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Abstract. We study bounded actions of groups and semigroups G on exact sequences of Banach

spaces from the point of view of (generalized) quasilinear maps, characterize the actions on

the twisted sum space by commutator estimates and introduce the associated notions of G-

centralizer and G-equivariant map. We will show that when (A) G is an amenable group and

(U) the target space is complemented in its bidual by a G-equivariant projection, then uniformly

bounded compatible families of operators generate bounded actions on the twisted sum space;

that compatible quasilinear maps are linear perturbations of G-centralizers; and that, under

(A) and (U), G-centralizers are bounded perturbations of G-equivariant maps. The previous

results are optimal. Several examples and counterexamples are presented involving the action

of the isometry group of Lp(0, 1), p ̸= 2 on the Kalton-Peck space Zp, certain non-unitarizable

triangular representations of the free group F∞ on the Hilbert space, the compatibility of complex

structures on twisted sums, or bounded actions on the interpolation scale of Lp-spaces. In the

penultimate section we consider the category of G-Banach spaces and study its exact sequences,

showing that, under (A) and (U), G-splitting and usual splitting coincide. The purpose of the

final section is to present some applications, showing that several previous result are optimal and

to suggest further open lines of research.

1. Introduction

This paper emerges from the observation of similarities between different problems:

(a) The construction of non-unitarizable, bounded, representations of the free group F∞ on
the Hilbert space.

(b) The construction of operators on the Kalton-Peck space Z2.
(c) The differential process associated to a complex interpolation scheme.
(d) Actions of groups on exact sequences of Banach spaces.
(e) The existence of certain bounded groups of isomorphisms on the space c0.
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In all cases, certain non-linear maps (including sometimes linear unbounded maps) and their
compatibility with the action of some groups of operators through commutator estimates are at
the core of the problem. In (a), a linear unbounded map used to define a non-inner derivation
and therefore a non-unitarizable representation [43]; in (b) the Kalton-Peck map KP [37] (see
also [7, Section 3.2]); in (c) is the “Ω-operator” mentioned by several authors Cwikel et al. [23,
Section I], Rochberg [44], Carro [14]... And in (d) we encounter the Banach version of the three-
representation problem (see [38]). Another unexpected example (e) is a linear unbounded map
used in [1] to define a non-trivial derivation in a study of bounded groups acting on c0. Connec-
tions between some of those elements had been observed before: for instance, Kalton observed
[34, 35] that while working on Köthe spaces, Ω-operators are a special type of quasilinear map,
that he called L∞-centralizers, intimately connected with the complex interpolation scale.

To obtain a unified point of view we consider a group or semigroup G, two bounded actions
u, v on two Banach spaces X,Y and introduce the notion of G-centralizer Ω, as well as the more
general notion of a quasi-linear map Ω compatible with an u, v: this allows us to construct an
exact sequence 0 −→ X → X ⊕Ω Y −→ Y −→ 0 of Banach spaces and connect possible actions
of G on the twisted sum space X ⊕Ω Y with commutator estimates involving Ω and derivations
of the group.

Our results move at two levels, the theoretical and the examples/counterexamples level. On
the theoretical side, we present the following list of results (to simplify notation, let (A) be the
condition “G is amenable” and let (U) be the condition “X is complemented in its bidual by a
G-equivariant projection”:

(1) Triangular representations of groups on the Hilbert space H may be interpreted as
diagonal representations on H seen as a twisted Hilbert space.

(2) Under (A) and (U), a uniformly bounded family (Tg)g∈G of operators yielding commu-
tative diagrams

0 −−−→ X −−−→ X ⊕Ω Y −−−→ Y −−−→ 0

u(g)

y Tg

y yv(g)

0 −−−→ X −−−→ X ⊕Ω Y −−−→ Y −−−→ 0

provides a compatible action of G on X ⊕Ω Y .
(3) Every Ω compatible with an action on X⊕ΩY is a linear perturbation of a G-centralizer

(possibly with values in a larger target space).
(4) Under (A) and (U), every G-centralizer is a bounded perturbation of a G-equivariant

map.
(5) We introduce the category of G-Banach spaces and show that, under (A) and (U), a

G-exact sequence of G-spaces G-splits if and only if it splits as an exact sequence of
Banach spaces.

We also present the following counterexamples:

• We will use a construction of Pytlic and Szwarc [43] to show a centralizer (on ℓ2) that is
not a bounded perturbation of an equivariant centralizer when G is non-amenable. We
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will provide another counterexample, inspired from [1] and defined on c0, when X is not
complemented in its bidual. These examples show that (4) above is optimal.

• We will show that the Kalton-Peck map is not a centralizer for the groups of isometries
on Lp, p ̸= 2 or isometries preserving disjointness on L2. It is however compatible with
the actions of those groups.

• In the case of the group of isometries of L2, the Kalton-Peck map is not even compatible
with the action of that group.

There are specific sections devoted to actions of groups on complex interpolation scales, on
Kalton-Peck spaces and on higher order Rochberg spaces, as well as to the connections between
G-centralizers and (almost) transitivity.

2. The Background

Let X,Y be Banach spaces. In what follows ∆ ⊂ Y represents a dense subspace of Y
(sometimes called the intersection space), while Σ represents the ambient space. To work with
quasilinear maps it would be enough that Σ is a vector space containing X. To work in an inter-
polation context it is convenient asking Σ to carry a vectorial topology making the containment
map continuous; and to work with continuous actions it is better to ask that the continuous
action can be extended to Σ. When necessary, we will specify the injective linear map ȷ : X → Σ
and endow the subspace ȷ[X] with the norm ∥ȷ(x)∥ = ∥x∥X . Most often than not there is a
natural choice of Σ that is already a Banach space and making ȷ continuous. The section entitled
“The issue of the ambient space” shows how to make, once these basic premises have been es-
tablished, irrelevant the choice of the ambient space even in the most restrictive Banach setting.
A homogeneous map Ω : ∆ −→ Σ is a z-linear map ∆ y X if there is a constant C such that
for all finite sequences of elements y1, . . . , yN ∈ ∆

(a) Ω(
∑N

n=1 yn)−
∑N

n=1Ω(yn) ∈ ȷ[X]

(b) ∥Ω(
∑N

n=1 yn)−
∑N

n=1Ω(yn)∥ȷ[X] ≤ C
∑N

n=1 ∥yn∥Y .

In this paper we mainly use the notation Ω : ∆ y X, although Ω : Y y X can also be appear
when the choice of ∆ is clear from the context or irrelevant. When condition (b) holds only for
pairs of points then Ω is called quasilinear. A quasilinear map Ω : ∆ y X with ambient space Σ
is said to be trivial if there is a linear (not necessarily continuous) map L : ∆ −→ Σ such that
Ω − L : ∆ → ȷ[X] is bounded, in the sense that ∥Ω(y) − L(y)∥ȷ[X] ≤ M∥y∥Y for some constant
M and all y ∈ ∆. Two quasilinear maps Φ,Ψ : ∆ y X with ambient space Σ are said to be
equivalent, and denoted Φ ∼ Ψ, (resp. boundedly equivalent and denoted Φ ∼♭ Ψ) if Φ − Ψ is
trivial (resp. Φ−Ψ : ∆ −→ X is bounded). The twisted sum generated by a quasilinear map Ω is
the completionX⊕ΩY of the spaceX⊕Ω∆ := {(ω, y) ∈ Σ×∆ : ω−Ωy ∈ ȷ[X]} endowed with the
quasi-norm ∥y∥Y +∥ω−Ωy∥ȷ[X]. From now on, except when in need, we shall omit the embedding
ȷ. If Ω is z-linear then ∥ · ∥Ω is equivalent to a norm, and thus X⊕Ω Y is a Banach space. Kalton
showed [31, Theorem 4.10] that quasilinear maps on B-convex Banach spaces (e.g. uniformly
convex spaces) are z-linear; therefore, twisted sums in which the quotient space is B-convex are
Banach spaces. The map ı : X −→ X⊕ΩY given by ı(x) = (x, 0) is an into isomorphism and the
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map π : X ⊕Ω Y −→ Y given by π(ω, y) = y (for y ∈ ∆, then extended by continuity) is onto.

These spaces and operators form a short exact sequence 0 // X
ı // X ⊕Ω Y

π // Y // 0
that shall be referred to as the sequence generated by Ω. Two exact sequences of Banach spaces
are called equivalent when there is an operator T making the diagram

Z

$$JJ
JJJ

JJ

T

��

0 // X

99ttttttt

%%JJ
JJJ

J Y // 0

Z ′

::tttttt

commute. When Z = X ⊕Ω Y and Z ′ = X ⊕Φ Y that happens if and only if Φ and Ψ are
equivalent maps.

Given two maps S, T , its commutator is defined as [S, T ] = ST − TS provided this makes
sense. We will need to use a generalized commutator for three maps defined as [u,Ω, v] = uΩ−Ωv,
whenever this makes sense.

3. G-centralizers

Definition 3.1. Let G be a semigroup. A G-space is a normed space X equipped with a
bounded action G × X → X; namely, a morphism of semigroups u : G → L(X) such that
γ(u) := sup{∥u(g)∥ : g ∈ G} < ∞.

Note that we do not require G to carry any topology and therefore there is no continuity
involved with respect to G (alternatively we may think of G as discrete). Occasionally we
will consider unbounded or even nonlinear actions, but that will be explicitly said. Paramount
examples of bounded actions are (see the appropriate section in the paper for unexplained terms):
(a) The action of the group of units U of L∞(S, µ) on either L∞-Banach modules or Köthe spaces.
In particular, the action of the Cantor group 2ω = {−1,+1}N on spaces with unconditional basis
or that of the group 2<ω of elements of 2ω that are eventually 1 on c. (b) The action of the
group generated by measure preserving rearrangements of the base space and change of signs on
rearrangement invariant Köthe spaces. (c) The action of the group Isom(X) of isometries of X
on X. (d) The action of the group Isomdisj(L2) of isometries that preserve disjointness on L2. (e)
The natural left regular action of the free group F∞ on the Hilbert space seen as ℓ2(F∞). Note
that in the above, example (a) satisfies (A) but, in the case of c, not (U); examples (d) and (e)
satisfy (U) and not (A); and the case for (b)(c) depends on the choice of the space.

Given an exact sequence 0 → X → Z → Y → 0 of G-spaces, we will agree for the rest of this
paper that the action of G on X will be denoted u, that on Y will be denoted v and that on Z
will be denoted λ.

Definition 3.2. Let G be a semigroup.

G-operator: An operator (resp. a linear map) T : X → Y between two G-spaces X and
Y is a G-operator (resp. a G-linear map) if v(g)T = Tu(g) for all g ∈ G.
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G-subspace: A G-subspace Y ′ of Y is a subspace of Y such that the canonical inclusion
ı : Y ′ → Y is a G-operator; in which case we shall also occasionally say that Y is a
G-superspace of Y ′.

G-centralizer: Let Y,X be G-spaces, let ∆ ⊂ Y be a dense G-subspace of Y , and let
Σ ⊃ X be a G-superspace of X. A quasilinear map Ω : ∆ y X with ambient space
Σ is said to be a G-centralizer if the family of maps [u(g),Ω, v(g)] takes values in X
and is uniformly bounded, i.e., there exists a constant G(Ω) > 0 such that ∥u(g)Ωy −
Ωv(g)y∥X ≤ G(Ω)∥y∥Y for all g ∈ G and y ∈ ∆.

We shall sometimes say that Ω is a centralizer compatible with G. To avoid confusion, let us
make explicit that in the above we use the same letter for an action on a G-space and for the
action by restriction on a G-subspace; for example for any g ∈ G, u(g) extends to a map on Σ
still denoted u(g).

It will spare us a few headaches to briefly discuss the roles of the “ambient” and “intersection”
spaces Σ and ∆. Observe that Ω is in principle only defined on ∆, not in Y . It is well known
[37, Theorem 3.1] that every quasilinear map Ω : ∆ y X can be extended to a quasilinear map

Ω̂ : Y −→ X, but replacing Ω by this “artificial” Ω̂ may spoil the compatibility conditions with
G, so this approach is not recommended for us.

The issue of the ambient space. We need here the construction of the pushout space PO of
two operators a : X −→ A and b : X −→ B (the reader is referred to [7] for full details), which

is the space PO = (A⊕1B)/{(ax,−bx) : x ∈ X} together with the operators pA : A −→ PO and
pB : B −→ PO given by pA(x) = [(x, 0)] (the class of (x, 0)) and pB(y) = [(0, y)] so that one gets
a commutative diagram

A pA
''PP

PPP
P

X

ȷ 77pppppp

ı ''NN
NNN

N PO

B
pB

77nnnnnn

When one of the operators a, b is an isomorphic embedding then PO = (A⊕1B)/{(ax,−bx) :
x ∈ X}. Assume now that one has two quasilinear maps Ω,Φ : Y y X, one taking values in
the ambient space Σ with embedding ȷ : X → Σ and the second in the ambient space Ξ with
embedding ı : X → Ξ. Form the pushout commutative diagram

Σ
σ
''OO

OOO
O

X

ȷ 77pppppp

ı ''NN
NNN

N PO

Ξ ξ

77oooooo

and thus, replacing Ω by σΩ : Y y σȷ[X] and Φ by ξΦ : Y y ξı[X], and calling X = σȷ[X] =
ξı[X], then σΩ and ξΦ are quasilinear maps Y y X with ambient space PO. We can extend the
equivalence notion to quasilinear maps with different ambient spaces, maintaining the notation:
Ω ∼ Φ means σΩ ∼ ξΦ. The modification is acceptable since Ω ∼ Φ if and only if σΩ and ξΦ
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generate equivalent exact sequences: if B = σΩ − ξΦ − L : Y → X is bounded for some linear
map L : Y → PO then the following sequences are equivalent

(1) X ⊕σΩ Y

''PP
PPP

PPP

T

��

0 // X

77nnnnnnnn

''OO
OOO

OOO
Y // 0

X ⊕ξΦ Y

77oooooooo

via the operator T (σȷx, y) = (σȷx−Ly, y): indeed, (σȷx−Ly, y) ∈ X ⊕ξΦ Y because σȷx−Ly−
ξΦy = σȷx− σΩy +By ∈ X since B : Y → X . Since

∥T (σȷx, y)∥ξΦ = ∥(σȷx− Ly, y)∥ξΦ
= ∥σȷx− Ly − ξΦy)∥+ ∥y∥
= ∥σȷx− σΩy +By∥+ ∥y∥
≤ (∥B∥+ 1)(∥σȷx− σΩy∥+ ∥y∥)
≤ (∥B∥+ 1)∥(σȷx, y∥σΩ

T is bounded, hence an isomorphism. When B = 0, as in the situation we will describe next, T
is an isometry.

Given Ω : Y y X with ambient space Σ we can choose as ambient space X⊕Ω Y and replace
Ω by Ω0y = (Ωy, y) to get

Lemma 3.3. Ω ∼ Ω0. More precisely, there is a linear map L : ∆ −→ PO such that

ξΩ0 = σΩ + L.

Proof. We just consider the commutative diagram

X ⊕Ω Y
ξ

((PP
PPP

PP

X

ı 77ooooooo

ȷ ''PP
PPP

PPP
P PO

Σ
σ

66nnnnnnnnn

and keep track of what σ, ξ, ı do; namely, ı(x) = (x, 0), σ(ω) = [(0, 0), ω)] and ξ(ω, y) =
[((ω, y), 0)]. Therefore σΩ(y) = [((0, 0),Ωy)] and ξΩ0(y) = [((Ωy, y), 0)]. A linear selection
Y → X ⊕Ω Y for the natural quotient map has the form y → (ℓy, y) for some linear map
ℓ : Y → Σ such that Ωy − ℓy ∈ X. If we define the linear map L : Y → PO given by
Ly = [(ℓy, y),−ℓy)] then we have

ξΩ0(y)− σΩ(y)− L(y) = [((Ωy, y), 0)− ((0, 0),Ωy)− (ℓy, y),−ℓy)]

= [((Ωy − ℓy, 0),−(Ωy − ℓy))]

= [0]
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since all elements ((x, 0),−x) with x ∈ X are 0 in PO. �
When the spaces Σ,Ξ are G-spaces under extensions of the action u that we will momentarily

call uΣ, uΞ and both ȷ : X −→ Σ and ı : X −→ Ξ are bounded G-linear maps then PO is a
G-superspace of X under the action u(g)[(s, r)] = [uΣ(g)s, uΞ(g)r], which is well defined since

u(g)[(ȷx,−ıx)] = [uΣ(g)ȷx,−uΞ(g)ıx] = [ȷu(g)x,−ıu(g)x] = 0.

