−1 :=
(
ϕ−1

0

)1−θ(
ϕ−1

1

)θ
, as in Proposition 3.9.

For 0 ≤ f ∈ Lϕ(µ) we can write f =
(
ϕ−1

0 ϕ(f)
)1−θ(

ϕ−1
1 ϕ(f)

)θ
. Thus a selection of the

quotient map H → Lϕ(µ) is given by Bθ(f)(z) =
(
ϕ−1

0 ϕ(f)
)1−z(

ϕ−1
1 ϕ(f)

)z
. Differentiating

Bθ(f)′(z) = Bθ(f)(z) log
|ϕ−1

1 (ϕ(f))|
|ϕ−1

0 ϕ(f)| , hence Ω1/2(f) = B1/2(f)′(1/2) = f log
|ϕ−1

1 (ϕ(f))|
|ϕ−1

0 ϕ(f)| , which

gives the desired result when ϕ(t) = t2. �
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3.4. Additional properties. The properties of Ωθ obtained in Lemma 3.6 will turn out
essential for our estimates, so they deserve a definition.

Definition 2. Let X be a Köthe function space. A centralizer Ω : X y X will be called
exact if for each x ∈ X and every unit u one has Ω(ux) = uΩx. It will be called contractive
if supp Ω(x) ⊂ suppx for every x ∈ X.

One has:

Lemma 3.11. Let X be a Köthe function space.

(1) Every exact quasi-linear map on X is contractive.
(2) If X is complemented in its bidual, then every exact trivial centralizer Ω on X admits

an exact linear map Λ such that Ω− Λ is bounded.
(3) If X has unconditional basis (en) and is complemented in its bidual, and if Ω is exact

and trivial on X, and such that Ω(en) = 0, then Ω is bounded.

Proof. (1) Let u ∈ L∞ be the function with value 1 on the support of x and −1 elsewhere,
then ux = x, therefore uΩ(x) = Ω(ux) = Ω(x) which means that the support of Ω(x) is
included in supp (x).

(2) Let Ω be a centralizer with constant C and assume it is trivial, some linear map
` : X → L0 is such that B := Ω− ` is bounded. Let U denotes the abelian group of units. It
is therefore amenable, so there exists a left invariant finitely additive mean m on U allowing
to define for any bounded f : U → R an integral

∫
U f(u)dm. Since X is complemented in its

bidual we may then define for any bounded f : U → X an element
∫
U f(u)dm ∈ X. One can

therefore define a map Λ : X → L0 as follows:

Λ(x) = Ω(x)−
∫
U
uB(ux)dm.

By exactness of Ω and invariance of m, we have that Λ is exact. It is also easy to check that Λ
is linear. Indeed, denoting by ∆(x, y) the element Ω(x+y)−Ωx−Ωy = B(x+y)−Bx−By ∈ X,
and observing that ∆(ux, uy) = u∆(x, y), we obtain

Ω(x+ y)− Λ(x+ y) =
∫
U uB(ux+ uy)dm

=
∫
U u∆(ux, uy)dm+

∫
U uBuxdm+

∫
U uBuydm

= ∆(x, y) + Ω(x)− Λ(x) + Ω(y)− Λ(y)
= Ω(x+ y)− Λ(x)− Λ(y).

(3) We claim that Λ(x) = ax for all x ∈ X, where Λ(en) = anen. Indeed

Λ(x) = Λ(x− xnen) + Λ(xnen) = Λ(x− xnen) + anxnen

which, since Λ(x − xnen) has support disjoint from n, implies that the n-th entry of Λ(x)
is anxn. Since Ω(en) = 0, anen = −B(en), and therefore (an)n is a bounded sequence. So
unconditionality applies to make Λ bounded. Since Ω−Λ is also bounded, Ω is bounded. �

A reformulation of (3) will provide us in due time a criterion to distinguish between per-
mutatively projectively equivalent centralizers:

Corollary 3.12. Let Ω and Ψ be exact centralizers on a reflexive space X with 1-
unconditional basis (en), and such that Ω(en) = Ψ(en) = 0 for all n ∈ N. If Ω and Λ
are equivalent then they are boundedly equivalent.

Proof. Ω − Λ is still an exact centralizer vanishing on the en. Thus, if it is trivial then it is
bounded. �
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Lemma 3.11 can be generalized for maps between two different modules. We are interested
in the particular case in which one has to combine two related actions: let X be an L∞-
Banach module and let W ⊂ X be a subspace generated by disjointly supported elements
W = [un]. Consider in this case the subspace LW∞ ⊂ L∞ formed by the elements which are
constant on the supports of all the un. Let UW be its group of units. We say that a map
Ω : W → X is relatively exact if Ω(ux) = uΩ(x) for all u ∈ UW and x ∈W , and we say that
Ω is relatively contractive if suppXΩ(x) ⊂ suppXx, for all x ∈W . One has:

Lemma 3.13. Let X be a Köthe function space, and let W be a subspace of X generated by
disjointly supported elements. Then:

(1) If Ω : X y X is a exact centralizer then the restriction Ω|W is relatively exact.
(2) Every relatively exact map W y X is relatively contractive.
(3) Assume X is complemented in its bidual. If some relatively exact Ω : W y X is

trivial then there exists a relatively exact linear map Λ : W → X such that Ω − Λ is
bounded.

Proof. Assertion (1) is obvious, (2) has the same proof as before. For (3), assuming Ω = B+`,
where B : W → X is bounded and ` : W → L0 is linear, define for x ∈W ,

Λ(x) = Ω(x)−
∫
UW

uB(ux)dm,

where m is a left invariant finitely additive mean on UW . �

Lemma 3.14.

(1) Every centralizer Ω on a Köthe function space admits a exact centralizer ω such that
Ω− ω is bounded.

(2) Every exact centralizer (resp. quasi-linear map) Ω between Banach spaces with un-
conditional basis admits a exact centralizer (resp. quasi-linear map) ω such that
ω(en) = 0 and Ω− ω is linear and exact.

(3) Every contractive centralizer (resp. quasi-linear map) Ω between Köthe function
spaces admits, for every sequence (fn) of disjointly supported vectors, a contractive
centralizer (resp. quasi-linear map) ω such that ω(fn) = 0 and Ω − ω is linear and
contractive.

Proof. Assertion (1) is in [28, Prop. 4.1]. In fact, ω(x) = ‖x‖ sgn(x)Ω(|x|/‖x‖) for x 6= 0. To
prove (2), note that since Ω is contractive, Ω(en) = µnen, and we may define the multiplication
linear map `(x) = µx, where µ = (µn)n. Thus ω = Ω − ` is the desired map. To prove (3),
define as above a linear map by `(fn) = Ω(fn). If Ω is contractive, so is ` and thus ω = Ω− `
is the desired map. �

4. Singularity and estimates for exact centralizers

Recall that an operator between Banach spaces is said to be strictly singular if no restriction
to an infinite dimensional closed subspace is an isomorphism.

Definition 3. A quasi-linear map (in particular, a centralizer) is said to be singular if its
restriction to every infinite dimensional closed subspace is never trivial. An exact sequence
induced by a singular quasi-linear map will be called a singular sequence.

A quasi-linear map on a Köthe function space will be called disjointly singular if its re-
striction to every subspace generated by a disjoint sequence is never trivial.
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It can be shown [14] that a quasi-linear map is singular if and only if the associated
exact sequence has strictly singular quotient map. It is clear that singularity implies disjoint
singularity. We shall see that the reverse implication does not hold in general, although both
notions are equivalent on Banach spaces with unconditional basis. The following “transfer
principle” ([14], [10]) will be essential for us.

Lemma 4.1. If a quasi-linear map defined on a Banach space with basis is trivial on some
infinite dimensional subspace then it is also trivial on some subspace W = [wn] spanned by
normalized blocks of the basis.

Observe that if F is a quasi-linear map on a Köthe space X, and for some sequence (un)
of disjointly supported vectors and some constant K one has∥∥∥F (

∑
λluj)−

∑
λlF (uj)

∥∥∥ ≤ K‖∑λluj‖

for all choices of scalars (λj) then F is not singular: indeed, the estimate above means that the
linear map [uj ]→ X ⊕F [uj ] given by uj → (0, uj) is continuous. Under exactness conditions
we can get a partial converse.

Lemma 4.2. Let Ω : X y X be an exact centralizer on a Köthe function space. If Ω is
not disjointly singular, there exists a subspace W of X generated by a disjoint sequence and
a constant K such that given vectors u1, . . . , un in W there are vectors z1, ..., zn in X with
suppzi ⊂ suppui and ‖zi‖ ≤ K‖ui‖ such that for all scalars λ1, . . . , λn one has

(6) ‖Ω(
n∑
i=1

λiui)−
n∑
i=1

λiΩ(ui)‖ ≤ K

(
‖

n∑
i=1

λiui‖+ ‖
n∑
i=1

λizi‖

)
.

