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INTERPOLATOR SYMMETRIES AND NEW KALTON-PECK SPACES
JESUS M. F. CASTILLO, WILLIAN H. G. CORREA, VALENTIN FERENCZI, AND MANUEL GONZALEZ

ABSTRACT. We study the six diagrams generated by three interpolators in an abstract Kalton-
Montgomery complex like interpolation scheme. We will consider in detail the case of the first
three Schechter interpolators associated to the usual Calderén complex interpolation method in
two especially interesting cases: weighted £3 spaces —i.e., interpolation pairs (f2(w™1), f2(w))s —
and ¢, spaces —i.e., the interpolation pair (¢, ¢1)s—, both at § = 1/2.

1. INTRODUCTION

The reader is addressed to the ‘Basic notions’ section below for all unexplained terms we
use in this introduction. In the abstract part of the paper we will use an interpolation schema
formed by a Kalton space, a couple (Xy, X;) of quasi Banach spaces and a family of interpo-
lators. However, in the more specific part of the paper we will consider the standard complex
interpolation method generated from a Calderén space C, the family of Schechter interpolators
Ar(f) = f®(1/2)/k! and a pair of Banach spaces, that will be either (£, £;) or weighted Hilbert
spaces (lo(w™'), lo(w)). See [3] and [3I] for details. With those ingredients one can generate,
following [30], the family of associated Rochberg spaces R,,(0) = {(A,_1(f), ..., Ao(f)) : f € C}.
As it was shown in [7], the Rochberg spaces can be arranged forming commutative diagrams of
exact sequences (where we have omitted the initial and final arrows 0 — - and - — 0)

Ri(0) === Ru(0)

l |

Rn(0) —— Ry (0) —— R (0)
9)

l | |

Ri-k(0) — Ruym—i(0) — Rl

and each exact sequence 0 —= R, (0) — R,1m(0) —= R, (0) — 0 is generated and cor-

responds to a quasilinear map €2, ,,,, called the associated differential. The paper [L1] considered
the general situation of a Kalton space, a pair of Banach spaces and two interpolators (U, ®).
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In that case, there exist only two exact sequences, {ly o and (g ¢ that generate two different
“inverse” representations of the Rochberg space R,. For instance, in the particular case of the
interpolation pair (¢, ¢;) and the two classical interpolators A;, Ag at 1/2 one obtains that
Ri = U, l1)1 s2 = L3 while R, is the celebrated Kalton-Peck space Z; and the two representa-
tions just mentioned are, as suggested in [4], (here ¢; is a certain Orlicz space)

g
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EQﬁZ2—>£2
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In the first part of this paper we will consider first the general situation of a finite family of
interpolators on a Kalton space and will show that its study can be reduced to pairs of multi-
component interpolators (Sections 2 and 3). Then, we will consider the general situation of
three compatible interpolators and show that the six possible permutations of these three in-
terpolators provide six possible commutative diagrams, hence six possible representations of the
third Rochberg space R3 (Section 4). Sections 5 and 6 are devoted to studying the diagrams
and spaces generated by the three interpolators Ay, A1, Ag in two especially interesting cases:
weighted Hilbert spaces and the Kalton-Peck case generated from the pair ({4, ¢1). The first case
is remarkable since it can be considered, by its simplicity (all sequences split and all spaces are
isomorphic to Hilbert spaces), a template. The second case is the most interesting one since it
involves the Kalton-Peck space Z,. Moreover, the recently discovered self-duality of all associated
Rochberg spaces yields unexpected symmetries in this case. More precisely, we will show that,
denoting by [abc] the diagram obtained from the permutation (A, Ay, A.), the six diagrams are
are:

. Ll

Zy —— Ry -2u 4y O—> Ry 2>t
lpw \LQI,O ‘ lpm lQm ‘
Uy — 7y 20 0, ‘, O
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R R — 102 G ——
ARy~ O — Ry 2> 02
LPO,I iQo,l ‘ lpo,z iQo,g ‘
Uy ——> Zy 2 0% U —— A2

120 6 ——1; (T p—
Lol |
Zy —= Rz —— 1l A Rs ¢ ’}
lpz,o LQQ,O ‘ lpz,l lQQ,l ‘
8 . 120 w1,
ff — AN — Y, E’} O* Ef

In this way, two new remarkable Kalton-Peck-Rochberg spaces appear, () and A. In Sections 7
and 8 we will show that the spaces and maps in these six diagrams satisfy the following properties:

(1) All the spaces are super-reflexive and hereditarily /5.

(2) £ and ¢, are the Orlicz sequence spaces associated to the Orlicz functions f(t) = ¢* log® ¢
and g(t) = t*(log® t) log® | log t|.