If, moreover, Ω (resp. Φ) is a G-centralizer then so is σΩ (resp. ξΦ) since

u(g)σΩ− σΩv(g) = σuΣ(g)Ω− σΩv(g) = σ
(
uΣ(g)Ω− Ωv(g)

)
However, once actions are involved, a situation appears: given an operator u : X → X and

a quasilinear map Ω : ∆ → Σ the composition uΩ seems impossible. A way to overcome the
difficulty is to assume that u : X → X is the (continuous) restriction of a linear map Σ → Σ.
This is reasonable and, in most occasions, feasible; therefore we usually assume that Σ is a G-
superspace of X, as in the definition of G-centralizer.

Thus, when Ω : Y y X is a G-centralizer with ambient space Σ, so that X⊕Ω Y is a G-space

too under the diagonal action g 7→ λ(g) =

(
u(g) 0
0 v(g)

)
on X ⊕Ω Y which is compatible with

the exact sequence 0 // X
ı // X ⊕Ω Y

π // Y // 0 generated by Ω (see Proposition 3.6),

then Ω0(y) = (Ωy, y) with ambient space Σ′ := X ⊕Ω Y is another G-centralizer equivalent to
Ω. Additionally, the G-centralizer Ω0 is continuous at 0 as a map from (∆, ∥.∥Y ) into (Σ′, ∥.∥Ω),
since ∥(Ωy, y)∥Ω = ∥y∥.

The issue of the dense subspace. In classical interpolation theory one considers choices of
∆ so that Ω : ∆ → X. Adapting their terminology, we can define the dominion of quasilinear
map Ω : Y y X as the space DomΩ = {y ∈ Y : Ωy ∈ X} endowed with the quasinorm
∥y∥D = ∥Ωy∥X +∥y∥Y . In this form DomΩ is isometric to the closed subspace {(0, y) ∈ X⊕Ω Y }
ofX⊕ΩY . More often than not, DomΩ is dense in Y , as it is the case in the complex interpolation
context (that is one of the reasons why we impose the assumption on the interpolation couple
(X0, X1) of being regular, which means that X0∩X1 is dense in both X0 and X1) and DomΩ = Y
if and only if Ω : Y → X is bounded. On the other hand, it may well happen that DomΩ = {0}:
see [6, Proposition 3.2 plus Remark 5.2], Proposition 8.3 plus Proposition 3.4, or the example
of R after Proposition 3.10, for which DomR = {0} since R(x) is a bounded, non converging
sequence for all non zero x. A simpler example valid for general G-centralizers acting between
G-spaces will be exhibited now: Let Ω : Y y X be a G-centralizer with ambient space Σ. The
equivalent G-centralizer Ω0 from Lemma 3.3, with ambient space X ⊕Ω Y has DomΩ0 = {y ∈
Y : (Ωy, y) ∈ X ⊕ 0} = {0}. The clear conclusion of these two paragraphs and Lemma 3.3 is:

Proposition 3.4. Every G-centralizer Ω : ∆ → Σ has a linear perturbation into a possibly
larger ambient normed space Σ′ that is a G-centralizer, is (∆, ∥.∥Y ) to (Σ′, ∥.∥Σ′)-continuous at
0, and has null Domain.
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There are natural examples of G-centralizers continuous at 0 and with dense domain such as
L0-valued L∞-centralizers acting on Köthe spaces (see [3, Theorem 1] and the proof of Propo-
sition 8.2), as well as differentials of complex interpolation processes (see Section 4). We will
study in Section 8 the connections between nontrivial domains and (almost) transitive actions.
To conclude with these remarks, let us observe that when an action v of G on Y is involved, we
need a sound meaning for Ωv(g), which is achieved by guaranteeing that v leaves ∆ invariant.
Still a problem appears when one has two quasilinear maps Ω : ∆ y X and Φ : ∆′ y X defined
on different dense subspaces ∆,∆′ ⊂ Y . In this case we cannot consider them defined on the
same dense subspace by making a simple intersection since it could well be that ∆ ∩∆′ = {0}.
In most cases the choice of a common ∆ is natural, but, in general, one has to be careful with
this point.

Our first objective is the three-representation problem that Kuchment considers in [38]: given
an exact sequence 0 → X → Z → Y → 0 and some group G acting on Y, Z andX in a compatible
way, to what extent the action on Z can be recovered from the actions on X and Y . Or else:
given u, v, how to obtain a compatible action λ on X ⊕Ω Y ?

Definition 3.5. Let 0 → X → Z → Y → 0 be an exact sequence. Assume that X,Y are
G-spaces. A bounded action λ of G on Z will be called compatible with the sequence if for each
g ∈ G there is a commutative diagram

0 −−−→ X −−−→ Z −−−→ Y −−−→ 0

u(g)

y λ(g)

y yv(g)

0 −−−→ X −−−→ Z −−−→ Y −−−→ 0

Compatibility is a homological notion: G is compatible with a sequence if and only if its it
compatible with any equivalent sequence. The existence of compatible actions and G-centralizers
are connected:

Proposition 3.6. Let 0 → X → Z → Y → 0 be an exact sequence in which X,Y are G-

spaces. Ω : ∆ y X is a G-centralizer if and only if the diagonal action g 7→ λ(g) =

(
u(g) 0
0 v(g)

)
on X ⊕Ω Y is compatible and bounded.

Proof. Observe that by λ we mean the action defined first diagonally on X ⊕Ω ∆ and then
extended by density to X ⊕Ω Y = X ⊕Ω ∆. Now, if Ω is a G-centralizer and ∥(x, y)∥Ω ≤ 1, then

∥λ(g)∥ ≤ sup ∥(u(g)x, v(g)y)∥Ω
= sup ∥u(g)x− Ωv(g)y∥X + ∥v(g)y∥Y
= sup ∥u(g)x− u(g)Ωy + u(g)Ωy − Ωv(g)y∥X + ∥v(g)y∥Y
≤ sup ∥u(g)∥∥x− Ωy∥X + ∥u(g)Ωy − Ωv(g)y∥X + ∥v(g)∥∥y∥Y
≤ max{γ(u), γ(v)}+ sup ∥u(g)Ωy − Ωv(g)y∥X
≤ max{γ(u), γ(v)}+G(Ω).
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On the other hand, the best possible value of G(Ω) is at most γ(λ) since ∥u(g)Ωy−Ωv(g)y∥X =
∥λ(g)(Ωy, y)∥Ω ≤ ∥λ(g)∥∥y∥Y . �

Recall that an exact sequence 0 → X → X ⊕Ω Y → Y → 0 is an exact sequence in which
X,Y are G-spaces, and Ω : ∆ y X means for us that the map v(g) leaves ∆ invariant for all
g ∈ G (and X ⊕Ω Y is defined as the completion of X ⊕Ω ∆).

Lemma 3.7. Let 0 → X → X ⊕Ω Y → Y → 0 be an exact sequence in which X,Y are
G-spaces, Ω : ∆ y X with ambient space Σ, and let λ be compatible and bounded on X ⊕Ω Y . If

λ(g) =

(
u(g) 0
0 v(g)

)
then TFAE:

(a) The quotient map admits a G-linear section L : ∆ −→ X ⊕Ω Y .
(b) There is a G-linear map ℓ : ∆ −→ Σ such that Ω− ℓ : ∆ −→ X.

If, moreover, ∆ ⊂ Dom Ω then

(c) y → (0, y) is a G-linear section ∆ −→ X ⊕Ω Y for the quotient map.

Proof. It is an easy exercise that (a) implies that L takes values in X ⊕Ω ∆, and therefore
Ly = (ℓy, y) for some linear ℓ. It is then immediate that ℓ satisfies (b). The converse is similar
and easier, and (c) is immediate. �

We have already shown that “Ω is a G-centralizer” corresponds to “λ(g) =

(
u(g) 0
0 v(g)

)
is a compatible bounded action on X ⊕Ω Y ”. To describe the general situation and allowing
triangular actions, we first need to develop a few ideas. The general version of Proposition 3.6
will be presented in Proposition 3.13 and that of Lemma 3.7 in Lemma 3.14. The fact that G-
centralizers are quasilinear maps having uniformly bounded commutators [u(g),Ω, v(g)] suggests
to consider with special attention the case [u,Ω, v] = 0:

Definition 3.8. A quasilinear map Ω : ∆ y X will be called G-equivariant if [u(g),Ω, v(g)] =
0 for every g ∈ G.

In particular, G-equivariant linear maps (operators) are the G-linear maps (operators) of Defi-
nition 3.2. Since G-equivariant maps, as well as their bounded perturbations, are G-centralizers,
it is natural to ask about the converse: Is a G-centralizer always a bounded perturbation of a
G-equivariant map? And its “linear” version: is a linear G-centralizer always a bounded pertur-
bation of a G-linear map? We can provide an optimal answer: yes when G is an amenable group
and X is adequately complemented in its bidual. Kalton defines in [33, p. 79] an ultrasummand
as a quasi-Banach space X that is complemented in all its ultrapowers XU. It turns out that
for Banach spaces this is equivalent to being complemented in its bidual (of course that not true
for quasi-Banach spaces since ℓp, 0 < p < 1 are ultrasummands [7, 1.4.14]). So the reader will
forgive us if we transplant this notion to G-Banach spaces in the form:

Definition 3.9. A G-Banach space X is a G-ultrasummand if there exists a G-projection
P : X∗∗ → X.
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where a G-projection is a G-operator which is a projection. Let us say that a G-subspace of a
G-space is G-complemented when it is complemented by a G-projection. Observe that even if
when X is a G-space then also X∗∗ and XU are G-spaces, so that X is a G-subspace of both X∗∗

and XU, we are not claiming that a G-ultrasummand is a G-complemented subspace of every
ultrapower since one would need to obtain a “G-Principle of Local Reflexivity” first. One has:

Proposition 3.10. Let G be an amenable group and let X,Y be G-spaces with X a G-
ultrasummand. (a) Any (linear) G-centralizer Ω : Y y X is a bounded perturbation of a G-
equivariant (linear) map. (b) A trivial G-centralizer Ω : Y y X is boundedly equivalent to a
G-linear map.

Proof. Proof of (a): since G is amenable, there is a left invariant measure µ on it, and since
X is a G-ultrasummand there is a G-projection P : X∗∗ → X. We define the bounded map
B : Y → X

By = P

(∫
G

(u(g−1)Ωv(g)y − Ωy)dµ

)
where we integrate in the weak* sense. If h ∈ G then

B(v(h)y) = P

∫
G

(
u(g−1)Ωv(g)(v(h)y)− Ω(v(h)y)

)
dµ

= P

∫
G

(u(h)u(h−1g−1)Ωv(gh)y − Ω(v(h)y))dµ

= P

∫
G

(u(h)u(h−1g−1)Ωv(gh)y − u(h)Ωy + u(h)Ωy − Ω(v(h)y))dµ

= P

(
u(h)

∫
G

(u(h−1g−1)Ωv(gh)y − Ωy)dµ+

∫
G

(u(h)Ωy − Ω(v(h)y))dµ

)
= u(h)By + u(h)Ωy − Ωv(h)y

and therefore [u(h), B, v(h)] = −[u(h),Ω, v(h)], from where [u(g), B +Ω, v(g)] = 0 for all g ∈ G.
Namely, B + Ω is G-equivariant. The second part is clear: when Ω is linear, B is also linear.
Proof of (b): if Ω = B + L with B bounded and L linear, L must also be a G-centralizer. Then
apply (a). �

Part (b) complements [10, Lemma 1]: a trivial L∞-centralizer is a bounded perturbation of
a linear L∞-centralizer. As announced, the previous solution is optimal since the amenability
condition is necessary. Let us put the counterexample in the proper context. As was proved by
Day [25, Corollary 6 and Corollary 11] and Dixmier [26, Théorème 6], a bounded representa-
tion of a countable amenable group on the Hilbert space is unitarizable, meaning that it is a
unitary representation in some equivalent Hilbert norm (the word “countable” does not appear
in those papers: the author obtain the result imposing some conditions to the group, condi-
tions that countable groups satisfy). Ehrenpreis and Mautner [27] provide a non-unitarizable
bounded representation of a countable group on the Hilbert space. The nowadays known as the
Dixmier problem asks whether unitarizability of all bounded representations of a countable group
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characterizes amenability. Regarding the non-amenable free group F∞ with countably infinitely
many generators, Pytlic and Szwarc [43], see also [40, 42], showed the existence of a bounded,
non-unitarizable representation of F∞ on the sum H⊕H of two copies of the Hilbert space. The
authors of [28] used this example to investigate transitivity properties of bounded actions on the
Hilbert space, and we now follow their lines with another perspective in mind. As in [28] we
extend the action of F∞ to Aut(T ), where T denotes the Cayley graph of F∞ with respect to its
free generating set. Indeed, Aut(T ) acts in a natural way on ℓ2(T ) as well as on ℓ∞(T ) or ℓ1(T ),
by the left regular unitary representation u: u(g)(xt)t∈T = (x(g−1t))t∈T . Let R : ℓ∞(T ) → ℓ∞(T )
be

R(et) =
∑

s∈F∞, t<s, |s|=|t|+1

es.

Note that this sum is infinite, so has to be taken in the weak-star instead as in the norm sense;
alternatively, one can see R(et) as the element of ℓ∞(T ) with value 1 in all coordinates of index
s with t < s and |s| = |t| + 1, and values 0 elsewhere. Since [u(g), R] : ℓ2(T ) → ℓ2(T ) has norm
at most 2 for all g ∈ Aut(T ) ([28] p 439), R is an Aut(T )-centralizer ℓ2(T ) y ℓ2(T ), which is
moreover trivial since it is linear (note that we have chosen ∆ = ℓ2(T ) and Σ = ℓ∞(T ) here). We
may obtain another Aut(T )-centralizer through the predual situation of the “left shift” operator
L : ℓ1(T ) → ℓ1(T ) defined as L(et) = et̂ where t̂ is the predecessor of t along T , and L(e∅) = 0
(here we have chosen ∆ = ℓ1(T ) and Σ = ℓ2(T )). The operator R is actually the dual L∗ of the
operator L and is studied in [28] under that name, together with the operator L.

Note that both R and L could also be defined as from ℓ1(T ) to ℓ∞(T ), in which setting L+R
makes sense. Since L+R commutes with every g ∈ Aut(T ), we have [u(g), L] = −[u(g), R] (see
[28] p. 439) and so L is also an Aut(T )-centralizer L : ℓ2(T ) y ℓ2(T ). One has:

Proposition 3.11. The linear Aut(T )-centralizer R is not boundedly equivalent to a linear
Aut(T )-equivariant map defined on the whole ℓ2(T ). The linear Aut(T)-centralizer L is not
boundedly equivalent to a linear Aut(T )-equivariant map defined on ∆ = ℓ1(T ).

Proof. Since R(e∅) belongs to ℓ∞(T )\ℓ2(T ), any linear Aut(T )-equivariant map r boundedly
equivalent to R would satisfy that r(e∅) belongs to ℓ∞(T ) \ ℓ2(T ) as well. On the other hand,
since R takes values in ℓ∞(T ), then r would also take values in ℓ∞(T ). So r would be a linear
(unbounded) map Aut(T )-equivariant map from ℓ2(T ) to ℓ∞(T ); by [28] Theorem 4, it would
then be homothetic, and in particular it would take value in ℓ2(T ). This contradicts the fact
that r(e∅) /∈ ℓ2(T ), and proves that r cannot exists.