Proof. Since Ω is not disjointly singular, it is trivial on some subspace W = [un] spanned
by disjointly supported vectors. Then by Lemma 3.13 there exists a linear relatively exact
map Λ : W → X so that Ω|W − Λ is bounded. Since both Ω and Λ (by Lemma 3.13 (2)) are
relatively contractive, so is Ω− Λ. Set zi = (Ω− Λ)(ui) and K = ‖Ω|W − Λ‖. �

Remarks. The preceding estimate can be considered as a subtler version of the “upper
p-estimates” argument for non-splitting, which can be quickly described as: if the space X
verifies some type of upper p-estimate and the twisted sum X ⊕Ω X splits then the space
X ⊕Ω X must also verify the upper p-estimate (the key here is the p since, in general, if X
has type p then X ⊕ΩX only needs to have type p+ ε for every ε (see [27]). Therefore, given
suitable vectors (un) in X the elements (0, un) in X ⊕ΩX should verify an upper p-estimate;
which amounts

‖Ω(
n∑
i=1

ui)−
n∑
i=1

Ω(ui)‖ ≤ C n
√
p.

We now define the notion of standard class of finite families of elements of Köthe spaces.

Definition 4. A standard class S is a class of finite families (n-tuples) of elements of Köthe
function spaces (respect. spaces with 1-unconditional bases) X satisfying

(i) whenever (xi) ∈ S and suppzi ⊂ suppxi for all i then (zi) ∈ S;
(ii) assume that W is a subspace generated by disjoint vectors (resp. generated by suc-

cessive vectors) of X, and (xi) is n-tuple of elements of W ; if (xi) belongs to S as a
family in W , then it also belongs to S as a family in X.
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The three standard classes we shall use are: disjointly supported vectors in Köthe
spaces, successive vectors on 1-unconditional bases, and ”Schreier” successive vectors on
1-unconditional bases (i.e. families (x1, . . . , xn) such that n < supp x1 < · · · < supp xn).

Given a standard class S and a space X, we consider the following indicator function:

MX,S(n) := sup{‖x1 + . . .+ xn‖ : (xj) ∈ S, ‖xj‖ ≤ 1}.
Lemma 4.2 can be rewritten as:

Lemma 4.3. Let S be a standard class, and let Ω : X y X be an exact centralizer on a Köthe
function space. If Ω is not disjointly singular, then there exists a subspace W of X generated
by a disjoint sequence and a constant K such that given a n-tuple (ui) ∈ S belonging to the
unit ball of W , one has ∥∥∥Ω(

n∑
i=1

ui)−
n∑
i=1

Ω(ui)
∥∥∥ ≤ KMX,S(n).

The following estimate holds for many real centralizers (after Kalton’s Theorem 3.4).

Lemma 4.4. Let (X0, X1) be an admissible couple of Köthe function spaces, fix 0 < θ < 1,
and let Ωθ be the induced centralizer on Xθ. If (yi) ∈ S is a n-tuple in the unit ball of Xθ,
then

(7)

∥∥∥∥∥Ωθ

( n∑
i=1

yi
)
−

n∑
i=1

Ωθ(yi)− log
MX0,S(n)

MX1,S(n)

( n∑
i=1

yi

)∥∥∥∥∥ ≤ 3MX0,S(n)1−θMX1,S(n)θ.

Proof. To simplify notation, let us write M(n, z) = MX0,S(n)1−zMX1,S(n)z. Given ε > 0, let
(xi) ∈ S be a n-tuple in the unit ball of Xθ. Let Bθ be a (1 + ε)-bounded selection Xθ → H
such that supp Bθ(x) ⊂ supp x for all x. Let Fi = Bθ(xi) for each i. Note that

(
Fi(z)

)
is a

n-tuple in S for any z in the strip. Let F be the function

F (z) =
F1(z) + · · ·+ Fn(z)

M(n, z)

for z ∈ S. We know that ‖F‖ ≤ 1 + ε and

F (θ) =
1

M(n, θ)
(x1 + . . .+ xn).

Set k = ‖F (θ)‖−1. The map Φ : F (θ) → F defines a linear bounded selection on the
one-dimensional subspace [F (θ)] having norm at most k. Therefore ‖Bθ − Φ‖ ≤ 1 + ε + k.
Thus, if x ∈ [F (θ)],

‖(δ′Bθ − δ′Φ)(x)‖ ≤ 2k‖x‖θ,
in particular ∥∥∥∥∥(δ′Bθ − δ′Φ)(

n∑
i=1

xi)

∥∥∥∥∥ ≤ 2k

∥∥∥∥∥
n∑
i=1

xi

∥∥∥∥∥
θ

.

On the other hand,

F ′(θ) = F (θ) log
MX0,S(n)

MX1,S(n)
+

1

M(n, θ)

∑
i

Bθ(xi)
′(θ),

which means

δ′Φ(
∑
i

xi) = log
MX0,S(n)

MX1,S(n)

(∑
i

xi
)

+
∑
i

δ′Bθ(xi).



14 JESUS M. F. CASTILLO, VALENTIN FERENCZI AND MANUEL GONZÁLEZ

Therefore

δ′Φ(
∑
i

xi)− δ′Bθ(
∑
i

xi) =
∑
i

δ′Bθ(xi)− δ′Bθ(
∑
i

xi) + log
MX0,S(n)

MX1,S(n)

(∑
i

xi
)

which yields∥∥∥∑
i

δ′Bθ(xi)− δ′Bθ(
∑
i

xi) + log
MX0,S(n)

MX1,S(n)

(∑
i

yi
)∥∥∥ ≤ 2k

∥∥∥ n∑
i=1

xi

∥∥∥
θ
,

hence

(8)
∥∥∥Ωθ(

n∑
i=1

xi)−
n∑
i=1

Ωθ(xi)− log
MX0,S(n)

MX1,S(n)

(∑
i

xi
)∥∥∥ ≤ 2k

∥∥∥∑
i

xi

∥∥∥
θ
≤ 3M(n, θ)

as desired. �

Note here the dependence of the indicator functions on the parameter in the interpolation
scale:

Lemma 4.5. Given an interpolation scale (Xθ) of Köthe function spaces associated to a pair
(X0, X1), the function θ 7→MXθ,S(n) is log-convex.

Proof. Let F (z) = (F1(z) + · · · + Fn(z))/M(n, z) be the function in the proof Lemma 4.4.
The inequalities ‖F (θ)‖θ ≤ ‖F‖ ≤ 1 + ε imply ‖x1 + · · · + xn‖θ ≤ (1 + ε)M(n, θ). Thus
MXθ,S(n) ≤MX0,S(n)1−θMX1,S(n)θ. �

5. Criteria for singularity

We set now the core of our criterion to obtain disjointly singular sequences: to combine
Lemma 4.3, Lemma 4.4 and Lemma 4.5 to get the following result.

Proposition 5.1. Let S be a standard class. Let (X0, X1) be an interpolation couple of Köthe
function spaces generating the interpolation scale (Xθ); and let Ωθ be the induced centralizer
on Xθ. If Ωθ is not disjointly singular then there exists a subspace W ⊂ Xθ spanned by
disjointly supported vectors and a constant K such that

(9)

∣∣∣∣log
MX0,S(n)

MX1,S(n)

∣∣∣∣MW,S(n) ≤ KMX0,S(n)1−θMX1,S(n)θ.

Remark. An even more general criterion can be obtained by using in the definition of MX

sequences of vectors whose norms are at most some prescribed varying values, instead of
vectors of norm at most 1. We shall not write it since it will not be needed to deal with the
applications we are interested in.

We consider firstly the standard class D of all disjointly supported sequences in a Köthe
function space X, and simplify notation to:

MX(n) = MX,D(n) = sup{‖x1 + . . .+ xn‖ : x1, . . . , xk disjoint in the unit ball of X}.

Recall that two functions f, g : N → R will be called equivalent, and denoted f ∼ g, if
0 < lim inf f(n)/g(n) ≤ lim sup f(n)/g(n) < +∞. As a direct application of the criterion in
Proposition 5.1 we have:



SINGULAR TWISTED SUMS GENERATED BY COMPLEX INTERPOLATION 15

Proposition 5.2. Let (X0, X1) be an interpolation couple of two Köthe function spaces so
that MX0 and MX1 are not equivalent. Assume that Xθ is ”self-similar” in the sense that
MW ∼MXθ for every infinite-dimensional subspace generated by a disjoint sequence W ⊂ Xθ,

and MXθ ∼M
1−θ
X0

M θ
X1

. Then Ωθ is disjointly singular.

Proof. Otherwise, the estimate (9) yields that, on some subspace W , one gets∣∣∣∣log
MX0(n)

MX1(n)

∣∣∣∣MW (n) = O(M(n, θ)) = O(MXθ(n)) = O(MW (n)),

which is impossible unless MX0 and MX1 are equivalent. �

Let us see these criteria at work. The simplest case of course concerns the scale of
`p spaces, 1 ≤ p < +∞. These spaces are self similar with M`p(n) = n1/p, while re-
iteration theorems allow one to fix X0 and X1 at any two different values p, q so that

lim | log
MX0

(n)

MX1
(n) | = lim | log n1/p−1/q| = +∞. Thus, the induced centralizer, which actually

is (projectively equivalent to) the Kalton-Peck `∞-centralizer K, in `p is lattice singular,
hence singular. The case of Lp spaces, 1 ≤ p ≤ +∞ is also simple: Proposition 5.1 yields
that if the twisted sum fails to be disjointly singular then∣∣∣∣log

ML∞(n)

ML1(n)

∣∣∣∣M`p(n) ≤ KM
1− 1

p

L∞
(n)M

1
p

L1
(n).

Therefore (log n)n1/p ≤ Kn1/p, which is impossible. So the induced centralizer, actually
(projectively equivalento to) the Kalton-Peck L∞-centralizer K, in Lp is disjointly singular.

In [6] it was shown that no L∞-centralizer on Lp can be singular for 0 < p <∞; previously,
it had been shown in [38] that the Kalton-Peck L∞-centralizer Ω(f) = f log f/‖f‖ on Lp is
not singular (it becomes trivial on the Rademacher copy of `2). In [10, Theorem 2(b)] it was
shown that the Kalton-Peck centralizer on `p is singular for 0 < p <∞.

A tricky question is what occurs with the scale of Lp-spaces in their `∞-module structure
generated by the Haar basis. Is singular the associated Kalton-Peck `∞-centralizer? Khint-
chine’s inequality makes possible to define Bθ(r) = fr (the constant function fr(z) = r on
the subspace `R2 generated by the Rademacher functions, so Ωθ(r) = δ′θBθ(r) = 0 on `R2 and
thus Ωθ is not singular. It was shown in [10] that the Kalton-Peck centralizer (relative to
the Haar basis) is singular for 2 ≤ p <∞. Which shows, in particular, that the Kalton-Peck
`∞-centralizer relative to the Haar basis is not the L∞-centralizer induced by the interpola-
tion scale of Lp spaces in their `∞-module structure. Cabello [6] remarks that it would be
interesting to know where there exist singular quasi-linear maps Lp → Lp for p < 2.

5.1. The unconditional case. We will consider now the following asymptotic variation of
MX :

AX(n) = sup{‖x1 + . . .+ xn‖θ : ‖xi‖ ≤ 1, n < x1 < . . . < xk},
with its associated standard class. A proof entirely similar to that of Lemma 4.4, using
instead the function

F (z) =
1

AX0(n)1−zAX1(n)z
(Bθ(y1) + · · ·+Bθ(yn))(z),

immediately yields the estimate

(10)
∥∥∥Ωθ(

n∑
i=1

yi)−
n∑
i=1

Ωθ(yi)− log
AX0(n)

AX1(n)

∑
i

yi

∥∥∥ ≤ 3A1−θ
X0

Aθ
X1

(n),
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for all n < y1 < · · · < yn in the unit ball of Xθ. On the other hand the estimate in Lemma
4.2 can be rewritten as

(11)
∥∥∥Ω(

n∑
i=1

λiui)−
n∑
i=1

λiΩ(ui)
∥∥∥ ≤ KAX(n).

for blocks n < u1 < u2 < · · · < un. Now, given an admissible pair (X0, X1) of spaces with
common 1-unconditional basis and 0 < θ < 1, one can prove that the function θ 7→ AXθ(n)
is log-convex working as in Lemma 4.5. Thus, estimates (10) and (11) yield:

Proposition 5.3. Let (X0, X1) be an admissible pair of Banach spaces with a common 1-
unconditional basis, and 0 < θ < 1.

a) If the associated centralizer Ωθ is not singular then there exists a block subspace W ⊂
Xθ and a constant K such that:∣∣∣∣log

AX0(n)

AX1(n)

∣∣∣∣AW (n) ≤ KA1−θ
X0

(n)Aθ
X1

(n).

b) If AX0 6∼ AX1 and A1−θ
X0

AθX1
∼ AXθ ∼ AY for all subspaces Y ⊂ Xθ then Ωθ is

singular.

Recall that a Banach space with a basis is said to be asymptotically `p if there exists
C ≥ 1 such that for all n and normalized n < x1 < . . . < xn in X, the sequence (xi)

n
i=1 is

C-equivalent to the basis of `np . Apart from the `p spaces, Tsirelson’s space is asymptotically
`1 as well as a class of H.I. spaces defined by Argyros and Delyanii [2]. One has:

Corollary 5.4. Let (X0, X1) be an interpolation pair of Banach spaces with a common 1-
unconditional basis. Let p0 6= p1 and 1

p = 1−θ
p0

+ θ
p1

. The induced centralizer Ωθ : Xθ y Xθ is

singular in any of the following cases:

(1) The spaces Xj, j = 0, 1 are reflexive asymptotically `pj .
(2) Successive vectors in Xj, j = 0, 1 satisfy an asymptotic upper `pj -estimate; and for

every block-subspace W of Xθ, there exist a constant C and, for each n, a finite
block-sequence n < y1 < . . . < yn in BW such that ‖y1 + · · ·+ yn‖ ≥ C−1n1/p.

Corollary 5.5. Let X be a p-convex Köthe function space. The Kalton-Peck map

K(x) = x log
|x|
‖x‖

is disjointly singular on X in any of the following two cases:

(a) MX(n) ∼MY (n) for every sublattice Y of X,
(b) X is a sequence space and AX(n) ∼ AY (n) for every block-subspace Y of X.

Proof. (a) Since X is p-convex we may write X = (L∞, X
p)1/p. Furthermore the centralizer

induced by this interpolation scheme is a multiple of the Kalton-Peck map. In particular, the
two twisted sums are projectively equivalent in the sense of Remark ??. Thus one is singular
if and only if the other is. Since the norm on Xp is defined as ‖x‖ = ‖|x|1/p‖pX , we have
immediately that MXp(n) = MX(n)p. Since X is p-convex, MX(n) is not bounded and so
MX(n)p is not equivalent to ML∞(n) = 1. Furthermore

ML∞(n)
1− 1

pMXp(n)
1
p = (MX(n)p)1/p = MX(n),

and by Proposition 5.2 the centralizer (hence the Kalton-Peck map) is disjointly singular.

(b) The proof is entirely similar applying Proposition 5.3. �
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5.2. The conditional case. Let Ω : X → X be a quasi-linear map acting on a space with
1-monotone basis. This case does not fit under the umbrella of Kalton theorem, so it could
well occur that Ω could not be recovered from an interpolation scheme. Without the lattice
structure, supports cannot be used as before. One can instead use the range of vectors (ranx
is the minimal interval of integers containing its support) to then define “successive” vectors
and “asymptotic limits” in X, which means that the function AX still makes sense. In the
general case of 1-monotone bases the maps Ωθ appearing in the interpolation process are not
`∞-centralizers or contractive. However, the maps can be chosen to be “range” contractive,
in the sense of verifying ran Ωθ(x) ⊂ ran x. Indeed if for x ∈ c00, bθ(x) is an almost optimal
selection, then Bθ(x) = 1ranxbθ(x) will also be almost optimal and range contractive, so
δ′θBθ will be the required map. The transfer principle still works and thus a non-singular
Ω : X y X must be trivial on some subspace W generated by blocks of the basis.

Proposition 5.6. Assume we have a complex interpolation scheme of two spaces X0, X1

with a common 1-monotone basis. Assume that for every block-subspace W of Xθ, there
exists for every n a finite successive sequence n < y1 < · · · < yn with ‖yi‖ ≤ 1 ∀i = 1, . . . , n,
and constants εn, λn,Mn satisfying

(i) The block sequence is εn-optimal, in the sense that ‖
∑n

i=1 yi‖ ≥ εnAX0(n)1−θAX1(n)θ;
(ii) The block sequence {y1, . . . , yn} is λn-unconditional;
(iii) the space [y1, . . . , yn] is Mn-complemented in Xθ;

and so that

lim inf
n→+∞

λ2
nMn

εn

∣∣∣log
AX0

(n)

AX1
(n)

∣∣∣ = 0.