For the second part, assume a linear Aut(T )-equivariant map ℓ is boundedly equivalent to
L. Then ℓ would have to be continuous from ℓ1(T ) to ℓ2(T ). The dual map ℓ∗ would then be
Aut(T )-equivariant and continuous from ℓ2(T ) to ℓ∞(T ), and therefore would be homothetic by
[28] Theorem 4, so ℓ itself would be homothetic. In particular ℓ, and therefore L, would be
∥.∥ℓ2(T ) − ∥.∥ℓ2(T ) bounded. This is a contradiction, since for x =

∑
t∈N et, where N is a family

of n elements of F∞ of length 1, we have ∥L(x)∥2 = ∥ne∅∥2 = n while ∥x∥2 =
√
n. �
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We now study the general case, namely, sequences 0 → X → X⊕ΩY → Y → 0 in which there
is a compatible action λ on X ⊕Ω Y but it is not necessarily “diagonal”. The first observation is
that a compatible action λ has necessarily the form(

u(g) d(g)
0 v(g)

)
with d(g) a linear (not necessarily bounded, even when λ(g) is: the most natural example to be

studied later, that of the action

(
u KPu
0 u

)
on the Kalton-Peck space Z2 is an example since

x → xKPu is unbounded) map from ∆ to Σ. Observe that a compatible bounded nonlinear
action on X ⊕Ω Y always exists, and it is given by(

u(g) −[u(g),Ω, v(g)]
0 v(g)

)
.

This sets the key idea of how d could be found: the map g → [u(g),Ω, v(g)], that we will denote
[u,Ω, v], is a (nonlinear) derivation of g 7→ (u(g), v(g)), in the sense that it is a map d : G → Σ∆

such that d(gh) = u(g)d(h) + d(g)v(h). Of course that if L is linear, then [u(g), L, v(g)] is linear
for each g ∈ G. It could also occur that Ω and the actions u, v are so well coordinated as to
make [u(g),Ω, v(g)] linear for each g ∈ G: such is the case when Ω is the Kalton-Peck map,
see Section 6. Derivations are of course fundamental for the study of unitarizability of bounded
representations on the Hilbert space, such as the above representation of Aut(T ); we address the
reader to Pisier’s book [42] for additional information. They also have been studied on direct
sums of Banach spaces [28] but, as far as we know, not on twisted sums. To perform such an
study we must begin relaxing the requirement that [u(g),Ω, v(g)] is linear to “being at uniform
distance to a linear map”, in the sense of the next definition:

Definition 3.12. Let X,Y be G-spaces with respective actions u and v. We say that g 7→ d(g)
is a linear derivation of (u, v) if for all g ∈ G, d(g) : ∆ −→ Σ is a (possibly unbounded) linear
map, and d(gh) = u(g)d(h) + d(g)v(h) for all g, h ∈ G. If, moreover, supg∈G ∥[u(g),Ω, v(g)] +
d(g)∥ < ∞ then we will say that d is an Ω-derivation (of (u, v)) on G –or that it is a derivation
(of (u, v)) associated to Ω.

We are ready to obtain the general version of Proposition 3.6:

Proposition 3.13. Let Ω : ∆ y X be a quasi-linear map between two G-spaces. TFAE:

(a) λ(g) =

(
u(g) d(g)
0 v(g)

)
is a compatible bounded action of G on X ⊕Ω Y .

(b) g → d(g) is a linear Ω-derivation of (u, v) on G.

Proof. The equality λ(gh) = λ(g)λ(h) means(
u(gh) d(gh)
0 v(gh)

)
=

(
u(g) d(g)
0 v(g)

)(
u(h) d(h)
0 v(h)

)
=

(
u(g)u(h) u(g)d(h) + d(g)v(h)

0 v(g)v(h)

)
.

The boundedness condition is a straightforward computation. �
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And, as promised, the general version of Lemma 3.7.

Lemma 3.14. Let Ω,Ω′ : ∆ y X be quasilinear maps between G-spaces Y and X, with
ambient space Σ, and let L : ∆ −→ Σ be a linear map. Then

(a) d(g) = −[u(g), L, v(g)] is an L-derivation.
(b) Ω is a G-centralizer if and only if d = 0 is an Ω-derivation. In particular, homogeneous

bounded maps admit associated derivation d = 0.
(c) If d is an Ω-derivation and d ′ is an Ω′-derivation then d+ d ′ is an (Ω+Ω′)-derivation.

In particular, Ω + L is a G-centralizer if and only if [u, L, v] is an Ω-derivation.

If, moreover, ∆ ⊂ Dom(Ω + L), and 0 → X → X ⊕Ω Y → Y → 0 is an exact sequence of
G-spaces, then:

(d) d(g) = [u(g), L, v(g)] for all g ∈ G if and only if L : ∆ −→ X ⊕Ω Y given by L(y) =
(−Ly, y) is a G-linear section for the quotient map X ⊕Ω Y → Y .

To avoid confusion let us make clear that all derivations in this lemma are meant to be
derivations of the given pair of representations (u, v).

Proof. (a) and (b) are clear. (c) is a simple consequence of the fact that d + d ′ is linear
and [u,Ω+Ω′, v] = [u,Ω, v] + [u,Ω′, v]. (d) is clearly the general version of Lemma 3.7 (c) with a
couple of delicate points to check: that (−Ly, y) ∈ X⊕Ω Y , which is true when y ∈ Dom(Ω+L),
and the G-linear condition on L. To this end, observe simply that(

u(g) d(g)
0 v(g)

)(
−Ly
y

)
=

(
−Lv(g)y
v(g)y

)
is equivalent to d(g) = [u(g), L, v(g)]. �

The example around Proposition 3.11 shows two essentially different bounded actions

of Aut(T ) on ℓ2(T ) ⊕ ℓ2(T ): one is the unitary action

(
u(g) 0
0 u(g)

)
and the other is(

u(g) [u(g), L]
0 u(g)

)
. By the above discussion, this triangular action on ℓ2(T ) ⊕ ℓ2(T ) and the

diagonal one on ℓ2(T )⊕L ℓ2(T ) are “the same”. Shifting the classical perspective, we can there-
fore reformulate this construction as the remarkable fact that Aut(T ) with its diagonal action,
is “centralized” by two essentially different quasilinear maps: 0 and L.

Thus, all pieces are on the board, except one: how to obtain a linear derivation of a quasilinear
G-compatible map (assuming it exists)? The context of interpolation will provide some answers,
and this is the content of the next section.

4. Actions on interpolation scales

We now consider exact sequences of G-spaces generated by complex interpolation of a scale on
whichG acts, in a way to be described. We refer to [2],[13] (see also [36] or [16] for specific details)
for sounder information about the complex interpolation method for pairs and their associated
differentials. An interpolation pair (X0, X1) is a pair of Banach spaces, both of them linearly and
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continuously contained in a larger Hausdorff topological vector space Σ, which can be assumed
to be Σ = X0+X1 endowed with the norm ∥x∥ = inf{∥x0∥0+∥x1∥1 : x = x0+x1 xj ∈ Xj for j =
0, 1}. The pair will be called regular if, additionally, the intersection spaceX0∩X1 is dense in both
X0 and X1. We denote by S the complex strip defined by 0 < Re(z) < 1. According to [8, 36],
a Kalton space F is a certain Banach space of holomorphic functions F : S → X0 +X1 for which
the evaluation maps δz : F → Σ are continuous. This forces the evaluation of the derivatives
δ′z : F → Σ to be continuous too by the Uniform Boundedness Principle (see [8, Lemma 2.4]).
The interpolation spaces are defined to be Xz = {x ∈ Σ : x = f(z) for some f ∈ F} endowed
with natural quotient norm. There are various possible choices for F. Except for what occurs
in Section 9 we will consider as F the classical Calderón space (see [2]) C(X0, X1) of continuous
bounded functions f : S −→ Σ that are holomorphic on S and satisfy the boundary condition
that for k = 0, 1, f(k + it) ∈ Xk for each t ∈ R and supt ∥f(k + it)∥Xk

< ∞. The Calderón
space C(X0, X1) is complete under the norm ∥f∥ = sup{∥f(k + it)∥Xk

: k = 0, 1; t ∈ R}. There
are other choices imposing growth conditions on the functions (all of them generating the same
interpolation spaces), but we will stick to the previous one. In Section 9 we will however use
Daher’s space F2 from [24] as in [16, Section 5]. The choice of F2 generates the same interpolation
spaces, something implicit in [24] and explicit in [30, Propositions 3.2.1 and 3.2.2]; see also [21].
If Bz : Xz → C is a homogeneous bounded selection for the evaluation map, the differential map
of the process is Ωz = δ′zBz : Xz → Σ. This is a quasilinear map Ωz : Xz y Xz that therefore
defines an exact sequence

0 // Xz
// Xz ⊕Ωz Xz

// Xz
// 0

Since, more often than not, the interpolation spaces Xz are superreflexive, Xz ⊕Ωz Xz can be
renormed to be a Banach space. The choice of the selection Bz is not relevant since other choices
lead to boundedly equivalent differentials Ωz.

An operator τ : Σ → Σ is said to act on the scale defined by the interpolation pair (X0, X1)
if it is a bounded operator Xi → Xi, i = 0, 1 [16]. Fixing the Calderón space C(X0, X1), the
generalized Riesz-Thorin theorem [2, Theorem 4.1.2] yields that τ is automatically bounded from
Xθ → Xθ for all 0 < θ < 1, with an estimate ∥τ∥L(Xθ) ≤ ∥τ∥1−θ

L(X0)
∥τ∥θL(X1)

.

Definition 4.1. Let (X0, X1) be a complex interpolation pair. A semigroup G acting on Σ
is said to act on the scale if G acts boundedly on Xi for i = 0, 1.

The actions in this setting will be simply noted g (instead of u(g), v(g), ...). The interpolation
estimate above implies that G also acts on Xθ for all 0 < θ < 1 and that if G acts as an isometry
group on the scale then it also acts as an isometry group on Xθ, 0 < θ < 1, as well as on Σ and
X0 ∩ X1. The same holds for semigroups of contractions. Moreover, C(X0, X1) is a G-Banach
space defined by the action gC(f)(z) = g(f(z)) with estimate ∥gC∥ ≤ max{∥g : X0 → X0∥, ∥g :
X1 → X1∥}. The same is true when one interpolates using Daher’s space F2.
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Where is our promised derivation? Here: 0. And thus the action of G on the spaces Xz

generates the action λ(g) =

(
g 0
0 g

)
on Xz ⊕Ωz Xz yielding commutative diagrams

0 // Xz
//

g

��

Xz ⊕Ωz Xz

λ(g)

��

// Xz
//

g

��

0

0 // Xz
// Xz ⊕Ωz Xz

// Xz
// 0

We need the following classical and crucial fact that we prove for the sake of completeness:

Proposition 4.2. δ′θ : ker δθ −→ Xθ is bounded and onto for 0 < θ < 1.

Proof. Let φ : S −→ D be a conformal equivalence vanishing at θ. Every f ∈ C(X0, X1)
vanishing at θ has a factorization f = φ h, with h ∈ C(X0, X1) and ∥h∥ = ∥f∥. If f ∈ ker δθ and
we write f = φ h then f ′ = φ′h + φh′ and therefore δ′θ(f) = φ′(θ)δθ(h), hence ∥δ′θ : ker δθ −→
Xθ∥ ≤ |φ′(θ)|. That δ′θ maps ker δθ onto Xθ is also clear: if x ∈ Xθ, then x = h(θ) for some
f ∈ C(X0, X1) and x is then the derivative of φ′(θ)−1φ f at θ. �

Proposition 4.3. If G is a semigroup acting on the scale (X0, X1) then Ωθ is a G-centralizer
on Xθ.

Proof. For x ∈ Xθ one has gC (Bθx)−Bθ(gx) ∈ ker δθ. Therefore

∥(gΩθ − Ωθg)x∥θ = ∥gδ′θBθx− δ′θBθ(gx)∥θ
= ∥δ′θ

(
gC(Bθx)−Bθ(gx)

)
∥θ

≤ ∥δ′θ : ker δθ → Xθ∥∥gC(Bθx)−Bθ(gx)∥C
≤ ∥δ′θ : ker δθ → Xθ∥

(
∥gC(Bθx)∥C + ∥Bθ(gx)∥C

)
≤ ∥δ′θ : ker δθ → Xθ∥2∥Bθ∥∥g∥ ∥x∥θ. �

Proposition 4.3 admits an isometric version that we formulate now. A regular interpolation
pair with Kalton space F is said to be optimal if for every 0 < θ < 1, every point in Xθ admits
a unique 1-extremal function in F; i.e., there is just one function f such that ∥f∥ = ∥x∥ and
f(θ) = x, see [16, Def. 5.7]. Daher proved in [24, Prop. 3] that a regular pair of reflexive spaces
with Kalton space F2 is optimal when X0 is strictly convex.

Corollary 4.4. Let (X0, X1) be an optimal interpolation pair with Kalton space either
C(X0, X1) or F2. Then Ωθ is equivariant with respect to the semigroup of contractions on the
scale which act as isometric embeddings on Xθ. In particular, Ωθ is equivariant with respect to
the group of isometries acting on the scale.

Proof. The map Ωθ is uniquely defined now since (Bθx)(θ) = x and ∥Bθx∥ = ∥x∥θ. If g
is a contraction on the scale, then gC also acts as a contraction on the chosen Kalton space.
Since ∥gCBθx∥ ≤ ∥Bθx∥ = ∥x∥θ = ∥gx∥θ if g is also an isometric embedding on Xθ, and since
gC(Bθx)(θ) = gx, we deduce that gC(Bθ)x = Bθ(gx). Derivating in θ implies that Ωθg = gΩθ. �
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It is a bit disappointing that a zero derivative is all we got. There is a reason for that: the
action of G on the scale (Xz) is constant: uz(g) = g, ∀z. To amend this, consider for each
z a bounded action uz : G → L(Σ) such that uz(g)|Xz : Xz → Xz. Recall that a function
f : S → L(X∗,C) is analytic if for every x ∈ X the function z → f(z)(y) is analytic; and the
same for f : S → X understanding X as a part of L(X∗,C)).

Definition 4.5. The family of actions u = (uz) is analytic if for each g ∈ G the function
z → uz(g) ∈ L(Σ,Σ) is analytic.

Assume one has a semigroup G and an action u on Xθ. The compatible action of G on

Xθ ⊕Ωθ
Xθ will no longer necessarily be

(
u(g) 0
0 u(g)

)
. But assume that u = uθ for some

analytic family (uz) of actions. Since

(
u(g) −[u(g),Ωθ]
0 u(g)

)
is a compatible, but nonlinear,

bounded action, what we need is to find linear bounded perturbations of [u(g),Ωθ]. We use here
some ideas of Carro [14]:

Lemma 4.6. Let u = (uz)z∈S be an analytic family of actions of G on the spaces of the scale
(Xz)z∈S generated by a regular pair (X0, X1) and the Calderón space C(X0, X1). Assume that
γ(u) := supg∈G supt∈R{∥uit(g)∥X0 , ∥u1+it(g)∥X1} < ∞. Then the map

[uθ(g),Ωθ] +
duz(g)

dz
|θ : Xθ −→ Xθ

is bounded.

Proof. The key observation is that for x ∈ Xθ the function uz(g) (Bθx) (z)−Bθ(uθ(g)x)(z) ∈
ker δθ which implies that its derivative at θ must be in Xθ. It only remains to compute

(uz(g)Bθx(z)−Bθ(uθ(g)x)(z))
′ (θ) = uθ(g)Ωθ(x) +

duz(g)(x)

dz
|θ − Ωθ(uθ(g)x)

= [uθ(g),Ωθ](x) +
duz(g)(x)

dz
|θ. �

This means that λ(g) =

(
uθ(g)

duz(g)
dz

|θ
0 uθ(g)

)
: Xθ⊕Ωθ

Xθ −→ Xθ⊕Ωθ
Xθ is a bounded operator.

To obtain a bounded action we need that supg ∥λ(g)∥ < +∞. Since∥∥∥∥( uθ(g) −[uθ(g),Ωθ]
0 uθ(g)

)
−
(

uθ(g)
duz(g)
dz

|θ
0 uθ(g)

)∥∥∥∥ =

∥∥∥∥( 0 [uθ(g),Ωθ] +
duz(g)
dz

|θ
0 0

)∥∥∥∥
= ∥[uθ(g),Ωθ] +

duz(g)

dz
|θ∥

and

(
uθ(g) −[uθ(g),Ωθ]
0 uθ(g)

)
is uniformly bounded, what we need is

sup
g∈G

∥[uθ(g),Ωθ] +
du(g)

dz
|θ∥ < ∞.
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We have:

∥uz(g) (Bθx)(z)) ∥C = sup
t∈R

{∥uit(g)Bθx(it)∥X0 , ∥u1+it(g)Bθx(1 + it)∥X1}

≤ γ(u)∥Bθ∥∥x∥,
and therefore ∥uθ(g)∥ ≤ γ(u) and thus one has∥∥∥∥([uθ(g),Ωθ] +

duz(g)

dz

)
(x)|θ

∥∥∥∥
θ

= ∥ (uz(g)Bθx(z)−Bθ(uθ(g)x)(z))
′ (θ)∥θ

≤ ∥δ′θ : ker δθ → Xθ∥∥uz(g)Bθx−Bθ(uθ(g)x)∥C
≤ ∥δ′θ : ker δθ → Xθ∥ (∥uz(g)Bθx∥C + ∥Bθ∥∥uθ(g)∥∥x∥θ)
≤ 2∥δ′θ : ker δθ → Xθ∥γ(u)∥Bθ∥∥x∥θ.

All this yields,

Theorem 4.7. Let u be an analytic family of actions of G on the scale (Xz)z∈S generated by
a regular pair (X0, X1) and the Calderón space C(X0, X1) and such that γ(u) < ∞. Then(

uθ(g)
duz(g)
dz

|θ
0 uθ(g)

)
is a compatible action of G on Xθ ⊕Ωθ

Xθ or, equivalently, g 7→ duz(g)
dz

|θ is an Ωθ-derivation of
(uθ, uθ).

It is certainly satisfying that the term “derivation” agrees here both with the classical meaning
and with Definition 3.12! Using another Kalton space instead of C(X0, X1) may require the
corresponding variation of the parameter γ.

The forthcoming Sections 6 and 7 provide a series of natural applications of these results. A
simple one follows:

Proposition 4.8. Let (X0, X1) be an optimal interpolation pair with Calderón space
C(X0, X1), with X0 and X1 uniformly convex and uniformly smooth. Let 0 < θ < 1. Then
the semigroup of contractions of rank 1 on Xθ = (X0, X1)θ is compatible with Ωθ.

Proof. Let g = ϕ⊗x be a contraction of rank 1 on Xθ with ϕ ∈ X∗
θ and x ∈ Xθ. Pick Bθ(x)

an optimal element of the Calderón space C(X0, X1) and let Ωθ(x) = Bθ(x)
′(θ) the associated

differential. SinceX∗
θ = (X∗

0 , X
∗
1 )θ pick Vθ(ϕ) an optimal element of the Calderón space C(X∗

0 , X
∗
1 )

and let 0θ(ϕ) = Vθ(ϕ)
′(θ) be the associated differential. We define an analytic family (gz)z of

contractions of rank 1 on the scale (Xz)z in the form

gz = Vθ(ϕ)(z)⊗Bθ(x)(z).

It is clear that gθ = g and one just needs to apply Lemma 4.6 after calculating

dgz
dz

|θ(y) = ⟨Vθ(ϕ)(θ), y⟩Bθ(x)
′(θ) + ⟨Vθ(ϕ)

′(θ), y⟩Bθ(x)(θ)

= ⟨ϕ, y⟩Ωθ(x) + ⟨0θ(ϕ), y⟩x
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Therefore, if we set d(ϕ ⊗ x) = ϕ ⊗ Ωθ(x) + 0θ(ϕ) ⊗ x then

(
g d(g)
0 g

)
defines a bounded

compatible action on Xθ ⊕Ωθ
Xθ. �

5. Actions on Köthe spaces

When working with Köthe spaces with base measure space S, the ambient Σ is usually chosen
as the space L0(S) of measurable functions on S, and ∆ as Y itself. A Köthe space is a vector
subspace K of L0(S) endowed with a norm such that if f ∈ K and |g| ≤ |f | then g ∈ K and
∥g∥ ≤ ∥f∥; and containing the characteristic functions of measurable sets. A r.i. Köthe space
over [0, 1] is a Köthe space K such that f ∈ K ⇒ fσ ∈ K for every measure preserving map
σ : [0, 1] → [0, 1]. Köthe spaces are usually considered in their L∞-module and L∞-centralizer
structures. The notion of L∞-centralizer can be subsumed in our notion of G-centralizer. Indeed,
if U will denote the group of units of L∞(µ), i.e. of unimodular functions in L0(S) then

Proposition 5.1. Let Ω : Y y X be a quasilinear map. Then Ω is an U-centralizer if and
only if it is a L∞-centralizer.

Proof. In the complex case, every element of the ball of L∞ is a mean of four unitaries.
Thus U -centralizers and L∞-centralizers coincide. Adapt now the argument for the real case. �

U -actions on Köthe spaces have a somehow “rigid” nature, whose paradigm is Kalton’s sta-
bility theorem [35, Theorems 7.6 and 7.9]: the “endpoint spaces” of an interpolation scale of
uniformly convex Köthe spaces X0, X1 are uniquely determined, up to equivalence of norms, by
the pair formed by the space Xθ and the differential Ωθ, 0 < θ < 1. We additionally have:

Theorem 5.2. Let (X0, X1) be an interpolation pair of superreflexive Köthe spaces on a
measure space S. Let G be a group containing the group of units U(S), acting boundedly on Xθ

and acting on Σ. TFAE:

(a) Ωθ is a G-centralizer.
(b) G acts on the scale.

Proof. One implication is Proposition 4.3. Assume that Ωθ is aG-centralizer. For g ∈ G and
i = 0, 1 let g−1Xi ⊂ Σ be endowed with the complete norm ∥x∥gi = ∥gx∥i. Form the new Calderón
space C(g−1X0, g

−1X1) and define an isomorphism gC : C(g−1X0, g
−1X1) → C(X0, X1) in the

form gC(h)(z) = gh(z). This yields (g−1X0, g
−1X1)θ = g−1Xθ = Xθ, with norm ∥x∥gθ = ∥gx∥Xθ

,
which is equivalent to ∥.∥θ with a uniform constant independent of g. If Bθ is a C-extremal
on Xθ then the map G : (g−1X0, g

−1X1)θ −→ C(g−1X0, g
−1X1) given by G(x) = g−1Bθ(gx)

is a (C supg∈G ∥g∥2θ)-extremal since ∥Gx∥ = ∥g−1Bθ(gx)∥ ≤ C∥g−1∥∥g∥∥x∥. We thus get the
differential

0θ(x) =
d

dz
G(x)|θ =

d

dz
g−1(Bθ(gx))|θ = g−1Ωθ(gx).

Since Ωθ is a G-centralizer, 0θ is boundedly equivalent to Ωθ, with a constant uniform on g.
Since G contains the group U of units, Ωθ and 0θ are L∞-centralizers. Kalton’s stability theorem
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will ensure, as soon as we amend in the next Lemma the required amalgamation, that the norms
∥.∥i and ∥.∥gi are equivalent, with a constant independent of g ∈ G, In conclusion, that G acts
on the scale. �

We will need to simultaneously consider differentials in various scales, so we will denote ΩW

the differential generated by W = (W0,W1).

Lemma 5.3. There exists a function K(·) such that whenever (X0, X1) and (Y0, Y1) are inter-
polation pairs of superreflexive Köthe spaces on the same measure space, with respective associated
differentials ΩX

θ and ΩY
θ at θ, one has:

• If (Y0, Y1)θ = (X0, X1)θ, with C-equivalence of norms;
• and ΩX

θ and ΩY
θ are C-boundedly equivalent,

then the norms ∥ · ∥Xi
and ∥ · ∥Yi

are K(C)-equivalent for i = 0, 1.

Proof. Otherwise, pick C and couples (Xn
0 , Y

n
0 ), (Y

n
0 , Y

n
1 ) for which the conclusion of the

theorem does not hold for C and K(n) = n. The pairs ℓ2(N, Xn
i ) and ℓ2(N, Y n

i ) generate C-
equivalent interpolation spaces with C-boundedly equivalent differentials while their norms are
are not equivalent, in contradiction with Kalton’s theorem [35] (in the version presented in [16,
Thm. 3.4]). �

6. Actions on Kalton-Peck spaces

Differentials obtained from complex interpolation of pairs (X0, X1) of two Köthe spaces on
the same base measure space are L∞-centralizers. The differential generated by the interpolation
pair (L∞(µ), L1(µ)) deserves special attention. As it is well-known (L∞(µ), L1(µ))1/p = Lp(µ);
and if one picks positive normalized f then B(f)(z) = fpz is an extremal and thus for θ = 1/p
one gets Ωθ(f) = B(f)′(θ) = pf log(f). In what follows, the map KP : Lp y Lp defined by

KP(f) = pf log f
∥f∥ will be called the Kalton-Peck map on Lp (instead of the former KP(f) =

f log f
∥f∥ since that p is important for duality issues). Of course that KP is an L∞-centralizer .

The twisted sum space Zp(µ) = Lp(µ)⊕KPLp(µ) will be called the Kalton-Peck space. Especially
interesting is the case L∞(µ) = ℓ∞ since Banach spaces with unconditional basis are ℓ∞-modules.

Fix 1 < p < ∞ and let us think now about compatible ℓ∞-actions on the Kalton-Peck space
Zp. Observe that if w = (wn) is an infinite sequence of successive normalized blocks in ℓp then
τw : ℓp → ℓp given by τw(x) =

∑
xnwn = x · w is is an operator. If the blocks of w are not

normalized then τw : ℓp → RN is just a linear map. The Kalton-Peck map has the peculiarity
that the commutator [τw,KP] is linear:

p−1[τw,KP](x) = (x log x) ·w−(x log(x ·w)) ·w = (x log x) ·w−(x(logw+log x)) ·w = −x ·w logw

Therefore, if we consider the semigroup BCp of the block contractions above on ℓp then we get:

Lemma 6.1. There is a compatible bounded action of BCp on Zp given by(
τw τKPw
0 τw

)
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These operators were introduced by Kalton [32] in the case p = 2 to obtain isometric com-
plemented copies of Z2 inside Z2. In the next section we will generalize these results.

7. Actions on Rochberg spaces

We refer to [9, 8] for possible unexplained definitions or facts. Given an interpolation pair
(X0, X1), with Calderón space C(X0, X1) and z ∈ S, the nth Rochberg space Rn

z is defined to be
the space

Rn
z =

{
(
f (n−1)(z)

(n− 1)!
, . . . , f ′(z), f(z)) : f ∈ C(X0, X1)

}
endowed with its natural quotient norm. Fix from now on the value z = θ. It is clear that
R1

θ = Xθ = (X0, X1)θ and R2
θ is isomorphic to Xθ ⊕Ωθ

Xθ. It was shown in [9] that Rochberg
spaces are connected forming natural exact sequences

(2) 0 −−−→ Rm
θ −−−→ Rm+n

θ −−−→ Rn
θ −−−→ 0

which are generated by the quasilinear maps Ωn,m
θ : Rn

θ y Rm
θ with ambient space Σm de-

fined as follows: Let ∆k
θ : C(X0, X1) −→ Σ be the operator ∆k

θ(f) = 1
k!

dk

dzk
f |θ for k =

0, 1, 2, . . . so that δkθ = k!∆
(k)
θ (the evaluation of the kth-derivative at θ). Let ⟨∆n−1

θ , . . . ,∆0
θ⟩ :

C(X0, X1) −→ Σn be the operator ⟨∆n−1
θ , . . . ,∆0

θ⟩(f) =
(
∆n−1

θ (f), . . . ,∆0
θ(f)

)
. One has

Rn
θ = ⟨∆n−1

θ , . . . ,∆0
θ⟩[ C(X0, X1)]. We will also be especially interested in the maps Ω

(k)
θ = ∆k

θBθ,
where Bθ is a homogeneous bounded selector for ∆0

θ; i.e.,

Ω
(k)
θ (x) =

1

k!

dk

dzk
Bθ(x)|θ

In [8] it was shown that starting with a regular pair (X0, X1) and the family (Xz) generated
from the Calderón space C(X0, X1), the Rochberg spaces obtained form themselves interpolation
scales, namely (Rm

θ0
,Rm

θ1
)θ = Rm

η for 0 < θ0 < θ1 < 1, 0 < θ < 1 and η−1 = (1 − θ)θ−1
0 + θθ−1

1 .
However, the associated differential Φm

θ is not, necessarily, Ωm,m
θ and the new Rochberg space

Rm,2
θ = Rm

θ ⊕Φm
θ
Rm

θ is not necessarily the Rochberg space R2m
θ . Theorem 4.7 applies to the

newly obtained scale of Rochberg spaces as well: let u = (uz)z be an analytic family of actions on
the scale generated by the complex interpolation pair (X0, X1) such that γ(u) < ∞. Theorem 4.7

shows the existence of an analytic family of actions u2,z =

(
uz u′

z

0 uz

)
onR2

z given by u2,z(y, x) =

(uzω + u′
zx, uzx). Working now on the band {z ∈ C : θ0 < Rez < θ1} with the corresponding

Calderón space C(R2
θ0
,R2

θ1
) we get that the analytic family of actions u2 = (u2,z){θ0<Rez<θ1} on

the newly obtained scale (R2
z){θ0<Rez<θ1} satisfies

γ(u2) ≤ 2
2

θ1 − θ0
γ(u)(1 + ε) < ∞

as a combination of the estimate
∥∥∥[uθ(g),Ωθ] +

duz(g)
dz

|θ
∥∥∥
θ
≤ 2∥δ′θ : ker δθ → Xθ∥γ(u)∥Bθ∥ in

Lemma 4.6 with the estimate ∥δ′θ : ker δθ → Xθ∥ ≤ 1
min{θ,1−θ} in [16, Lemma 3.5] and the fact
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that it is always possible to obtain bounded homogeneous selections Bθ with ∥Bθ∥ ≤ 1 + ε. By
iteration, one thus obtains a new analytic family of actions u3 = (u3,z){θ0<Rez<θ1} on the scale of
Rochberg spaces R2,2

z corresponding to the family (R2
z){θ0<Rez<θ1}, which now satisfies

γ(u4) ≤ 2
2

θ1 − θ0
γ(u2)(1 + ε) < ∞

In general, let (Rm1,m2,...,mn
z )z denote the family formed by the mth

n -Rochberg spaces obtained
from the family of mth

n−1-Rochberg spaces obtained from the family.... of mth
1 -Rochberg spaces

obtained from the original scale (Xz).

Theorem 7.1. Let u = (uz) be an analytic family of actions on the scale (Xz){0≤Rez≤1} such
that γ(u) < ∞. Then, given 0 < θ0 < θ1 < 1 and given ε > 0 one has:

• u2,z =

(
uz u′

z

0 uz

)
defines an analytic family u2 of actions on the scale (R2

z){θ0<Rez<θ1}

such that γ(u2) ≤ 22

θ1−θ0
γ(u)(1 + ε).

• u3,z =


uz u′

z u′
z u′′

z

0 uz 0 u′
z

0 0 uz u′
z

0 0 0 uz

 defines an analytic family of actions u3 on the scale

(R2,2
z ){θ0<Rez<θ1} such that γ(u3) ≤ 23

(θ1−θ0)2
γ(u)(1 + ε)2.

• u4,z =



uz u′
z u′

z u′′
z u′

z u′′
z u′′

z u′′′
z

0 uz 0 u′
z 0 u′

z 0 u′′
z

0 0 uz u′
z 0 0 u′

z u′′
z

. . . 0 0 uz 0 0 0 u′
z

0 . . . 0 uz u′
z u′

z u′′
z

0 . . . 0 0 uz 0 u′
z

0 . . . 0 0 0 uz u′
z

0 . . . 0 0 0 0 uz


defines an analytic family of actions u4

on the scale (R2,2,2
z ){θ0<Rez<θ1} such that γ(u4) ≤ 24

(θ1−θ0)3
γ(u)(1 + ε)3.

• In general, the 2m × 2m matrix um,z =

(
um−1,z u′

m−1,z

0 um−1,z

)
defines an analytic family of

actions um on the scale (R

mtimes︷ ︸︸ ︷
2, · · · , 2
z ){θ0<Rez<θ1} such that γ(um) ≤ 2m

(
1+ε

θ1−θ0

)m−1

γ(u).