Then Ωθ is singular.

Proof. Suppose that the restriction of Ωθ to some subspace of X is trivial. By the hypothesis
Ωθ is trivial on some block subspace Yθ subspace of Xθ, and we can pick a λn-unconditional
finite sequence [yi]

n
i=1 of blocks in BYθ that is Mn-complemented in Xθ by a projection Pn.

Then a reasoning similar to the proof Lemma 3.13 (3) can be made. Namely, change the
module structure to work with the subalgebra `Yθ∞ of `∞ formed by those elements constant
on the support of each of the yn. The module action on Yθ is clear. The group of units of
`Yθ∞ is now a compact part UYθ of 2ω, thus it admits an invariant mean mYθ : `∞(UYθ) → R.
Let `Yθ : Yθ → L0 be a linear map so that ‖Ω|Yθ − `Yθ‖ ≤ K. So (uPYθ(Ω|Yθ − `Yθ)(uy))

u∈`Yθ∞
is bounded since ‖uPYθ(Ω|Yθ − `Yθ)(uy)‖ ≤ KM‖uy‖ ≤ KMλ‖y‖. We can thus define
ψYθ(y) ∈ Yθ as the only element so that for each f ∈ Yθ∗

< ψYθ(y), f >= m
(
< uPYθ(Ω|Yθ − `Yθ)(uy), f >

)
.

This map ψYθ is bounded by KMλ and an exact `Yθ∞ -centralizer, so supp ψYθ(y) ⊂ supp y
for y ∈ Yθ. This implies that ψYθ(yn) = µnyn for some scalars µn with |µn| ≤ KMλ. Thus

(12)
‖ψYθ(

∑
n λnyn)−

∑
n λnψYθ(yn)‖ ≤ KMλ‖

∑
n λnyn‖+ ‖

∑
n λnµnyn‖

≤ KMλ(1 + λ)‖
∑

n λnyn‖.

Consider the estimate (10), and observe that replacing Ωθ by Ωθ+`θ with `θ linear changes
nothing, and projecting and averaging on ± signs only changes the estimate by ‖Pn‖ ≤Mn;
so one gets∥∥∥ψYθ( n∑

i=1

yi)−
n∑
i=1

ψYθ(yi)− log
AX0(n)

AX1(n)

n∑
i=1

yi

∥∥∥ ≤ 3MnAX0(n)1−θAX1(n)θ.
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On the other hand we can rewrite (12) as

(13)
∥∥∥ψYθ(∑

i

yi)−
∑
i

ψYθ(yi)
∥∥∥ ≤ KMnλn(1 + λn)A1−θ

X0
(n)Aθ

X1
(n).

Putting both estimates together we get∣∣∣ log
AX0(n)

AX1(n)

∣∣∣ · ∥∥∥ n∑
i=1

yi

∥∥∥ ≤ (Kλn(1 + λn) + 3
)
MnA1−θ

X0
(n)Aθ

X1
(n).

Condition (i) yields that

εn

∣∣∣∣log
AX0(n)

AX1(n)

∣∣∣∣ ≤ (Kλn(1 + λn) + 3
)
Mn

in contradiction with the hypothesis. �

Corollary 5.7. Assume we have an interpolation scheme of two spaces X0 and X1 with
a common 1-monotone basis. Let p0 6= p1 and 1

p = 1−θ
p0

+ θ
p1

and assume that the spaces

Xj, j = 0, 1 satisfy an asymptotic upper `pj -estimate; and that for every block-subspace
W of Xθ, there exist a constant C and for each n, a C-unconditional finite block-sequence
n < y1 < . . . < yn in BW such that ‖y1 + · · · + yn‖ ≥ C−1n1/p and [y1, · · · , yn] is C-
complemented in Xθ. Then Ωθ is singular.

Remark. It was proved by Pisier [34] that a B-convex Banach space contains `n2 uniformly
complemented. Condition (ii) in Proposition 5.6 suggests to apply this result to B-convex
Banach spaces. Proposition 7.2 below states that when X is B-convex, nontrivial twisted
sums X ⊕F X always exist.

5.3. Interpolation of families of spaces. Here we apply the preceding criteria to spaces
induced by complex interpolation of a family of spaces (see [17]), as we require in Section 8.

We take a family of compatible Banach spaces {X(j,t) : j = 0, 1; t ∈ R} with index in the
boundary of S, and denote by Σ(Xj,t) the algebraic sum of these spaces with the norm

‖x‖Σ = inf{‖x1‖(j1,t1) + · · ·+ ‖xn‖(jn,tn) : x = x1 + · · ·+ xn}.
Let H(Xj,t) denote the space of functions g : S→ Σ := Σ(Xj,t) which are ‖ · ‖Σ-bounded,

‖·‖Σ-continuous on S and ‖·‖Σ-analytic on S◦; and satisfy g(it) ∈ X(0,t) and g(it+1) ∈ X(1,t)

for each t ∈ R. Note that H(Xj,t) is a Banach space under the norm

‖g‖H = sup{‖g(j + it)‖(j,t) : j = 0, 1; t ∈ R}.
For each θ ∈ (0, 1), or even θ ∈ S, we define

Xθ := {x ∈ Σ(Xj,t) : x = g(θ) for some g ∈ H(Xj,t)}
with the norm ‖x‖θ = inf{‖g‖H : x = g(θ)}. Clearly Xθ is the quotient of H(Xj,t) by the
kernel of the evaluation map ker δθ, and thus it is a Banach space.

All the ingredients of our constructions straightforwardly adapt to this context, and the
only relevant modification is to set Aj(n) = ess supt∈R AXj+it(n) instead of AXj (n), j = 0, 1.

Proposition 5.8. Consider an interpolation scheme of a family {X(j,t) : j = 0, 1; t ∈ R} of

spaces with a common 1-monotone basis. Let p0 6= p1 and 1
p = 1−θ

p0
+ θ

p1
.

Assume that all the spaces Xj,t satisfy an asymptotic upper `pj -estimate with uniform
constant; and for every block-subspace W of Xθ, there exist a constant C and for each n, a
C-unconditional finite block-sequence n < y1 < . . . < yn in BW such that ‖y1 + · · · + yn‖ ≥
C−1n1/p and [y1, · · · , yn] is C-complemented in Xθ.
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Then Ωθ is singular.

Proof. The arguments are similar to those in the proof of Proposition 5.6. �

6. Singular twisted Hilbert spaces

In many cases, complex interpolation between a Banach space and its dual gives
(X,X∗)1/2 = `2. See e.g., the comments at [35, around Theorem 3.1]. Also Watbled [39]
claims that her results cover the case of spaces with a 1-unconditional basis X. We do not
know whether there could be counterexamples with monotone basis. So, for the sake of
clarity, let us briefly explain the situation.

Given a Banach space X with a normalized basis (en), we denote (e∗n) the corresponding
sequence of biorthogonal functionals. We identify X with {

(
e∗n(x)

)
: x ∈ X)}, and its antidual

space X̂∗ with {
(
x∗(en)

)
: x∗ ∈ X)}, both linear subspaces of `∞, in such a way that X ∩ X̂∗

is continuously embedded in `2. Indeed, x = (an) ∈ X ∩ X̂∗ implies x(x) =
∑
|an|2 ≤

‖x‖X · ‖x‖X̂∗ .
Proposition 6.1. Let X be a Banach space with a monotone shrinking basis. Then
(X, X̂∗)1/2 = `2 with equality of norms.

Proof. It is enough to show that `2 is continuously embedded in X + X̂∗ and apply [39,

Corollary 4]. Let T : X ∩ X̂∗ → `2 be the embedding. Since the basis is shrinking, X ∩ X̂∗
is dense in both X and X̂∗. Thus the dual of X ∩ X̂∗ is X∗ + (X̂∗)∗ = X∗∗ + X̂∗ [5, 2.7.1

Theorem], and the conjugate operator T ∗ embeds `2 into X + X̂∗, which is a closed subspace

of X∗∗ + X̂∗ by the arguments in [39, p. 204]. �

We have a similar result for Köthe function spaces X. Observe that in this case X∗ and
X̂∗ coincide as sets.

Proposition 6.2. [39, Corollary 5] Let X be a Köthe function space on a complete σ-finite
measurable space S. Suppose that X ∩X∗ is dense in X and

L1(S) ∩ L∞(S) ⊂ X ∩X∗ ⊂ L2(S) ⊂ X +X∗ ⊂ L1(S) + L∞(S).