If, however, we want to derive actions on the family of higher order Rochberg spaces generated
by the family (Xz) we need a different approach.
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Theorem 7.2. Let u = (uz) be an analytic family of actions on the scale (Xz) such that
γ(u) < ∞. Given 0 < θ0 < θ1 < 1, the upper triangular matrix

(3) Az
n+1 =



uz u′
z

1
2!
u′′
z

1
3!
u
(3)
z · · · 1

n−1!
u
(n−1)
z

1
n!
u
(n)
z

0 uz u′
z

1
2!
u′′
z · · · 1

n−2!
u
(n−2)
z

1
n−1!

u
(n−1)
z

0 0 uz u′
z · · · 1

n−3!
u
(n−3)
z

1
n−2!

u
(n−2)
z

. . . . . . . . . . . . . . . . . . . . .
0 0 0 · · · uz u′

z
1
2!
u′′
z

0 0 0 · · · 0 uz u′
z

0 0 0 0 · · · 0 uz


.

defines a bounded analytic family un+1 of actions on the scale (Rn+1
z ){θ0<Rez<θ1}.

Proof. The Rochberg sequences (2) can be derived [9, Theorem 4] from diagrams

0 −−−→ ker⟨∆n−1
θ , . . . ,∆0

θ⟩ −−−→ C(X0, X1)
⟨∆n−1

θ ,...,∆0
θ⟩−−−−−−−→ Rn

θ −−−→ 0

⟨∆m+n−1
θ ,...,∆n

θ ⟩
y y ∥∥∥

0 −−−→ Rm
θ −−−→ Rm+n

θ −−−→ Rn
θ −−−→ 0

We will focus on the diagram

(4)

0 −−−→ ker∆0
θ −−−→ C(X0, X1)

∆0
θ−−−→ R1

θ −−−→ 0

⟨∆n
θ ,...,∆

1
θ⟩
y y ∥∥∥

0 −−−→ Rn
θ −−−→ Rn+1

θ −−−→ R1
θ −−−→ 0

whose lower sequence is defined by the quasilinear map Ω1,n
θ : Rθ y Rn

θ with ambient space Σn

defined as

Ω1,n
θ =

(
Ω

(n)
θ , · · · ,Ω(1)

θ

)
=
⟨
∆n

θBθ, · · · ,∆1
θBθ

⟩
.

Since the function z → uz(g) (Bθx) (z)−Bθ(uθ(g)x)(z) is in ker∆0
θ diagram (4) yields

(5)
(
∆n

θ , · · · ,∆1
θ

)
(uz(g) (Bθx) (z)−Bθ(uθ(g)x)(z)) ∈ R

(n)
θ .

Observe moreover that ∥(∆n
θ , · · · ,∆1

θ) (uz(g) (Bθx) (z)−Bθ(uθ(g)x)(z))∥ can be bounded by
∥ (∆n

θ , · · · ,∆1
θ) : ker∆

0
θ −→ Rn

θ∥2∥Bθ∥∥x∥γ(u). Let u denote the action u(g)(f)(z) = uz(g)(f(z))
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on the Calderón space. One has

∆n
θ (uz(g)Bθx−Bθuθ(g)x) =

1

n!

k=n∑
k=0

(
n
k

)
dkuz(g)

dzk
|θB(n−k)

θ x(θ)−∆n
θ (Bθuθ(g)x)

=
k=n∑
k=0

1

k!

dkuz(g)

dzk
|θ∆(n−k)

θ Bθx−∆n
θ (Bθuθ(g)x)

=
k=n∑
k=0

1

k!

dkuz(g)

dzk
|θΩ(n−k)

θ x− Ω
(n)
θ (uθ(g)x)

=
k=n−1∑
k=0

1

k!

dkuz(g)

dzk
|θΩ(n−k)

θ x− Ω
(n)
θ (uθ(g)x) +

1

n!

dnuz(g)

dzn
|θx

and therefore (5) implies that the linear map Lθ(g) =
(

1
n!

dnuz(g)
dzn

|θ, · · · , 1
1!

duz(g)
dz

|θ
)
is such that

Aθ
n(g)Ω

1,n
θ − Ω1,n

θ uθ(g) + Lθ(g) : Xθ −→ Rn
θ

is a bounded map. One therefore has a commutative diagram

0 // Rn
θ

//

Aθ
n(g)

��

Rn+1
θ

//

Aθ
n+1(g)

��

R1
θ

//

Ω1,n
θ

{{

u(g)

��

0

0 // Rn
θ

// Rn+1
θ

// R1
θ

//

Ω1,n
θ

dd
0

And this means that Aθ
n+1(g) : R

n+1
θ −→ Rn+1

θ is bounded. Actually, observe that

Aθ
n+1(g) =

(
Aθ

n(g) Lθ(g)
0 uθ(g)

)
with the meaning Aθ

n+1(g)(ω, x) = (Aθ
n(g)(ω) + Lθ(g)(x), uθ(g)(x)) so that

∥Aθ
n+1(g)(ω, x)∥ = ∥(Aθ

n(g)(ω) + Lθ(g)(x), uθ(g)(x))∥
= ∥(Aθ

n(g)
(
ω − Ω1,n

θ x+ Ω1,n
θ x
)
+ Lθ(g)(x)− Ω1,n

θ uθ(g)(x))∥+ ∥uθ(g)(x))∥
≤ ∥(Aθ

n(g)Ω
1,n
θ x+ Lθ(g)(x)− Ω1,n

θ uθ(g)(x))∥+ ∥(Aθ
n(g)

(
ω − Ω1,n

θ x
)
∥+ γ(u)∥x∥

≤ max{∥Aθ
n(g)∥, ∥(Aθ

n(g)Ω
1,n
θ − Ω1,n

θ uθ(g) + Lθ(g)∥+ γ(u)∥}∥(ω, x)∥
Hence

∥Aθ
n+1(g)∥ ≤ max{∥Aθ

n(g)∥, ∥(Aθ
n(g)Ω

1,n
θ − Ω1,n

θ uθ(g) + Lθ(g)∥+ γ(u)}
≤ ∥

(
∆n

θ , · · · ,∆1
θ

)
: ker∆0

θ −→ Rn
θ∥3(1 + ε)γ(u)∥Aθ

n(g)∥.(6)
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To say that it is an action is equivalent to saying that Lθ being a derivation, i.e. Aθ
n(g)Lθ(h)+

Lθ(g)uθ(h) = Lθ(gh); for this we compare the k-th element of Lθ(gh) with the k-th element of
Aθ

n(g)Lθ(h) + Lθ(g)uθ(h) for k = 1, . . . , n, i.e.

1

(n− k + 1)!
u
(n−k+1)
θ (gh) =

1

(n− k + 1)!
(uθ(g)uθ(h))

(n−k+1)

with
n∑

i=k

1

(i− k)!
uθ(g)

(i−k) 1

(n+ 1− i)!
uθ(h)

(n+1−i) +
1

(n− k + 1)!
uθ(g)

(n−k+1)uθ(h)

=
n+1∑
i=k

1

(i− k)!(n+ 1− i)!
uθ(g)

(i−k)uθ(h)
(n+1−i).

The two terms coincide by the Leibniz rule applied to the n− k + 1-th derivative of uθ(g)uθ(h),
so Lθ is indeed a derivation. �

Observe that we could be content just knowing that Aθ
n(g) is an operator on Rn

θ , and for most
Banach space applications this is enough. We have moreover shown that (Aθ

n(g))g∈G is a bounded
action and then that Un = (Az

n(g))g∈G,z defines an analytic action on the scale (Rn
z ){θ0<Rez<θ1}.

Moreover, γ(An) < ∞ for all n: the case n = 2 is the first point in Theorem 7.1 and the rest fol-
low from the estimate (6). This would allow us to iterate the process starting at any “point” Rn

and obtaining this way new actions on the corresponding scale of derived spaces. These actions
are not necessarily those appearing in Theorem 7.1, though (see [8] for additional information):
pick, say, n = 4; the derived scale R4,2

z of the scale R4
z, which is certainly not necessarily R8

z,
could also be well different from the second derived scale R2,2,2

z of R2
z.

What follows is a specially interesting case because it covers the situation for the scale of
ℓp-spaces. Let us focus on an interpolation pair X0, X1 having a common unconditional basis
(en) (which we can assume to be 1-unconditional after renorming), plus an additional property.
For X with basis (en) we will call property (W ) the fact that for each normalized block sequence
w = (wn) of X, the map τw : x −→ w · x is an operator of norm at most 1 (equivalently,
∥
∑

λnwn∥ ≤ ∥
∑

λnen∥); and that the maps τw form a semigroup for composition. Identifying
w with τw, this allows us to see the set of normalized block sequences w = (wn) on X as a
semigroup BlockX acting onX. Assume that the spaces of the scale have property (W). For given
θ, an analytic family of actions of BlockXθ

can be defined as follows: let Bθ be a homogeneous
1-extremal for the evaluation map δθ : F → Xθ with the property that suppBθ(x)(z) ⊂ suppx
for each finitely supported x. It follows that for w ∈ BlockXθ

and all z one has Bθ(w)(z) ∈
BlockXz . We define the following analytic family of actions: u = (wz)z with wz(x) = x ·Bθ(w)(z)

so that wθ(x) = x · w as before. Therefore dwz(x)
dz

|θ = d
dz
(x · Bθ(w)(z))|θ = x · Ωθ(w) and

thus, by Theorem 4.7, there is an action w2,θ =

(
w Ωθ(w)
0 w

)
on R2

θ given by w2,θ(ω, x) =
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w Ωθ(w)
0 w

)(
ω
x

)
= (ω · w + x · Ωθ(w), x · w) in accordance with Lemma 6.1. In this case

γ(u) ≤ 1 because Bθ(w)(j + it) ∈ BlockXj
for j = 0, 1. Therefore, Theorem 7.2 yields:

Theorem 7.3. Let (X0, X1) be an optimal interpolation pair of spaces such that Xz has
property (W) for each z. For fixed θ there is a bounded action of the semigroup BlockXθ

of
normalized block sequences of Xθ on Rn

z given by

(7)


u Ω

(1)
θ (u) Ω

(2)
θ (u) . . . Ω

(n−1)
θ (u)

0 u Ω
(1)
θ (u) Ω

(2)
θ (u) . . .

0 0 u Ω
(1)
θ (u) Ω

(2)
θ (u)

. . . 0 0 u Ω
(1)
θ (u)

0 . . . 0 0 u


In the particular case of the scale (ℓ∞, ℓ1) of ℓp spaces with first associated differential the

Kalton-Peck map KP the action is
u 2u log u 2u log2 u · · · 2n−1

(n−1)!
u logn−1 u

0 u 2u log u 2u log2 u · · ·
0 0 u 2u log u 2u log2 u
0 0 0 u 2u log u
0 0 0 0 u


8. Actions and (almost) transitivity

An isometric action u of a group G on a space X is said to be (almost) transitive if the orbit
u(G) · x is (dense in) SX for some (and therefore for all) x ∈ SX , [41]. A bounded action u
of G on X is said to be (almost) transitive if there is some u(G)-invariant renorming of X for
which the isometric action u is (almost) transitive. The definition is independent of the choice of
the u(G)-invariant renorming —such renormings exist, and |x| = supg∈G ∥u(g)x∥ is the typical
example–. All u(G)-invariant renormings are multiple one of each other by [22].

Proposition 8.1. Assume Ω : Y y X is a G-centralizer. If y ∈ DomΩ, then Ω is bounded
on the G-orbit of y. In particular, if DomΩ ̸= 0 and G acts transitively on Y then Ω is bounded.

Proof. Since ∥Ω(v(g)y)−u(g)Ωy∥X = ∥[u(g),Ω, v(g)]y∥X ≤ C, it follows that ∥Ωv(g)y∥X ≤
C + ∥u(g)(Ωy)∥X ≤ C +K∥Ωy∥X . So Ω is bounded on the G-orbit {v(g)y, g ∈ G}. �

Köthe spaces over a measure space (S, µ) admit a L∞(µ)-module structure and one can set
L0(µ) as the ambient space. In these conditions one has:

Proposition 8.2. Let (X0, X1) be an interpolation pair with a common Köthe space structure
and let 0 < θ < 1. If Ωθ is unbounded then no group G acting boundedly on the scale can act
transitively on Xθ.
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Proof. Since the characteristic functions of measurable subsets do always belong to Köthe
spaces and the Domain is an L∞-submodule [3, p.67 before Proposition 1], DomΩ is not empty.
Thus, if a group G acts boundedly and transitively on the scale then Ωθ would be a G-centralizer
by Proposition 4.3 and thus Ωθ should be bounded by Proposition 8.1. �

Recall from [45] (see also [19, Propositions 6.1 and 6.2]) that if X is a space with a shrinking

basis then (X,X
∗
)1/2 is a Hilbert space. Thus, if X is either (a) a supereflexive Köthe space on

a measure space S (in which case (X,X
∗
)1/2 is also a Hilbert space, by standard factorization)

different from L2(S), or (b) a space with a shrinking basis such that the differential Ω1/2 gener-

ated at (X,X
∗
)1/2 is unbounded then no bounded group of automorphisms on the Hilbert space

H can act transitively on the scale, i.e. it cannot induce a bounded transitive action on both X
and X

∗
.

The connection between nontrivial domain and transitive action has been observed in non-
commutative contexts by Cabello in [6, 5.2]). We quote [6, p.140]: “One may wonder if [...]
there is a “real” obstruction to have bicentralizers with nontrivial domain”. Cabello yields then
Example 5.2, in which the transitivity of the action implies that centralizers with nonzero domain
are bounded.

Transitivity also explains why singular centralizers on Lp do not exist, as we explain next.
Recall that a singular quasilinear map is one whose restrictions to infinite dimensional subspaces
are never trivial. The paramount example is the Kalton-Peck map on ℓp spaces (but not the
Kalton-Peck map on Lp spaces). The key result [5] is that no singular L∞-centralizer exists on
Lp, a result generalized in [18, Proposition 2.3] to superreflexive Köthe space over a non-atomic
base and the proof consists in showing that there is a copy of ℓ2 contained in the domain of the
centralizer: the one generated by the standard Gaussian variables, which are all in the domain
of KP [7, Proposition 9.3.12]. Now, since all Gaussian variables have the same distribution
and Lp is rearrangement invariant, there is an isometry induced by a measure preserving Borel
isomorphism of [0, 1] sending one to another so that the action of the group is transitive on the
subspace generated by the Gaussians and Proposition 8.1 yields that KP is not singular on Lp.

8.1. The case of the group Isom(Lp) of isometries of Lp(0, 1), p ̸= 2.

Proposition 8.3.

• KP is compatible with the natural action of Isom(Lp) on Lp.
• KP is not an Isom(Lp)-centralizer.

Proof. To show that KP is compatible with the action of Isom(Lp), observe that the elements
of Isom(Lp) have the form T (f)(s) = ε(s)w(s)1/p(f ◦ ϕ)(s), where ε is a unimodular map, ϕ a
Borel isomorphism of [0, 1] and w the Radon-Nikodym derivative of ϕ (by the Banach-Lamperti’s
formula [29, Chapter 3]). It follows in particular that T (hf) = (h◦ϕ)·Tf whenever h ∈ L∞(0, 1).
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We show that, once again, [KP, T ] is linear: if f is a simple function of norm 1, we have

1

p
[KP, T ]f = (Tf) log |Tf | − T (f log f) = (Tf) log |Tf | − (Tf) log(|f ◦ ϕ|)

= (Tf) log
|Tf |
|f ◦ ϕ|

=
1

p
log(w)(Tf).

An alternative form of finding this compatible action is considering the analytic family of

actions Tz(f)(t) = ε(t)w(t)z(f ◦ ϕ)(t) to get

(
Tθ

dTz

dz
(θ)

0 Tθ

)
.