Then (X,X∗)1/2 = L2(S).

Remark 6.3. Arguing like in Proposition 6.1, we can show that the conditions X and X∗

intermediate spaces between L1(S) and L∞(S), and X ∩X∗ dense in both X and X∗ imply
the hypothesis of Proposition 6.2.

In all the previous situations the twisted sum space induced by the interpolation of a
space and its antidual is a twisted Hilbert space. Proposition 5.2 fits appropriately in this
situation since `2 is “asymptotically self-similar” in the sense that AW (n) = n1/2 for all
infinite dimensional subspaces. Thus, we are ready to construct singular exact sequences

0 −−−−→ `2 −−−−→ E −−−−→ `2 −−−−→ 0.

The first consequence of Corollary 5.7 is:

Proposition 6.4. The interpolation of a reflexive asymptotically `p space, p 6= 2, with its
antidual induces a singular twisted Hilbert space.

Thus interpolation of Tsirelson’s space T with its dual T ∗; or interpolation of Argyros-
Deliyanni’s H.I. asymptotically `1-space [2] with its antidual produce new singular exact
sequences

0 −−−−→ `2 −−−−→ X −−−−→ `2 −−−−→ 0
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which are not boundedly equivalent to

0 −−−−→ `2 −−−−→ Z2 −−−−→ `2 −−−−→ 0.

Thus, by Corollary 3.12, they cannot be even equivalent. In favorable situations this can be
improved to be non-permutatively projectively equivalent. Indeed, given a reflexive Banach
space X with normalized subsymmetric basis (en), we denote as usual [33]

λX(n) :=
∥∥∥ n∑
i=1

ei

∥∥∥
X
.

Then λX∗(n) ' n/λX(n) (see [33, Proposition 3.a.6]). One has

Proposition 6.5. Let `M be the symmetric Orlicz space with function Mα(t) = e−t
−α
, α > 0.

The induced centralizers at `2 = (`M , `
∗
M )1/2 for different values of α are not permutatively

projectively equivalent.

Proof. Let X and Y be reflexive spaces with normalized 1-unconditional and 1-subsymmetric
bases, and let Ω (resp. Ψ) be the induced centralizers at `2 defined on terms of the Lozanovskii
decompositions associated to (X,X∗)1/2 (resp. (Y, Y ∗)1/2). Then(

Ω− µΨ
)
(x) =

(
log
|a0(x)|
|a1(x)|

− µ log
|a′0(x)|
|a′1(x)|

)
x.

Pick x =
∑n

i=1 xiei with xi = 1/
√
n and apply the above formula with

|a0(x)| = λX(n)−11[1,n], |a1(x)| = λX(n)

n
1[1,n],

and

|a′0(x)| = λY (n)−11[1,n], |a′1(x)| = λY (n)

n
1[1,n].

If Ω−µΨ is bounded then the function log(nλX(n)−2)−µ log(nλY (n)−2) on N is bounded,
which means that the functions nλX(n)−2 and (nλY (n)−2)µ are equivalent. It is not difficult
to check that that is impossible for different α, β ≥ 0 since the choice of Mα in the statement
yields λ`Mα (n) ' (log n)1/α. Since the symmetric Orlicz spaces have symmetric bases, the
corresponding induced centralizers are not even permutatively projectively equivalent. �

We have found no specific criterion to show when twisted Hilbert sums induced by inter-
polation of spaces with subsymmetric bases are singular. Let us move our attention back to
asymptotically `p spaces.

Proposition 6.6. Let X,Y be spaces with asymptotically `p 1-unconditional bases. Then

the singular twisted Hilbert sums induced by the interpolation couples (X, X̂∗) and (Y, Ŷ ∗)
at 1/2 are (permutatively) projectively equivalent if and only if the bases of X and Y are
(permutatively) equivalent.

Proof. The key is to show that projective equivalence actually implies equivalence, hence
bounded equivalence; which implies, by Kalton’s result (Proposition 3.5), that the bases of
X and Y are equivalent.

Assume thus that the induced centralizers are λ-projectively equivalent. By Corollary 3.12∑
i

a2
i

(
log

µi
νi
− λ log

µ′i
ν ′i

)2
≤ K,
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whenever x =
∑

i aiei in `2 is normalized, and a2
i = νiµi = ν ′iµ

′
i with

1 ≤ ‖
∑
i

νiei‖X , ‖
∑
i

µiei‖X∗ , ‖
∑
i

ν ′iei‖Y , ‖
∑
i

µ′iei‖Y ∗ ≤ c.

Taking x with support far enough on the basis, we may choose ai = n−1/2 and νi = ν ′i ' n−1/p,

µi = µ′i ' n−1/p′ . Then |(1 − ν) log n|2 ≤ K ′, which means that λ = 1. Therefore we have
equivalence.

To deduce the permutative projective equivalence case from the projective equivalence
case just note that if a basis (en) is asymptotically `p then any permutation of (en) is again
asymptotically `p “in the long distance”, which means that there exists C ≥ 1 and a function
f : N → N such that for all n and normalized f(n) < x1 < . . . < xn in X, the sequence
(xi)

n
i=1 is C-equivalent to the basis of `np . �

From the purely Banach space theory it is interesting to decide whether twisted Hilbert
spaces are isomorphic. We can obtain non-isomorphic singular twisted Hilbert spaces as
follows.

Definition 5. A Lispchitz function φ : [0 +∞)→ C with φ(0) = 0 will be called expansive if
for every M there exists N such that |s− t| ≥ N ⇒ |φ(s)− φ(t)| ≥M .

Remark. Lipschitz functions for which limt→∞ φ
′(t) = 0 are not expansive. In particular

the functions φr for 0 < r < 1 are not expansive, while φ1 is expansive.

Proposition 6.7. Let X be a Köthe function space that is self-similar, in the sense that
MX ∼ MY for all subspaces Y ⊂ X generated by a disjoint sequence and limn→∞MX(n) =
∞. Then

(1) The Kalton-Peck map

Kφ(x) = xφ

(
− log

|x|
‖x‖

)
is disjointly singular.

(2) If X has an unconditional basis Kφ is singular.

Proof. To simplify notation we will write Ω = Kφ. Observe that Ω is a contractive centralizer.
Assume that Y is a sublattice of X such that Ω|Y is trivial. Let M be arbitrary positive, N be

such that |s−t| ≥ N ⇒ |φ(s)−φ(t)| ≥M , and n be such that MY (n) ≥ 2eN . We may consider
disjoint vectors y1, . . . , yn in Y of norm at most 1 such that ‖y1 + · · ·+ yn‖ ≥MY (n)/2. An
easy calculation shows that

Ω(
∑
i

yi)−
∑
i

Ω(yi) =
∑
i

yi
(
φ(− log(

∑
i

yi/K))− φ(− log(
∑
i

yi))
)
,

where K = ‖
∑n

i=1 yi‖. Each coordinate of the vector log(
∑

i yi)) − log(
∑

i yi/K) is
logK which is larger than log(MY (n)/2) ≥ N . Therefore each coordinate of the vector
φ(− log(

∑
i yi))− φ(− log(

∑
i yi/K)) is larger than M in modulus. We deduce that

‖Ω(
∑
i

yi)−
∑
i

Ω(yi)‖ ≥M‖
∑
i

yi‖ ≥MMY (n)/2.

By Lemma 4.3, this implies for some fixed constant k that kMX(n) ≥MMY (n)/2, therefore
MX 6∼MY , a contradiction which proves that Ω is singular (resp. disjointly singular). �
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Remark. Observe that limn→∞MX(n) =∞ can be obtained assuming that X is self-similar
and does not contain c0.

In [30] Kalton obtained a family Z2(α) of complex twisted Hilbert spaces induced by the
centralizers

Kiα(x) = x

(
− log

|x|
‖x‖

)1+iα

for −∞ < α < ∞ (see also [28]). Since these are not real centralizers they probably do
not appear as induced by interpolation of two spaces (although, according to [29] they are
induced by the interpolation of three spaces) . Let us see that they are singular.

Lemma 6.8. The Lispchitz function φ(t) = t1+iα is expansive.

Proof. |φ(s)− φ(t)| = |seiα log(s) − teiα log(t)| ≥ ||s| − |t|| = |s− t|. �

Thus, applying Proposition 6.7 [30] we get:

Proposition 6.9. Given α ∈ R, the exact sequences

0 −−−−→ `2 −−−−→ Z2(α) −−−−→ `2 −−−−→ 0

are singular and for α 6= β the spaces Z2(α) and Z2(β) are not isomorphic.

Let us turn our attention to the Lipschitz functions φr(t) = t for 0 ≤ t ≤ 1, and φr(t) = tr

for 1 < t <∞, and the centralizers

Kφr(x) = xφr
(
− log(|x|/‖x‖2)

)
,

and twisted Hilbert spaces `2(φr) they induce, introduced and considered by Kalton and Peck
in [32]. Note that `2(φ1) = Z2, the twisted Hilbert space generated by the interpolation scale
(`1, c0). It follows from Kalton’s theorem 3.4 ([29, Theorem 7.6]) that also `2(φr) appears
generated by some interpolation scale. Let us show that is a scale of Orlicz spaces.

Proposition 6.10. Let 0 < r < 1 and ϕ0, ϕ1 be the maps [0,∞)→ [0,∞) defined by

ϕ−1
0 (t) = t

1
2

+ 1
4

(− log t)r−1
, ϕ−1

1 (t) = t
1
2
− 1

4
(− log t)r−1

,

on a neighborhood of 0, and extended to [0,∞) to be N -functions with the ∆2-property.
Then the twisted Hilbert space induced by the interpolation scale (`ϕ0 , `ϕ1) at 1/2 is iso-

morphic to `2(φr).

Proof. We note that everything here is well defined since by choice of r and after an easy
calculation, t3/4 ≤ ϕ−1

0 (t) ≤ t1/4, t3/4 ≤ ϕ−1
1 (t) ≤ t1/4 and ϕ−1

1 (t) and ϕ−1
0 (t) are increasing,

for t in some neighborhood of 0. This is enough to make sure that ϕ1 and ϕ0 define N -function
Orlicz spaces. The ∆2-property is also satisfied on a neighborhood of 0. Indeed

ϕ−1
0 (9t) = 3t

1
2

+ 1
4

(− log 9t)r−1
= 3ϕ−1

0 (t)t
1
4

[(− log 9−log t)r−1−(− log t)r−1]

= 3ϕ−1
0 (t) exp

(
− 1

4(− log t)r[(1 + log 9
log t )

r−1 − 1]
)
.

The exponential in this expression is easily seen to tend to 1 when t tends to 0, so close
enough to 0, ϕ−1

0 (9t) ≥ 2ϕ−1
0 (t), and ϕ0 satisfies the ∆2 condition ϕ0(2s) ≤ 9ϕ(s) for s in a

neighborhood of 0. The same holds for ϕ1. Since ϕ−1
0 (t)ϕ−1

1 (t) = t on a neighborhood of 0,
the equality (`ϕ0 , `ϕ1)1/2 = `2 holds up to equivalence of bases.

Let ψ be the map so that

ϕ−1
1 (t) = t

1
2
− 1

4
ψ(− log(t)).



SINGULAR TWISTED SUMS GENERATED BY COMPLEX INTERPOLATION 23

Note that ψ is continuous, ψ(s) = sr−1 for s on a neighborhood V of +∞, and only the value
of ψ(s) for s ≥ 0 is relevant here. Suppose that ‖x‖2 = 1. Then the centralizer Ω associated
to (`ϕ0 , `ϕ1)1/2 = `2 (see Proposition 3.10), is given by

Ω(x) = 2x log
ϕ−1

1 (|x|2)

|x|
= 2x log |x|−

1
2
ψ(− log |x|) = xψ(− log |x|)(− log |x|),

while Kφr(x)n = xn · (− log |xn|)r whenever |xn| is less than some constant c depending on
V . So we deduce that

‖Ω(x)−Kφr(x)‖2 ≤
∑
|xn|≥c 2(Ω(x))2

n + (Kφr(x))2
n

≤ 2
(
(− log c)2 sup[0,− log c] |ψ|+ (− log c)2r

)
.

Since Ω and Kφr are homogeneous, they are boundedly equivalent. Hence `2⊕Ω `2 and `2(φr)
are isomorphic. �

Recall from [32, Corollary 5.5] that the spaces `2(φr) are mutually non-isomorphic for
different values of 0 < r ≤ 1. We know [32, Corollary 5.5] that K = Kφ1 is singular but,
being the function φr non-expansive for r < 1, we do not know if also Kφr is singular for
0 < r < 1.

7. The twisting of H.I. spaces

A Banach space X is said to be indecomposable if it cannot be decomposed as A ⊕ B
for two infinite dimensional subspaces A,B. An infinite dimensional space X is said to be
hereditarily indecomposable (H.I., in short) if all subspaces are indecomposable [24]. It is said
to be Quotient Hereditarily Indecomposable (Q.H.I., in short) if all its infinite dimensional
quotients are H.I. In particular, Q.H.I. spaces are H.I. The existence of Q.H.I. Banach spaces
was proved in [22]. The simplest connection between H.I. spaces and the theory of singular
exact sequences is described in the following folklore proposition; we present its proof for the
sake of completeness.

Lemma 7.1. Given an exact sequence of Banach spaces

0 −−−−→ Y −−−−→ X
q−−−−→ Z −−−−→ 0,

the space X is H.I. if and only if Y is H.I. and q is strictly singular.

Proof. Suppose X is H.I. Then clearly Y is H.I., and if q is not strictly singular, q|V is an
isomorphism for some (infinite dimensional) subspace V of X, hence Y ⊕ V is a subspace
of X and thus X cannot be H.I. Conversely, suppose that q is strictly singular. If X is not
H.I. we can find a decomposable subspace X1 ⊕X2 of X, and q has compact (even nuclear)
restrictions on some subspaces Y1 ⊂ X1 and Y2 ⊂ X2. Thus we can assume that there exists
a bijective isomorphism U : X → X such that U(Y1) and U(Y2) are contained in Y . Since
U(Y1)⊕ U(Y2) is closed, we conclude that Y is not H.I. �

The basic question we tackle in this section is whether it is possible to obtain nontrivial
twisted sums of H.I. spaces. The existence of a nontrivial twisted sum of A and B will
be denoted Ext(B,A) 6= 0. On one hand, if X is Q.H.I. and Y is a subspace of X with
dimY = dimX/Y = ∞, then X is a nontrivial twisted sum of the two H.I. spaces Y and
X/Y . However, what one is looking for is to obtain methods to twist two specified H.I.
spaces. Recall that the Kalton-Peck method [32] to twist spaces works, in principle, under
unconditionality assumptions. A second method is to use the local theory of exact sequences
as developed in [8]. The following result is a good example; we could not find it explicitly in
the literature, but it is certainly known:
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Proposition 7.2. If X is a B-convex Banach space then Ext(X,X) 6= 0.

Proof. If X contains `n2 uniformly complemented, as it is the case of B-convex Banach spaces,
then Ext(X, `2) 6= 0 [8]. And if Ext(X,X) = 0 then Ext(X, `2) = 0 [8]. �

The only currently known B-convex H.I. space is the one constructed by Ferenczi in [21].
So, calling this space F one gets Ext(F ,F) 6= 0. However this is not entirely satisfactory
since this twisting does not provide any information about the twisted sum space, apart from
its existence. So we formulate the following question:

Problem 1. Given an H.I. space X, does there exist an H.I. twisted sum of X?

Focusing again on Ferenczi’s space F , since it is a space obtained via an interpolation
scheme, i.e., F = Xθ for a certain configuration of spaces, the induced centralizer Ωθ provides
a natural twisted sum of F with itself that we will call F2:

0 −−−−→ F −−−−→ F2 −−−−→ F −−−−→ 0.

We will show in Section 8 that this sequence is singular, which implies that F2 is H.I.
By the characterization in Lemma 7.1 it is tempting to believe that a twisted sum of two

H.I. spaces is H.I. whenever is not trivial. However, this is not the case:

Proposition 7.3. There exists a nontrivial twisted sum of two H.I. spaces which is indecom-
posable but not H.I.

Proof. Recall that two Banach spaces A,B are said to be totally incomparable if no infinite
dimensional subspace of A is isomorphic to a subspace of B. It was proved in [22, Prop. 25]
that there exist two reflexive Q.H.I. spaces X1, X2 admitting infinite dimensional subspaces
Y1 ⊂ X1 and Y2 ⊂ X2 such that Y1 is isometric to Y2 and X1/Y1 and X2/Y2 are infinite
dimensional and totally incomparable. Note that X∗1 and X∗2 are Q.H.I.