To prove the second part, one can note that the group Isom(Lp) contains the units of L∞
and acts, linearly, on L0. Thus, we get from Theorem 5.2 that KP is an Isom(Lp)-centralizer
if and only if Isom(Lp) acts boundedly on the scale of Lp-spaces. The dependence on p in the
Banach-Lamperti’s formula easily shows this last assertion to be false. We can also obtain the
same result as a consequence of Proposition 8.1: The group Isom(Lp) acts almost transitively on
Lp, and actually admits two orbits, generated for example by 1[0,1] and 1[0, 1

2
], see [11] first point

of Example 1.5.2. Both these functions belong to DomKP, therefore from Proposition 8.1, KP
would be bounded on each of these two orbits. Then KP must be bounded on Lp, something it
is not. �

Of course (Proposition 3.4) that KP is a linear perturbation of an Isom(Lp) centralizer with
trivial domain. We can provide additional information about this strange phenomenon; to ease
notation we will call G = Isom(Lp).

Lemma 8.4. Let L : ∆ −→ Σ be a linear map such that KP+ L is a G-centralizer. If ∆ is a
dense G-invariant subspace of Dom(KP) then ∆ ∩Dom(L) = {0}.

Proof. If y ∈ ∆ ∩ Dom(L) is a normalized element then (KP + L)y ∈ Lp. Since g(KP +
L) − (KP + L)g is bounded, then (KP + L)z belongs to Lp for all z in the G-orbit of y; and
since KPz ∈ Lp because ∆ is G-invariant, we deduce that Lz ∈ Lp on the G-orbit of y. Let
∆′ = span(Gy) ⊂ DomKP ∩DomL. One has:

• Isom(Lp) acts almost transitively on Lp,
• Gy is dense on the unit sphere;
• z → (−Lz, z) is a G-linear lifting for the quotient map Lp⊕KPLp on ∆′ as a consequence
of Lemma 3.14 (d), for which we just need to check that d(g) = [g, L, g], namely, that

λ(g) =

(
g gL− Lg
0 g

)
is a bounded action on Lp ⊕KP Lp (use that KP + L is a G-

centralizer).

We obtain, for every z ∈ Gy that ∥(−Lz, z)∥ = ∥(−Lgy, gy)∥ = ∥λ(g)(−Ly, y)∥ ≤ C∥y∥ since
y ∈ Dom(KP + L). It follows that ∥(Lz, z)∥ ≤ C∥g−1gy∥ ≤ C ′∥z∥, and we actually obtain a
linear bounded lifting on a dense subspace, so that KP should be trivial, which it is not. �

In the particular case above, the result follows from Dom(KP)∩Dom(L) ⊂ Dom(KP+L) = {0}.
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8.2. The case of the group Isomdisj(L2) of isometries of L2 preserving disjointness.
This is quite analogous: KP is compatible with the action of Isomdisj(L2), it is not an Isomdisj(L2)-
centralizer but it is a linear perturbation of an Isomdisj(L2)-centralizer.

8.3. The case of the unitary group Isom(L2). This case yields a stunning situation.

Proposition 8.5. KP is not compatible with the natural action of Isom(L2) on L2.

Proof. Our starting point is the fact proved in [17, Lemma 3] that some complex structure
(i.e. an operator σ such that σ2 = −Id) on ℓ2 does not extend to a complex structure on Z2.
Everything consists in proving that such pathological complex structure may be chosen to be a
unitary map. Let Ψ be a quasilinear map on ℓ2 and let [xi] be a finite sequence of n normalized
vectors. Following [17] we set

∇[xi]Ψ = Ave±

∥∥∥∥∥Ψ
(

n∑
k=1

±xi

)
−

n∑
k=1

±Ψ(xi)

∥∥∥∥∥ ,
where the average is taken over all the signs ±1. Assume that Isom(L2) is compatible with KP
and let g 7→ d(g) be the associated derivation. The linearity of d(g) plus the triangle inequality
for ∇[b]Ψ [17, p.795] yield that if D(g) = [g,KP, g] + d(g) then gKP = KPg + D(g) − d(g) and
thus

∇[xi]gKP ≤ ∇[xi]KPg +∇[xi]D(g) = ∇[gxi]KP+∇[xi]D(g).

The quantity ∇[xi]D(g) is bounded by C
√
n since Hilbert spaces have Rademacher type 2 [7,

Definition 1.4.3]. It is proved in [17, Subsection 3.2 page 800] that there exist two orthonormal
sequences of n vectors [xi], [yi] such that ∇[xi]KP = 1

2

√
n log n and ∇[yi]KP ≤ M

√
n for some

uniform constant M . Let g be some unitary operator such that g(xi) = yi, i = 1, . . . , n, we
get a contradiction for large n. The result translates to any infinite dimensional L2 through the
fact that the restriction of KP to an ℓ2-subspace generated by disjoint characteristic functions of
intervals coincides, up to a linear term, with the own KP map on ℓ2 [7, Lemma 9.3.10]. �

9. G-equivariant maps

As we warned in Section 4, we will use here Daher’s space F2 as Kalton or “Calderón” space
to obtain (the same) interpolation spaces. Recall, as we have already mentioned, that in this
context, a regular pair of reflexive spaces is optimal when X0 is strictly convex. The purpose of
this section is showing that if G-centralizers are connected with interpolation scales of G-spaces,
G-equivariant maps are connected with rigid interpolation scales. Let us give a precise meaning
to that word:

Definition 9.1. A regular interpolation pair (X0, X1) will be called θ-rigid if whenever
Y0, Y1 ⊂ X0 + X1 defines another regular pair of interpolation such that Xθ = Yθ isometri-
cally and ΩX

θ = ΩY
θ , it follows that Xt = Yt isometrically, for all 0 < t < 1. The pair is said to

be rigid, if it is θ-rigid for all 0 < θ < 1.
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Typical examples of rigid scales are provided by p-convexifications of r.i. Köthe spaces, which
is a corollary of our next proposition. A rigid pair is such that Xi = Yi isometrically, i = 0, 1, as
soon as ∥x∥i = limt→i ∥x∥t, i = 0, 1 for x ∈ X0 ∩X1, a condition satisfied for most examples (see
[39]). It is an open question of [16] whether optimal pairs of interpolation are rigid, even in the
special case in which ΩX

θ is bounded. A positive answer was presented in [16, Proposition 5.10
and Theorem 5.11] under the assumption ΩX

θ = 0, or even when ΩX
θ is linear (under technical

restrictions). We present a few additional partial answers:

Proposition 9.2. Assume (X0, X1) is a regular pair of reflexive spaces with X0 or X1 uni-
formly convex and such that either

(a) X0 and X1 have a common monotone basis (en). In this case we set En = [e1, . . . , en];
or

(b) X0 and X1 are r.i. Köthe spaces on [0, 1]. In this case we let En be the subspace generated
by the characteristic functions of the intervals

[
(k − 1)/2n, k/2n

]
, k = 1, . . . , 2n.

Assume that for each n ∈ N the restriction of Ωθ to SXθ
∩En is locally Lipschitz on a dense open

subset Dn. Then the pair (X0, X1) is rigid.

Proof. Pick a normalized x ∈ X0 ∩ X1. By [16, Proposition 5.3.], Ωθ[En] ⊂ En for each
n. According to [16, Theorem 5.11], the 1-extremal analytic function Bθ(x)(θ + it) satisfies the
differential equation F ′(t) = iΩθ(F (t)) with initial condition F (0) = x. Moreover, Bθ(x)(θ+it) ∈
SXθ

.

Claim. The equation has a unique holomorphic solution with values in SXθ
in each of the cases

(a) and (b) for x in the corresponding dense open subset.

Proof of the Claim. Since Ωθ is locally Lipschitz, if F and G satisfy the differential
equation for x in the dense open subset of SXθ

∩ En, then

∥F (t)−G(t)∥ = ∥
∫ t

0

F ′(s)−G′(s)ds∥

= ∥i
∫ t

0

Ωθ(F (s))− Ωθ(G(s))ds∥

≤ K

∫ t

0

∥F (s)−G(s)∥ds

for some K and t close enough to 0. So max0≤s≤t ∥F (s) − G(s)∥ ≤ Ktmax0≤s≤t ∥F (s) − G(s)∥
and thus F (s) = G(s) on some small enough interval [0, t]. By analyticity, F = G. �

This means that if we have another regular pair Y0, Y1 ⊂ X0 + X1 such that Xθ = Yθ

isometrically and ΩX
θ = ΩY

θ then the optimal selectors BX
θ (x) = BY

θ (x) coincide and therefore,
using [16, Proposition 5.10],

∥BX
θ (x)(t)∥Xt = ∥x∥Xθ

= ∥x∥Yθ
= ∥BY

θ (x)(t)∥Yt = ∥BX
θ (x)(t)∥Yt
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for 0 < t < 1 and x ∈ Dn. This yields the equality of the norms of Xt and Yt for y ∈ BX
θ (·)(t)[Dn].

Since x → BX
θ (x)(t) is a uniform homeomorphism between the unit spheres of Xθ and Xt, we

obtain the previous equality on dense parts of the unit spheres of Xt and Yt, hence Xt = Yt. �

Corollary 9.3. When X is an r.i. Köthe space the pair (X,L∞) is rigid.

Proof. In the case of discrete spaces we apply the previous proposition to the open set
U = {x = (xi)i ∈ Cn : xi ̸= 0 ∀i = 1, . . . , n}. It is clear that x 7→ x log |x| is of class C1 on
some neighborhood of any y ∈ U , so the local Lipschitz property will be satisfied. The same idea
applies to the case of r.i. spaces on [0, 1]. �

Theorem 5.2 admits a version for rigid pairs:

Theorem 9.4. Let (X0, X1) be a rigid interpolation pair, and let G be a group of isometries
on Xθ (that we assume also acting on Σ). Then the following are equivalent:

(a) Ωθ defined on Xθ is G-equivariant.
(b) G acts as an isometry group on the interior of the scale.

Proof. (b) ⇒ (a) is Proposition 4.4. The prof of (a) ⇒ (b) goes as that of Theorem 5.2 until
getting 0θ(x) = Ωθ(x), where the rigidity hypothesis applies to conclude that ∥gx∥t = ∥x∥gt =
∥x∥t for 0 < t < 1 and all g ∈ G. �

Let us give some example: the Kalton-Peck map KP defined on a p-convex Köthe space is U -
equivariant (U being as always the group of units of L∞(S, µ)) even if it is not equivariant in the
associated L∞-structure. Equivariant quasi-linear maps with respect the the module structure
seem only to be possible in trivial cases, but things are different for linear maps: an U - linear
map L : Y → X on a space with unconditional basis is obviously diagonal since gen = ±en are
the only options; if the bases are symmetric and G is the group of operators acting by change of
signs and permutations of the vectors of a symmetric basis, G-linear maps are homotheties. A
combination of Proposition 3.10 and Proposition 4.3 however yields:

Proposition 9.5. Let (X0, X1) be an interpolation pair. Assume Xθ is reflexive and that G
is an amenable group acting on the scale. Then

(a) Ωθ is boundedly equivalent to a G-equivariant map.
(b) If Ωθ is trivial then it is boundedly equivalent to a G-linear map.

10. The category of G-Banach spaces and its exact sequences

We shift now our point of view from “compatibility of group actions on twisted sums” to
“equivalence of exact sequences of G-spaces”. We thus introduce the category GBan whose
objects are Banach G-spaces, and whose arrows are G-operators. An exact sequence in GBan is
obviously an exact sequence formed by G-Banach spaces and G-operators. An exact sequence of
G-Banach spaces can be described by a pair (Ω, d), where Ω : Y y X is quasi-linear and d is an

associated derivation that determines the bounded action λ(g) =

(
u(g) d(g)
0 v(g)

)
on the twisted



ACTIONS ON TWISTED SUMS 31

sum space X ⊕Ω Y . Let us transplant Lemma 3.14 to this language: The following elements
define exact sequences in GBan:

• (L,−[u, L, v]) when L is linear.
• (B, 0) when B is bounded.
• (Ω, 0) if and only if Ω is a G-centralizer.

In order to consider maps Ω defined on a fixed dense G-subspace ∆ ⊂ Y (in particular, ∆
must be G-invariant), the role of this ∆ must be remembered, since an exact sequence of G-spaces
does not in general depend on ∆ while the representation (Ω, d) does. On the other hand, we
can assume that all the maps involved have a common ambient space Σ by the observations we
made in ‘The ambient issue’ section. Observe the following definitions:

Definition 10.1.

Equivalence of maps: Consider (Ω1, d1) and (Ω2, d2) with Ω1,Ω2 : ∆ y X quasi-linear
and d1, d2 their associated derivations. They are G-equivalent, something we write
(Ω1, d1) ≃ (Ω2, d2) if there is a linear map L : ∆ y X such that Ω1 − Ω2 − L is
bounded and d1 − d2 = −[u, L, v].

Equivalence of sequences: The sequences generated by Ω1 : ∆ y X and Ω2 : ∆ y X
are said to be G-equivalent if there is a G-operator T making the following diagram
commute

X ⊕Ω1 Y

''OO
OOO

OO

T

��

0 // X

77ooooooo

''OO
OOO

OOO
Y // 0

X ⊕Ω2 Y

77oooooooo

Let us check that the two definitions are equivalent.

The operator τ =

(
Id −L
0 Id

)
makes the diagram

X ⊕Ω1 ∆

''OO
OOO

OO

τ

��

0 // X

77ooooooo

''OO
OOO

OOO
∆ // 0

X ⊕Ω2 ∆

77oooooooo

commute and is a G-operator since(
u(g) d2(g)
0 v(g)

)(
Id −L
0 Id

)
=

(
Id −L
0 Id

)(
u(g) d1(g)
0 v(g)

)
because d2−d1 = [u, L, v]. Finally, τ can be extended to a G-operator T : X⊕Ω1 Y −→ X⊕Ω2 Y
by density: set (ω, y) = lim(ωn, δn) and define T (ω, y) = lim τ(ωn, δn). Since both actions are
continuous, λ2T (ω, y) = λ2 lim τ(ωn, δn) = limλ2τ(ωn, δn) = lim τλ1(ωn, δn) = Tλ1 lim(ωn, δn) =
Tλ1(ω, y). The other implication is easy: the existence of T implies the equivalence of the exact
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sequences in the category of Banach spaces, so that Ω1 −Ω2 is boundedly equivalent to some L.
Furthermore T (X ⊕Ω1 ∆) ⊆ X ⊕Ω2 ∆, defining by restriction a G-operator τ as above, which is
equivalent to saying that d2 − d1 = [u, L, v].

Thus, there is a vector space structure on the set of pairs (Ω, d) (defined on the same ∆)
given by (Ω1, d1) + (Ω2, d2) = (Ω1 + Ω2, d1 + d2) and λ(Ω, d) = (λΩ, λd1). The zero element is
the class of trivial sequences:

Definition 10.2. We will say that (Ω, d) is G-trivial, or that it G-splits, if (Ω, d) ≃ (0, 0).
This occurs if and only if there is a linear map L such that Ω−L is bounded and d = −[u, L, v].

Proposition 10.3. Every quasilinear map Ω : ∆ y X defining a G-sequence 0 → X →
X ⊕Ω Y → Y → 0 of G-spaces, is a linear perturbation of a G-centralizer (possibly with a larger
target space). Furthermore the G-centralizer may be chosen so that its associated G-sequence
with diagonal action is G-equivalent to the original G-sequence associated to Ω.

Proof. Let 0 → X → Z → Y → 0 be an exact sequence of G-spaces. Set Σ = Z as
the ambient space equipped with λ(g) as the extension of u(g). Any homogeneous bounded
selection B for the quotient map: B : Y → Z is a G-centralizer generating the same sequence; in

particular, writing Z = X ⊕Ω Y so that λ(g) =

(
u(g) d(g)
0 v(g)

)
and then setting Ω0y = (Ωy, y),

then Ω0 is a G-centralizer, since the associated bounded action given by the diagonal maps

λ0(g) =

(
λ(g) 0
0 v(g)

)
are uniformly bounded on X ⊕Ω0 Y : observe that ((ω, y), y′) ∈ X ⊕Ω0 Y

exactly occurs when (ω, y)− Ω0y
′ = (ω − Ωy′, y − y′) ∈ X, which yields y = y′. Now:

∥λ0(g)((ω, y), y)∥Ω0 = ∥(λ(g)(ω, y), v(g)y)∥Ω0

= ∥(u(g)ω + d(g)y, v(g)y)− (Ωv(g)y, v(g)y)∥Ω + ∥v(g)y∥Y
= ∥(u(g)ω + d(g)y − Ωv(g)y, 0)∥Ω + ∥v(g)y∥Y
= ∥u(g)ω + d(g)y − Ωv(g)y∥X + ∥v(g)y∥Y
= ∥λ(g)(ω, y)∥Ω
≤ ∥λ(g)∥∥(ω, y)∥Ω
= ∥λ(g)∥∥((ω, y), y)∥Ω0 .

We perform the standard pushout from Lemma 3.3 to get ξΩ0 = σΩ + L. Note that by the
comments after Lemma 3.3, ξΩ0 is also a G-centralizer, with values in Z, defining the same
exact sequence, and therefore σΩ is a linear perturbation of a G-centralizer possibly with a
larger target space. Finally, we note that σΩ defines the same exact sequence of G-spaces as Ω
(although formally one would have to replace d(g) by σd(g) to take values in the larger target
space).

Now we show G-equivalence. Just to avoid misunderstandings: observe that when we combine
the equality ξΩ0 = σΩ + L of Lemma 3.3 with Definition 10.1, one has to set L = −L to get
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T =

(
Id −L
0 Id

)
as in the commuting diagram appearing in the description of Definition 10.1:

X ⊕σΩ Y

((PP
PPP

PPP

T

��

0 // X

66nnnnnnnn

''PP
PPP

PPP
Y // 0

X ⊕ξΩ0 Y

77nnnnnnnn

.

It only remains to see that T is a G-operator, i.e. to show that in X ⊕ξΩ0 Y the following holds:

(u(g)ω − u(g)Ly, v(g)y) =

(
u(g) 0
0 v(g)

)(
Id −L
0 Id

)(
ω
y

)
=

(
Id −L
0 Id

)(
u(g) σd(g)
0 v(g)

)(
ω
y

)
= (u(g)ω + σd(g)y − Lv(g)y, v(g)y)

namely, u(g)Ly = −σd(g)y + Lv(g)y or, which is the same, σd(g) = −[u(g), L, v(g)].
To prove this equality, recall from the proof of Lemma 3.3 that L(y) = −L(y) = [−(ℓy, y), ℓy],

where ℓ is linear so that Ω − ℓ takes values in X. Therefore, and using the notation of Lemma
3.3,

[u(g), L, v(g)]y = u(g)
(
− (ℓy, y), ℓy

)
−
(
− (ℓv(g)y, v(g)y), ℓv(g)y

)
=

(
− λ(g)(ℓy, y), u(g)ℓy

)
−
(
− (ℓv(g)y, v(g)y), ℓv(g)y

)
=

(
− (u(g)ℓy + d(g)y, v(g)y), u(g)ℓy

)
+
(
(ℓv(g)y, v(g)y),−ℓv(g)y

)
=

(
(−[u(g), ℓ, v(g)]− d(g))(y), 0), [u(g), ℓ, v(g)](y)

)
=

(
0,−d(g)y

)
The last line is due to the definition of the pushout PO (where the computation takes place) as
a quotient by a diagonal subspace of the form {([x, 0],−x), x ∈ X}, together with the fact that
the quantity ([u(g), ℓ, v(g)] + d(g))y belongs to X (because both Ω− ℓ and [u(g),Ω, v(g)] + d(g)
take values in X). To conclude it is enough to remember from the definition of the embedding
of Σ in PO that σd(g)y = (0, d(g)y). �

We now give two easy lemmas that will help us simplify some proofs later on.

Lemma 10.4. Let 0 → X → X ⊕Ω Y → Y → 0 be a trivial exact sequence (Ω, d) of G-spaces.
If L : ∆ y X is any linear map for which Ω−L : ∆ → X is bounded, then d(g) + [u(g), L, v(g)]
is a uniformly bounded family of operators.

Proof. d(g) + [u(g), L, v(g)] = (d(g) + [u(g),Ω, v(g)]) + [u(g), L − Ω, v(g)] and both terms
of the sum are uniformly bounded. �
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Lemma 10.5. If B : Y → X is a bounded map with associated derivation d then (B, d) ≃ (0, d)

Proof. It is clear that the formal identity map X ⊕B Y → X ⊕ Y is a G-operator. �

A warning is perhaps judicious here: sometimes, quasilinear maps Ω : Y y X are bounded
maps Y → Σ but that does not imply that Ω is equivalent to 0, let alone (Ω, d) ≃ (0, d): beware
that if Ω is not bounded with respect to the ∥.∥X-norm, no identity map X⊕ΩY → X⊕Y exists.
G-splitting admits natural characterizations, similar to those in the Banach space category.

Proposition 10.6. Consider an exact sequence (Ω, d) of G-spaces 0 → X → Z → Y → 0.
The following assertions are equivalent:

(i) The sequence G-splits.
(ii) The quotient map admits a linear continuous G-lifting.
(iii) X admits a G-invariant complement.
(iv) X is G-complemented in Z.

Proof. A few hints will suffice: If L is a G-lifting then L[Y ] is a G-complement of X;
L(y) = (ℓy, y) with ℓ− Ω bounded and d = −[u, ℓ, v] is a derivation. �

In complete analogy with classical Banach space homology, we can define now the vector space
ExtG(Y,X) of G-equivalence classes of pairs (Ω, d). Our next result presents “group” versions of
two theorems of Cabello: the first one [3, Cor. 2] asserts that an exact sequence of L∞-modules
that algebraically splits also splits topologically; the second and [4, Theorem 1] says that when
p ̸= q the only exact sequence of quasi-Banach L∞-modules 0 → Lq → Z → Lp → 0 is the trivial
one while, as it is well known [7, Proposition 5.2.20], Ext(Lp, Lq) ̸= 0 as Banach spaces.

Theorem 10.7. Let G be a group and let 0 → X → X ⊕Ω Y → Y → 0 be a trivial exact
sequence of G-spaces. If G is amenable and X is a G-ultrasummand then the sequence G-splits.

Proof. Let (Ω, d) describe the exact sequence above and assume that Ω is trivial. We use
Proposition 10.3 to obtain a G-centralizer Ω0 so that (Ω, d) ≃ (Ω0, 0). Since we are told that
(Ω0, 0) splits, Lemma 10.4 yields a linear map τ : ∆ → Σ for which Ω0 − τ : ∆ → X is bounded
and (Ω0, 0) ≃ (Ω0 − τ, [u, τ, v]) ≃ (0, [u, τ, v]) by Lemma 10.5. Thus, the proof can be reduced
to proving that, under the hypothesis of the theorem, if B : ∆ → X is a bounded map then
(B, d) ≃ (B, 0) for whatever d. Let us call X ⊕d

B Y and X ⊕0
B Y the spaces endowed with the

actions induced by, respectively, the derivations d and 0. Recall from Lemma 10.4 that {d(g)}g∈G
is a uniformly bounded family of operators, and therefore we can form the operator

My = P

(∫
g∈G

u(g−1)d(g)y dµ(g)

)
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where P : X∗∗ → X is a G-projection. Let us show that the map R =

(
Id M
0 Id

)
is a G-operator

making the diagram

X ⊕d
B Y

''NN
NNN

NN

R

��

0 // X

77ppppppp

''OO
OOO

OO Y // 0

X ⊕0
B Y

77ppppppp

commute. The only part that is not evident, that R is a G-operator, means(
u 0
0 v

)
R = R

(
u d
0 v

)
namely u(g)M = d(g) +Mv(g), i.e., d = [u,M, v]. We show this:

u(g′)My = u(g′)P

(∫
g∈G

u(g−1)d(g)y dµ(g)

)
= P

(∫
g∈G

u(g′g−1)d(g)y dµ(g)

)
Call g′g−1 = h−1 so that g = hg′ and thus

= P

(∫
h∈G

u(h−1)d(hg′)y dµ(h)

)
= P

(∫
h∈G

u(h−1)(u(h)d(g′) + d(h)v(g′))y dµ(h)

)
= d(g′)y + P

(∫
h∈G

u(h−1)d(h)v(g′))y dµ(h)

)
= d(g′)y +Mv(g′)y. �

Corollary 10.8. Let G be a group. Let 0 → X → X ⊕Ω Y → Y → 0 and 0 → X →
X ⊕Φ Y → Y → 0 be exact sequences (Ω, d) , (Φ, d′) of G-spaces. If G is amenable and X is a
G-ultrasummand then

(Ω, d) ≃ (Φ, d′) ⇐⇒ Ω ∼ Φ.

It will help us at this point to use the classical terminology, and call inner a derivation for
which there exists a bounded linear map A : Y → X such that d = [u,A, v].

Remark 10.9. Note that (Ω, d1) ≃ (Ω, d2) if and only if d1 − d2 is inner.

To see this, just apply Definition 10.1 with Ω1 = Ω2 = Ω to obtain a linear map A : ∆ y X
such that d1(g)− d2(g) = [u(g), A, v(g)], and Ω− Ω+A bounded, i.e. A is a bounded operator,
which by extension may be assumed to be defined on the whole of Y .
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Both hypotheses in Corollary 10.8 are necessary. (a) The amenability of G is necessary,
because while Ext(ℓ2(T ), ℓ2(T )) = 0, we have that ExtAut(T )(ℓ2(T ), ℓ2(T )) ≠ 0. Indeed, see the
end of Section 3: the sequence

0 → ℓ2(T ) → ℓ2(T )⊕L ℓ2(T ) → ℓ2(T ) → 0,

where ℓ2(T ) is equipped with the action u and ℓ2(T )⊕Lℓ2(T ) is equipped with the diagonal action,
does not Aut(T )-splits. Otherwise we would have (L, 0) ≃ (0, 0), which means by definition that
L− ℓ is bounded and [u, ℓ, u] = 0 for some linear map ℓ. In other words, L would be boundedly
equivalent to an Aut(T )-equivariant map ℓ, a contradiction with the second part of Proposition
3.11. (b) The G-ultrasummand character of X is necessary, because Ext(R, c0) = 0 but we will
show in Section 11.3 that Ext2<ω(R, c0) ̸= 0.

If we put together Theorem 10.7 and the result of Cabello mentioned before it we almost get
a contradiction: after all, the group U of units of the L∞-module structure is Abelian (hence
amenable) and (for 1 < p < ∞) Lp spaces are reflexive. Let us however carefully spell what these
two results together actually imply: no non-trivial element of Ext(Lp, Lq) can be compatible with
the canonical actions of U on these two spaces.

A significant consequence of Theorem 10.7 is the following kind of uniqueness result for the
possible derivation associated to fixed actions u and v.

Corollary 10.10. Assume that G is an amenable group, Y and X are G-spaces with X a
G-ultrasummand and Ω : Y y X is a quasilinear map. All compatible actions of G on X ⊕Ω Y
are conjugate; namely, given two such actions λ1, λ2 there is A ∈ L(Y,X) such that for all g ∈ G,

λ2(g) =

(
Id A
0 Id

)
λ1(g)

(
Id −A
0 Id

)
.

Proof. Since the two exact sequences of Banach spaces are equivalent, Theorem 10.7 implies
that they are equivalent in the G-space setting, i.e. (Ω, d1) ≃ (Ω, d2). By Remark 10.9, d1 − d2
is therefore inner, so pick A such that d1(g)− d2(g) = [u(g), A, v(g)]. �

In the particular case of a direct sum of two copies of a Hilbert space H on which u = v is a
unitary representation, note that compatible actions of G are represented by triangular matrices

of the form λ(g) =

(
u(g) d(g)
0 u(g)

)
, where d(g) is uniformly bounded. If G is amenable then

Corollary 10.10 implies that such an action is conjugate to the diagonal action associated to u,
i.e.

λ(g) =

(
u(g) d(g)
0 u(g)

)
=

(
Id A
0 Id

)(
u(g) 0
0 u(g)

)(
Id −A
0 Id

)
.

Unravelling this expression, we obtain that d(g) = [A, u(g)] is inner.
It is a well known fact that a bounded triangular representation is unitarizable (i.e. similar to

a unitary representation) if and only if the corresponding derivation is inner (see the beginning
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of [28] Section 3 for a full statement and a proof). We previously recalled that bounded repre-
sentations of amenable groups are unitarizable [25, 26]. So, under amenability of G, Corollary
10.10 may be seen as a generalization, to the context of general twisted sums of G-spaces, of
the characterization of unitarizability by inner derivations in the context of direct sums of two
Hilbert spaces.

11. Variations and comments

This final section contains a miscellanea of results and problems connected with the ideas in
this paper.

11.1. From uniformly bounded extensions to actions. The following situation was
mentioned in the abstract: to which extent the existence of a uniformly bounded family of
operators on a twisted sum space compatible with a couple of actions on the subspace and the
quotient space induces an action on the twisted sum. We have:

Proposition 11.1. Let Ω : Y y X be quasi-linear between two G-spaces. Assume that there
is a uniformly bounded family of operators (Tg)g∈G such that each Tg : X ⊕Ω Y → X ⊕Ω Y forms
a commutative diagram

0 −−−→ X −−−→ X ⊕Ω Y −−−→ Y −−−→ 0

u(g)

y Tg

y yv(g)

0 −−−→ X −−−→ X ⊕Ω Y −−−→ Y −−−→ 0

If G is an amenable group and X is a G-ultrasummand then there is a compatible action of G
on X ⊕Ω Y .

Proof. Each operator Tg has the form Tg =

(
u(g) τg
0 v(g)

)
. We may assume wlog that

τe = 0 by simply replacing the family (Tg)g by (Sg)g with Sg = Tg+Id−Te. Since T
−1
g has to have

the form

(
u(g)−1 b(g)

0 v(g)−1

)
, from T−1

g Tg = Id and τe = 0 we obtain b(g) = −u(g−1)τgv(g
−1),

so that T−1
g =

(
u(g−1) −u(g−1)τgv(g

−1)
0 v(g−1)

)
. Now, it may well happen that T−1

g is not Tg−1 . To

amend this, what we claim is that supg ∥(Tg)
−1∥ < ∞: this is consequence of ∥(Tg)

−1(x, 0)∥ ≤
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∥u(g−1)x∥ and

sup
∥x∥≤1

∥(Tg)
−1(Ωx, x)∥ = sup

∥x∥≤1

∥u(g−1)Ωx− u(g−1)τgv(g
−1)x− Ωv(g−1)x∥+ ∥v(g−1)x∥

≤ ∥u(g−1)∥ sup
∥x∥≤1

∥Ωx− τgv(g
−1)x− u(g)Ωv(g−1)x∥+ ∥v(g−1)

≤ ∥u(g−1)∥ sup
∥y∥≤∥v(g−1)∥

∥Ωv(g)y − τgy − u(g)Ωy∥+ ∥v(g−1)∥

≤ ∥u(g−1)∥ sup
∥y∥≤∥v(g−1)∥

∥Tg(Ωy, y))∥+ ∥v(g−1)∥

≤ ∥u(g−1)∥(∥Tg∥+ 1)∥v(g−1)∥

This is enough: for any pair g, g−1 ∈ G, pick one of them to remain Tg and replace Tg−1 by
T−1
g . Thus, from now on we assume that (Tg)

−1 = Tg−1 and thus, what is more important to us,
that

τg−1 = −u(g−1)τgv(g
−1).