Given a bijective isometry U : Y1 → Y2, we consider the subspace Ŷ := {(y, Uy) : y ∈ Y1}
of X1 ×X2, the quotient X̂ := (X1 ×X2)/Ŷ , and the quotient map Q : X1 ×X2 → X̂. Note

that X̂1 := Q(X1 × {0}) and X̂1 := Q({0} × X2) are subspaces of X̂ isometric to X1 and

X2 respectively, and Ẑ := X̂1 ∩ X̂2 = Q(Y1 × {0}) = Q({0} × Y2). Thus X̂/Ẑ is isomorphic

to X̂1/Ẑ ⊕ X̂2/Ẑ, hence Ẑ⊥ is decomposable and X̂∗ is not H.I. Let us see that X̂∗ is a

nontrivial twisted sum of two H.I. spaces: Since X̂ is reflexive and H.I. [22, Proposition 23],

the dual space X̂∗ is indecomposable, hence the exact sequence

0 −−−−→ X̂⊥1 −−−−→ X̂∗ −−−−→ X̂∗/X̂⊥1 −−−−→ 0

is nontrivial. Moreover, X̂⊥1 and X̂∗/X̂⊥1 are H.I. because X̂1 ' X1 and X̂/X̂1 ' X2/Y2 are
Q.H.I. and reflexive. �

We can present an alternative construction of nontrivial and non H.I. twisted sums of
H.I. spaces. Let us say that a Banach space X admits a singular extension if there exists a
singular exact sequence

0 −−−−→ X −−−−→ Y
q−−−−→ Z −−−−→ 0;

i.e., an exact sequence with q strictly singular and Z infinite dimensional.

Proposition 7.4. Every separable H.I. space X which admits a singular extension is a
complemented subspace of a nontrivial twisted sum of two H.I. spaces.
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Proof. Let 0 → X
i−→ Y

q−→ Z → 0 be a singular extension of Y with Y separable. It
follows from Proposition 7.1 that Y is H.I. By [3, Theorems 14.5 and 14.8] there exists a
separable H.I. space W and a surjective operator p : W → Y with infinite dimensional
kernel. Note that p is strictly singular by Proposition 7.1. We consider the closed subspace
PB := {(w, x) ∈W ⊕X : p(w) = i(x)} of W ⊕X and the projection operators α : PB →W
and β : PB → X. Note that β is strictly singular because iβ = qα, and that β is surjective
with ker(β) = ker(p) an H.I. space. Hence PB is H.I.

Since the operator U : (w, x) ∈ Z ⊕X −→ i(x)− p(w) ∈ Y is surjective, we have a twisted
sum of two H.I. spaces

(14) 0 −−−−→ PB −−−−→ W ⊕X U−−−−→ Y −−−−→ 0.

To finish the proof it is enough to show that this twisted sum is nontrivial. Indeed, otherwise
U would be in the class Φr of operators with complemented kernel and finite codimensional
closed range. By the stability of Φr under strictly singular perturbations [1, Theorem 7.23],
the operator T (w, x) ∈ Z ⊕W −→ i(x) ∈ Y would define an isomorphism of X onto a finite
codimensional subspace of Y , which is not possible. �

Problem 2. Does every separable H.I. space admit a singular extension?

The exact sequence (14) also shows that there exists a nontrivial twisted sum of two H.I.
spaces which is decomposable (“two” is the maximum number of summands, see [23, Theorem
1]). In Section 9 we will give other examples of this kind. To conclude this section, we could
formulate the general problem about the twisting as:

Problem 3. Does there exists an H.I. space X so that Ext(X,X) = 0?

Let us recall [4] that there are currently known only four solutions to the equation
Ext(X,X) = 0: c0, `∞, L1(µ) and `∞/c0.

8. An H.I. twisted sum of F

Ferenczi’s H.I. uniformly convex space F [21] can be obtained from a complex interpolation
scheme associated to a family of Banach spaces (briefly described in Subsection 5.3) setting
X(1,t) = `q and as X(0,t) certain Gowers-Maurey-like spaces (t ∈ R).

We fix θ ∈ [0, 1], and define

F = {x ∈ Σ(Xj,t) : x = g(θ) for some g ∈ H(Xj,t)}
with the quotient norm of H(Xj,t)/ ker δθ, given by ‖x‖θ = inf{‖g‖H : x = g(θ)}.

In this section we will show:

Theorem 8.1. The space F satisfies the hypotheses of Proposition 5.8 with C = 1 + ε for
any ε > 0. So the induced twisted sum

0 −−−−→ F −−−−→ F2 −−−−→ F −−−−→ 0.

is singular. Therefore F2 is H.I.

We set f(x) := log2(1 + x). We first state estimates relative to successive vectors in the
space F [21, Proposition 1], as well as estimates for successive functionals in F∗ obtained by
standard duality arguments:

Lemma 8.2. For all successive vectors x1 < · · · < xn in F ,

1

f(n)1−θ

( n∑
i=1

‖xi‖p
)1/p

≤
∥∥∥ n∑
i=1

xi

∥∥∥ ≤ ( n∑
i=1

‖xi‖p
)1/p

,
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and for all successive functionals φ1 < · · · < φn in F∗,( n∑
i=1

‖φi‖p
′
)1/p′

≤
∥∥∥ n∑
i=1

φi

∥∥∥ ≤ f(n)1−θ
( n∑
i=1

‖φi‖p
′
)1/p′

.

In [21], `np+-averages are defined as normalized vectors of the form
∑n

i=1 xi, where the xi’s

are successive of norm at most (1 + ε)n−1/p, and may be found in any block-subspace of F
(see [21, Lemma 2]). However here we need to control not only the norm of

∑n
i=1 xi but also

of
∑n

i=1±xi for any choice of signs ±, so [21] Lemma 2 is not quite enough. To this end we
shall use RIS sequences as defined in [21, Definition 3].

RIS sequences with constant C > 1 are successive sequences of `nkp+-averages with a tech-
nical ”rapidly” increasing condition on the nk’s and therefore are also present in every block
subspace of F . Every subsequence of a RIS sequence is again a RIS sequence. In what follows
L is some lacunary infinite subset of N whose exact definition may be found in [21]. As a
consequence of Lemma 8.2, [21, Lemma 10] and standard duality arguments we have:

Lemma 8.3. Let y1 < · · · < yn be a RIS sequence in F , with constant 1 + ε2/100, where
n ∈ [logN, exp N ] for some N in L, and 0 < ε < 1/16. Then

n1/p

f(n)1−θ ≤ ‖
n∑
i=1

yi‖ ≤ (1 + ε)
n1/p

f(n)1−θ .

Furthermore if for all i, φi ∈ F∗ satisfies ‖φi‖ = φi(yi) = 1 and ran φi ⊂ ran yi, then

(1 + ε)−1f(n)1−θn1/p′ ≤ ‖
n∑
i=1

φi‖ ≤ f(n)1−θn1/p′ .

Proposition 8.4. Let Y be a block sequence of F , n ∈ N, and ε > 0. Then there exists a
block-sequence y1 < · · · < yn in Y and a block-sequence ψ1 < · · · < ψn in X∗ such that:

(1) (1 + ε)−1 ≤ ‖ψi‖ ≤ 1 ≤ ‖yj‖ ≤ 1 + ε and ψi(yj) = δij for i, j = 1, . . . , n,

(2) for any complex α1, . . . , αn, ‖
∑n

i=1 αiyi‖ ≥ (1 + ε)−1(
∑n

i=1 |αi|p)1/p

(3) for any complex α1, . . . , αn, ‖
∑n

i=1 αiψi‖ ≤ (1 + ε)(
∑n

i=1 |αi|p
′
)1/p′

Moreover the block sequence y1 < · · · < yn of Y is (1 + ε)-equivalent to the unit vector basis
of `np and [y1, . . . , yn] is (1 + ε)-complemented in Y .

Proof. Assuming ε ≤ 1/16, pick m such that d(mn,N) < n for some N ∈ L and big enough
to ensure that m and mn belong to [logN, expN ], and that f(mn)/f(m) < 1 + ε. Denote
M = mn. Let x1, . . . , xM be a RIS in Y with constant 1 + ε2/100 and φ1, . . . , φM be a
sequence of successive norming functionals in X∗ for x1, . . . , xM .

Now for j = 1, . . . , n, let

yj =
f(m)1−θ

m1/p

jm∑
i=(j−1)m+1

xi, and ψj =
1

f(m)1−θm1/p′

jm∑
i=(j−1)m+1

φj .