The family {[u(g),Ω, v(g)] + τg}g∈G is uniformly bounded since(
u(g) τg
0 v(g)

)(
Ωy
y

)
= (u(g)Ωy + τgy, v(g))

is a uniformly bounded family and ∥(u(g)Ωy + τgy, v(g))∥ = ∥u(g)Ωy + τgy − Ωv(g)∥ + ∥v(g)∥.
Thus, both

•
(

u(gh) τgh
0 v(gh)

)
g,h

•
(

u(g) τg
0 v(g)

)
g

(
u(h) τh
0 v(h)

)
h

=

(
u(gh) u(g)τh + τgv(h)
0 v(gh)

)
g,h

define uniformly bounded families of operators, hence

(
0 u(g)τh + τgv(h)− τgh
0 0

)
g,h

is also a

uniformly bounded family. Since(
0 u(g)τh + τgv(h)− τgh
0 0

)(
Ωy
y

)
= ((u(g)τh + τgv(h)− τgh)y, 0)

and ∥(u(g)τh+τgv(h)−τgh)y, 0)∥X⊕ΩY = ∥(u(g)τh+τgv(h)−τgh)y∥X it turns out that the family
{u(g)τh + τgv(h)− τgh}g,h∈G is uniformly bounded. Set gh instead of g and h−1 instead of h and
get that also {u(gh)τh−1 + τghv(h

−1)− τg}g,h∈G is uniformly bounded. Hence,

{u(gh)τh−1 + τghv(h
−1)}h∈G

is a uniformly bounded family and we can therefore define

d(g) = P

(∫
h∈G

(u(gh)τh−1 + τghv(h
−1))dµ

)
,

where P is a G-operator X∗∗ → X. Let us check that d is a derivation: given g, k in G, since
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u(gkh)τh−1k−1v(k) + u(g)τkhv(h
−1) = u(g)

(
u(kh)τh−1k−1 + τkhv(h

−1k−1)
)
v(k) = 0

we have

d(gk) = P

(∫
h∈G

u(gkh)τh−1 + τgkhv(h
−1)dµ

)
= P

(∫
h∈G

u(gkh)τh−1 + τgkhv(h
−1) + u(gkh)τh−1k−1v(k) + u(g)τkhv(h

−1)dµ

)
= P

(∫
h∈G

u(gkh)τh−1 + u(g)τkhv(h
−1)dµ+

∫
h∈G

τgkhv(h
−1) + u(gkh)τh−1k−1v(k)dµ

)
= u(g)P

(∫
h∈G

u(kh)τh−1 + τkhv(h
−1)dµ

)
+

(∫
h∈G

u(gkh)τh−1k−1 + τgkhv(h
−1k−1)dµ

)
v(k)

= u(g)d(k) +

(∫
h∈G

u(gh)τh−1 + τghv(h
−1)dµ

)
v(k)

= u(g)d(k) + d(g)v(k).

Finally, d is an Ω-derivation, i.e., {[u(g),Ω, v(g)] + d(g)}g is uniformly bounded: on one
hand, the family [u(g),Ω, v(g)] + τg is uniformly bounded and on the other d(g) − τg) too be-
cause {u(gh)τh−1 + τghv(h

−1) − τg}g,h∈G is uniformly bounded and P is a G-operator. Thus
[u(g),Ω, v(g)] + d(g) = [u(g),Ω, v(g)] + τg − τg + d(g) defines a uniformly bounded family. �

Let us conclude with a comment about the hypothesis of Proposition 11.1. Observe that the
existence of an operator T making a commutative diagram

0 −−−→ X −−−→ X ⊕Ω Y −−−→ Y −−−→ 0

u

y T

y yv

0 −−−→ X −−−→ X ⊕Ω Y −−−→ Y −−−→ 0

is equivalent to the existence of a linear map L : ∆ → Σ such that uΩ − Ωv − L : ∆ −→ X
and ∥uΩ − Ωv − L∥ < ∞. In this way, if we denote Lin(∆,Σ) the space of all linear maps
(continuous or not) between ∆ and Σ, the hypothesis of Proposition 11.1 can be reformulated
as supg∈G dist (u(g)Ω− Ωv(g), Lin(∆,Σ)) < ∞. The proof could have been plotted this way
showing how to replace the original family (Tg)g by a new family (sg)g such that supg∈G ∥sg∥ ∼
supg∈G ∥u(g)∥, ∥v(g)∥. A simple example in [15] shows that in a general commutative diagram
formed by two exact sequences and three operators u, T, v the norm of T is not necessarily
bounded by those of u and v.

11.2. Complex structures. We now answer a question about complex structures on real
twisted sum spaces posed in [17, around Corollary 2.2].

Proposition 11.2. Let X,Y be Banach spaces admitting complex structures u, v and let
Ω : Y y X be a quasilinear map. If there exists a bounded operator T on X ⊕Ω Y yielding a
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commutative diagram

0 −−−→ X −−−→ X ⊕Ω Y −−−→ Y −−−→ 0

u

y T

y yv

0 −−−→ X −−−→ X ⊕Ω Y −−−→ Y −−−→ 0

then X ⊕Ω Y admits a complex structure.

Proof. We use the abelian, hence amenable, group G = {i,−1,−i, 1} through the action
i → u, 1 → id,−i → −u,−1 → −id on X and i → v, 1 → id,−i → −v,−1 → −id on Y .
With this we may apply a simple version of Proposition 11.1, for which no G-complementation is
required since one performs just a finite average (i.e. P is removed in the definition of d(g)). Then

J =

(
u d(i)
0 v

)
is a complex structure. The value of d(i), which is 1

2
(τ +uτv), may be computed

unravelling the formula in Proposition 11.1. More directly: it is an immediate computation that

the associated J =

(
u 1

2
(τ + uτv)

0 v

)
has square −Id, and the boundedness of J may be checked

as follows. By boundedness of τ , [u,Ω, v] + τ = uΩ−Ωv + τ is bounded. Composing on the left
by u and on the right by v, we obtain that −Ωv + uΩ+ uτv = [u,Ω, v] + uτv is bounded, which

means that R :=

(
u uτv
0 v

)
is bounded as well. Finally J = 1

2
(T +R) is bounded. �

This proof shows that complex structures exist in X ⊕Ω Y as long as [u,Ω, v] is the sum of a
bounded and of a linear map. The result had been proved in [17, Corollary 2.2] assuming that
[u,Ω, v] was either bounded or linear.

11.3. Actions of the Cantor group 2ω and of 2<ω. The goal of this Section is to provide
new natural examples and showing that the G-ultrasummand character of X is necessary in
Theorem 10.7. The Cantor group is the group of units of ℓ∞ and thus 2ω-centralizers are just
ℓ∞-centralizers. Its diagonal action on ℓ∞ restricted to c0 is again the diagonal action, and thus
it generates an action on ℓ∞/c0. We do not have any reasonable idea about a linear derivation
d : ℓ∞/c0 → c0 of the Cantor group. The subgroup 2<ω of elements of 2ω that are eventually 1
is much more manageable. The space c is the living example that 2<ω-groups are not 2ω-groups.
The natural diagonal action of 2<ω on c and c0, who is therefore a 2<ω-subspace, induces the
identity action on the quotient R. This implies that the exact sequence 0 → c0 → c → R → 0 of
2<ω-spaces, which splits as a Banach space sequence, does not split as a 2<ω-sequence since no
2<ω-lifting R → c is possible. Thus, Ext2<ω(R, c0) ̸= 0, which shows that G-complementation is
necessary in Theorem 10.7. Observe that Corollary 10.10 does not apply and therefore we do not
know the general form of an action of 2<ω on c. The map d(g) : R → c0 is d(g)(r) = −2r

∑
gi=−1 ei

is a linear derivation on 2<ω and the triangular action on c has the form λ(g) =

(
u(g) d(g)
0 IdR

)
with u the diagonal. In the spirit of Definition 10.1, note that d can also be written as d = [u, L, v]
where L : R → c is defined by L(r) = (r, r, . . .), so we can also write equivalently that c0 ⊕L R
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equipped with the diagonal action is not 2<ω-trivial. Each element x of L(R, c) = c defines
an 2<ω-centralizer in the form Ω(1) = x but none defines an equivariant 2<ω-centralizer since
u(g)x − x = 0 for all g ∈ G is impossible. All this was based on some ideas of [1], where
an example of an SOT-discrete bounded group of operators on c0 without discrete orbits was
provided; the relation with twisted sums was not observed there.

There is a general formulation for this situation: let X be a separable Banach space that
we write as X =

∪
n Fn for an increasing sequence of finite dimensional spaces Fn. The space

c0(N, Fn) admits a natural “diagonal” action g(fn) = (g(n)fn) that naturally extends to the space
cX(Fn) = {(fn) : ∃ lim fn}. What is interesting here is that the exact sequence 0 → c0(N, Fn) →
cX(N, Fn)

lim→ X → 0 splits if and only if X has the Bounded Approximation Property [7, Chapter
5] although it never 2<ω-splits since the action induced on X is the identity.

The difficulty of obtaining derivations ℓ∞/c0 → c0 for 2ω can be confronted with how easily
one obtains derivations for 2<ω on the subspace c0(c) of ℓ∞/c0 (here c is the cardinal of the
continuum). Consider to this end that the Nakamura-Kakutani (see [7, 2.2.10]) sequences 0 −→
c0 −→ C(∆A) −→ c0(|A|) −→ 0 also provide natural examples of 2<ω-centralizers: pick A
an almost disjoint family of subsets of N (i.e., |A ∩ B| < ∞ for all A,B ∈ A) containing the
singletons. The cardinal of the family must be ℵ1 ≤ |A| ≤ c since when |A| = ℵ0 the sequence
splits by Sobczyk’s theorem. We will assume without loss of generality that it is the continuum.
Let ∆A be the one-point compactification of the locally compact space having N as isolated
points and A ∈ A as the only accumulation point of {n : n ∈ A}. There is a natural action
of 2<ω on C(∆A): (gf)(n) = g(n)f(n) that yields the diagonal action on c0 and induces the
identity action on c0(c). Let c00(c) be the dense subspace of all finitely supported sequences. A
quasilinear map Ω : c00(c) y c0 corresponding to this sequence can be easily described: fix a
well-order on c and then for x ∈ c00(c) write it as x =

∑
λiei with the ei well ordered and define

Ω(
∑

λiei) = λ11A1 + λ21A2\A1 + · · ·+ λn1An\(A1∪...An−1). This is a bounded map c00(c) → ℓ∞ and
therefore a 2<ω-centralizer (with derivation 0). On the other hand, C(∆A) is a subspace of ℓ∞
but the natural action of 2ω does not respect C(∆A).

11.4. Groups and symmetries. To fix ideas, let us focus on N and ℓ∞-centralizers (namely,
2ω-centralizers) on Banach spaces with symmetric basis. A centralizer is symmetric if ∥(Ωx)σ −
Ω(xσ)∥ ≤ C∥x∥ for every permutation σ of N. For instance KP maps are symmetric. Symmetric
centralizers live their own lives (see [35, 4]) and there is a great difference between working
with symmetric and non-symmetric centralizers. But the ideas in the present paper allow us to
explore the intermediate terrain between “centralizer” and “symmetric centralizer”. Let Sym(N)
be the group of permutations of N and let Θ be a subgroup. Consider the set 2ωΘ = 2ω × Θ
with the group structure corresponding to the action (g, θ)(x) = g(xθ) where (xθ)(n) = x(θ(n)).
Symmetric centralizers correspond to 2ωSym(N)-centralizers. Let now (An) be a partition N = ∪An

of N into finite sets, An < An+1, and let Θ be the group of permutations σ of N such that
σAn = An for all n. It turns out that 2ωΘ-centralizers can be useful too: as the authors of
[12] dismayingly recall, the first author has frequently asked about “how many different” exact
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sequences 0 → ℓ1 → Z → c0 → 0 exist. The same problem is addressed in [7]. Let us lodge the
problem in the theory developed in this paper.

Proposition 11.3. Every non 2ωΘ-trivial 2
ω
Θ-centralizer ℓ2 y ℓ2 generates a nontrivial exact

sequences 0 → ℓ1 → X → c0 → 0.

Proof. Let Ω : ℓ2 y ℓ2 be a 2ωΘ-centralizer. This means that for the partition (An) of N and
every permutation σ of N such that σAn = An one has for every x ∈ ℓ2 that (Ωx)σ−Ω(xσ) ∈ ℓ2
and this family is uniformly bounded. In particular, if we decompose ℓ2 = ℓ2(N, ℓ2(An)) then
Ω|ℓ2(An) ⊂ ℓ2(An). Being 2ωΘ-trivial means that there is a linear map L : ℓ2(N, ℓ2(An)) → Σ such
that Ω−L : ℓ2(N, ℓ2(An)) −→ ℓ2(N, ℓ2(An)) and (Ω−L)|ℓ2(An) is uniformly bounded. Thus, if Ω
is not 2ωΘ-trivial, the sequence

0 −−−→ ℓ2(An) −−−→ ℓ2(An)⊕Ω|ℓ2(An)
ℓ2(An) −−−→ ℓ2(An) −−−→ 0

splits, but if σ−1
n denotes its splitting constant (namely, the infimum of those constants C for

which there is a linear map ℓn : ℓ2(An) → ℓ2(An) such that ∥Ω|ℓ2(An) − ℓn∥ ≤ C) then lim σn = 0
since otherwise Ω would be 2ωΘ-trivial. Some subsequence (σk(n))n ∈ ℓ1/2, and we will shamelessly
assume that it is σ. Let D : c0(N, ℓ2(An)) → ℓ2(N, ℓ2(An)) be the “diagonal” map D((xn)) =

(σ
1/4
n xn). Form the commutative diagram

0 −−−→ ℓ2(N, ℓ2(An)) −−−→ ℓ2(N, ℓ2(An))⊕Ω ℓ2(N, ℓ2(An)) −−−→ ℓ2(N, ℓ2(An)) −−−→ 0

D

y xD

0 −−−→ ℓ1(N, ℓ2(An)) −−−→ X −−−→ c0(N, ℓ2(An)) −−−→ 0

The lower sequence has DΩD as associated quasilinear map and this it cannot split since

otherwise the upper sequence would be 2ωΘ-trivial: after all, since (DΩD)|ℓ2(An)(x) = σ
1/2
n Ωx and

thus if there is a sequence of linear maps ℓn : ℓ2(An) → ℓ2(An) such that ∥DΩD|ℓ2(An)− ℓn∥ ≤ M

then the splitting constant of of Ω|ℓ2(An) would be at most Mσ
−1/2
n . To conclude, if ȷn : ℓ2(An) →

ℓ2
n

1 is a sequence of C-isomorphic embeddings then (ȷn)DΩD(ȷ∗n) is nontrivial by the local version
of [7, Claim p.268]), and this produces a nontrivial sequence

0 −−−→ ℓ1 = ℓ1(N, ℓ2
n

1 ) −−−→ X −−−→ c0(N, ℓ2
n

∞) = c0 −−−→ 0 �

Even if DΩD is a 2ω-centralizer, (ȷn)DΩD(ȷ∗n) is not, and can never be, a 2ω-centralizer:
otherwise there would be a compatible action of 2ω on X and picking any extension T : X → R
of the sum functional ℓ1 → R we can form the 2ω-invariant functional Λ(x) =

∫
2ω

ε−1T (εx)dµ.
The road is now paved to define Q : X → ℓ∗∗1 in the form Q(x)(ε) = Λ(εx) for ε an unit of ℓ∞
and extend it linearly to a functional on ℓ∞. Finally, compose with a 2ω-projection ℓ∗∗1 → ℓ1. It
is however perfectly reasonable to have a G-centralizer Ω and two operators α, γ so that αΩγ is
a G′-centralizer for two different groups G,G′. Researchers willing to travel this road are advised
to do so crossing through the horn gate of [12].
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11.5. Additional structures. Additional structures other than group structures may be
considered on Banach spaces. See for example the work of Corrêa [20] on exact sequences of op-
erator spaces and a solution to 3-space problem for OH spaces. It seems to be unknown whether a
relevant theory of groups acting completely boundedly on extension sequences of operator spaces
may be developed.
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[2] J. Bergh and J. Löfström. Interpolation spaces. An introduction, Springer, 1976.

[3] F. Cabello Sánchez, Nonlinear centralizers with values in L0, Nonlinear analysis 88 (2013) 42–50.

[4] F. Cabello Sánchez, Nonlinear centralizers in homology, Math. Ann. 358 (2014) 779–798.

[5] F. Cabello Sánchez, There is no strictly singular centralizer on Lp, Proc. Amer. Math. Soc. 142 (2014)

949–955.

[6] F. Cabello Sánchez, The noncommutative Kalton-Peck spaces, J. Noncomm. Geom. 11 (2017) 1395-1412.

[7] F. Cabello Sánchez, J.M.F. Castillo, Homological methods in Banach space theory, Cambridge Studies in

Advanced Mathematics 203 (2023). ISBN.978-1-108-47858-8.

[8] F. Cabello Sánchez, J.M.F. Castillo, W.H.G. Correa, Higher order derivatives of analytic families of Banach

spaces, Studia Math. (to appear), arXiv:1906.06677v2.

[9] F. Cabello Sánchez, J.M.F. Castillo, N.J. Kalton, Complex interpolation and twisted twisted Hilbert spaces,

Pacific J. Math. 276 (2015) 287 - 307.
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