Since x(j−1)m+1, . . . , xjm is a RIS with constant 1 + ε2/100, we have by Lemma 8.3 that for
j = 1, . . . , n,

1 ≤ ‖yj‖ ≤ (1 + ε), (1 + ε)−1 ≤ ‖ψj‖ ≤ 1,

and clearly ψj(yk) = δj,k. For any complex α1, . . . , αn, Lemma 8.2 implies

m1/p

f(m)1−θ ‖
n∑
j=1

αjyj‖ ≥
(
∑n

j=1m|αj |p)1/p

f(M)1−θ ,
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so

‖
n∑
j=1

αjyj‖ ≥ (
n∑
j=1

|αj |p)1/p(
f(m)

f(M)
)1−θ ≥ (

n∑
j=1

|αj |p)1/p(1 + ε)−1.

Lemma 8.2 also implies f(m)1−θm1/p′‖
∑n

j=1 αjψj‖ ≤ f(M)1−θ(
∑n

j=1m|αj |p
′
)1/p′ , so

‖
∑n

j=1 αjψj‖ ≤ (1 + ε)(
∑n

j=1 |αj |p
′
)1/p′ .

Clearly (yi)
n
i=1 is (1+ε)-equivalent to the unit basis of `np . We claim that Px =

∑n
i=1 ψi(x)yi

defines a projection from F onto [y1, . . . , yn] of norm at most (1 + ε)2p. Indeed for x ∈ F ,

‖Px‖p ≤ (1 + ε)p(
n∑
i=1

|ψi(x)|p) = (1 + ε)p(
n∑
i=1

αi|ψi(x)|p−1ψi(x))

for some α1, . . . , αn of modulus 1. So

‖Px‖p ≤ (1 + ε)p‖x‖‖
n∑
i=1

αi|ψi(x)|p−1ψi‖ ≤ (1 + ε)p+1‖x‖(
n∑
i=1

|ψi(x)p−1|p′)1/p′ .

Since
n∑
i=1

|ψi(x)p−1|p′ =

n∑
i=1

|ψi(x)|p ≤ (1 + ε)p‖Px‖p,

we deduce ‖Px‖p ≤ (1+ε)p+1+p/p′‖x‖‖Px‖p/p′ , therefore ‖Px‖ ≤ (1+ε)2p‖x‖. This concludes
the proof of the claim, and up to appropriate choice of ε, that of the proposition. �

9. Iterated twisting of F

To simplify the notation, let us set F1 = F . As above, F2 will denote the self-extension of
F1 obtained in Section 8. As it is showed in Proposition 3.2,

F2 = {
(
g′(θ), g(θ)

)
: g ∈ H(Xj,t)},

endowed with the quotient norm of H(Xj,t)/(ker δθ ∩ ker δ′θ). Let us show that the twisting
process can be iterated obtaining a sequence (Fn) of H.I. spaces such that Fn+m is a twisted
sum of Fn and Fm.

Given a function g ∈ H(Xj,t) and an integer k ∈ N, we denote ĝ[k] := g(k−1)(θ)/(k − 1)!,
the (k)-th coefficient of the Taylor series of g at θ. Following the constructions in [9], we
define for n ≥ 3:

Fn := {
(
ĝ[n], . . . , ĝ[2], ĝ[1]

)
: g ∈ H(Xj,t)}

endowed with the quotient norm of H(Xj,t)/
⋂n−1
k=0 ker δ

(k)
θ . Our next result is modelled upon

similar ones for twisted Hilbert spaces in [9], although the proofs may differ.

Proposition 9.1. Let m,n ∈ N with m > n.

(1) The expression πm,n(xm, . . . , xn, . . . , x1) := (xn, . . . , x1) defines a surjective operator
πm,n : Fm → Fn.

(2) The expression in,m(xn, . . . , x1) := (xn, . . . , x1, 0, . . . , 0) defines a isomorphic embed-
ding in,m : Fn → Fm with ran(in,m) = ker(πm,m−n).

(3) The operator πm,n is strictly singular.
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Proof. (1) Since dist(g,
⋂n−1
k=0 ker δ

(k)
θ ) ≤ dist(g,

⋂m−1
k=0 ker δ

(k)
θ ), we have ‖πm,n‖ ≤ 1. And it is

obvious that πm,n is surjective.

(2) Let φ ∈ H∞(S) be a scalar function such that φ̂[k] = δk,m−n for 1 ≤ k ≤ m. For
the existence of φ, we consider a conformal equivalence ϕ : S → D satisfying ϕ(θ) = 0, and
the polynomial p(z) := (z − θ)m−n. The function p ◦ ϕ−1 ∈ H(D) admits a representation
p ◦ ϕ−1(ω) =

∑∞
l=0 alω

l, and it is not difficult to check that φ(z) :=
∑m

l=0 alϕ(z)l defines a
function that satisfies the required conditions.

Given (xn, . . . , x1) ∈ Fn, we take g ∈ H(Xj,t) such that ĝ[k] = xk for k = 1, . . . , n. Then
f := φ · g ∈ H(Xj,t) with ‖f‖ ≤ ‖φ‖∞ · ‖g‖ and, by the Leibnitz rule,

f̂ [k] =
k∑
l=1

φ̂[l]ĝ[k − l].

Thus f̂ [k] = 0 for 1 ≤ k ≤ m − n and f̂ [k] = ĝ[k − m + n] for m − n < k ≤ m; i.e.,

(f̂ [m], . . . , f̂ [1]) = (xn, . . . , x1, 0, . . . , 0). Hence in,m is well-defined and ‖in,m‖ ≤ ‖φ‖∞.
Clearly in,m is injective and ran(in,m) ⊂ ker(πm,m−n). Let (yn, . . . , y1, 0, . . . , 0) in

ker(πm,m−n). Then there exists g ∈ H(Xj,t) such that ĝ[k] = 0 for 1 ≤ k ≤ m − n and
ĝ[k] = yk−m+n for m − n < k ≤ m. Since g has a zero of order m − n at θ, there ex-
ists f ∈ H(Xj,t) such that g(z) = f(z)(z − θ)m−n, and it is not difficult to check that

in,m(f̂ [n], . . . , f̂ [1]) = (yn, . . . , y1, 0, . . . , 0).

(3) Since πm,n = πm−1,nπm,m−1 for m > n+1, it is enough to prove that πm,m−1 is strictly
singular. We will do it by induction:

We proved in Theorem 8.1 that π2,1 is strictly singular. Let m > 2 and assume that
πm−1,m−2 is strictly singular. Note that πm,1 = πm,2π2,1; hence πm,1 is also strictly singular.

We consider the following commuting diagram:

(15)

0 −−−−→ Fm−1
im−1,m−−−−−→ Fm

πm,1−−−−→ F1 −−−−→ 0

πm−1,m−2

y yπm,m−1

∥∥∥
0 −−−−→ Fm−2 −−−−−−→

im−2,m−1

Fm−1 −−−−→
πm−1,1

F1 −−−−→ 0.

By (1) and (2), the two rows are exact. Suppose that M is an infinite dimensional closed
subspace of Fm such that πm,m−1|M is an isomorphism. Since πm,m−1im−1,m is strictly
singular and ran(im−1,m) = ker(πm,1), M ∩ ker(πm,1) is finite dimensional and M + ker(πm,1)
is closed. But this is impossible, because πm,1 is strictly singular. �

As an immediate consequence we get:

Corollary 9.2. Let m,n ∈ N. Then the sequence

0 −−−−→ Fm
im,m+n−−−−−→ Fm+n

πm+n,n−−−−−→ Fn −−−−→ 0

is exact and singular. Therefore all the spaces Fn are H.I.

Next we show that there are natural nontrivial twisted sums of spaces Fn which are not
H.I. Let l,m, n ∈ N with l > n. We consider the following push-out diagram:
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(16)

0 −−−−→ Fl
il,l+m−−−−→ Fl+m

πl+m,m−−−−−→ Fm −−−−→ 0

πl,n

y yπl+m,k+m

∥∥∥
0 −−−−→ Fn −−−−→

in,n+m

Fn+m −−−−−→
πn+m,m

Fm −−−−→ 0.

Proposition 9.3. Let l,m, n ∈ N with l > n. Then the diagonal push-out sequence

(17) 0 −−−−→ Fl
i−−−−→ Fn ⊕Fl+m

π−−−−→ Fm+n −−−−→ 0

obtained from diagram (16) is a nontrivial exact sequence.

Proof. As we saw in Section 2, the maps i and π are given by

i(x) = (−πl,n x, il,l+m x) and π(y, z) = in,n+m y + πl+m,k+m z,

and it is easy to check that the sequence (17) is exact. Since l > n, every operator from Fl
or Fm+n into Fn is strictly singular. Thus Fl ⊕ Fm+n is not isomorphic to Fn ⊕ Fl+m, and
the exact sequence (17) is nontrivial. �
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