(3) The spaces R3 and A do not contain complemented copies of /5 and admit no uncondi-
tional basis, as it occurs with Z5.

(4) The spaces A and () are not isomorphic to their dual spaces.

(5) All quotient maps, except perhaps ¢ 1, are strictly singular.

(6) Every basic sequence in Rj3 contains a subsequence equivalent to the canonical basis of
either 0y, (s, 1.

(7) R3 does not contain complemented copies of Zs.

(8) All spaces can be described as Fenchel-Orlicz spaces (or their duals).

2. BASIC NOTIONS

A Banach space space Z is a twisted sum of Y and X if there exists an exact sequence
0—Y — Z — X — 0 (namely, a diagram formed by Banach spaces and continuous operators
so that the kernel of each of them coincides with the image of the previous one), that corresponds
[24, ] to a quasi-linear map X — Y. We need to widen this notion as in [12], assuming that
Y is continuously embedded in an “ambient” Banach space Xy

Definition 2.1. A quasi-linear map 2 : X ~ Y with ambient space ¥y is a homogeneous map
Q: X — Xy for which there is a constant C such that for all x1,x5 € X,

o Oz +x3) — Q1) —Qz2) €Y and
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o |22y + 2) — Qx1) — QUwa)[ly < C([|21]|x + ||22]x)-

Given a quasi-linear map € as above, Y &g X = {(f,2) € ¥y x X : f—Q(z) € Y} is a linear
subspace of Xy x X and ||(8,z)[|a = || — Q(x)||y + ||z] x defines a quasi-norm on Y &g X.

The map j : Y — Y @q X given by j(y) = (y,0) is an isometric embedding and the map
q:Y ®q X — X given by ¢(f, ) = z takes the open unit ball of Y &g X onto that of X. They
define an exact sequence

(1) 0—=Y o Yoo X 2o X —0

that shall be referred to as the ezact sequence generated by 2. Since X and Y are complete,
(Y ®q X, ||(+,)|le) is a quasi-Banach space [I4, Lemma 1.5.b].

Definition 2.2. A quasi-linear map 2 : X ~'Y with ambient space Yy is said to be:

e bounded if there exists a constant D so that Qx € Y and |Qx|y < Dlz|x for each
reX.
e trivial if there exists a linear map L : X — Xy so that Q — L : X — Y is bounded.

Definition 2.3. Let €21,y be quasilinear maps X ~'Y with ambient space Xy . The maps are
said to be:

e Boundedly equivalent if Q0 — Qy is bounded. This means that ||(-, )|, and ||(-, )|, are
equivalent quasi-norms.

e Equivalent, denoted 1 ~ Qo, if Qy — Qo s trivial. This means that the two exact
sequences they generate are equivalent in the standard homological sense, namely, there
1s an operator T making a commutative diagram

0 Y Y ®o, X X 0
@ [ |
0 Y Y ©q, X X 0.

o Two quasilinear maps €21 : X1 ~ Y] and Qs : Xo ~ Yy are said to be isomorphically
equivalent, denoted €2y =~ )y, if there exist three isomorphisms S, T, U forming a commu-
tative diagram

0 Y; Y: ®a, X1 X 0
(3) 5| r| a

The following notions of domain and range generalize the classical domain and range for
Q-operators obtained from an interpolation process [I7), [I8 O], for centralizers on Banach L..-
modules [4] or for G-centralizers in suitable G-Banach spaces [12].

Definition 2.4. Let Q) : X ~ Y be a quasi-linear map with ambient space ¥y . The domain
of Q is the linear subspace DomQ = {z € X : Qx € Y} endowed with the quasi-norm ||z|p =
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|Qx|| + ||z||. The range of 2 is the linear subspace RanQ = {f € Xy : Iz € X : f —Qu € Y}
endowed with the quasi-norm |w||gr = inf{||f — Qx| + ||z] : Tz € X : 5 — Qz € Y}.

Since (Qx,x) € Y ®q X for every x € X, span{Qx : z € X} C Ran{2. Note also that the map
i(z) = (0, z) is linear and isometric from Dom € into Y ©q X, the map p(f, x) = f is continuous
and surjective from Y @©q X onto Ran (2, and the image of i coincides with the kernel of p. In
particular, the image of 7 is closed. Thus, since Y ®q X is complete, so are Dom 2 and Ran €).
Moreover we get another exact sequence

(4) 0 —= DomQ ——=Y d®g X —— Ran{) — 0.

Definition 2.5. Let Q : X 'Y be a quasilinear map with ambient space Xy . The inverse map
Q' RanQ — X is defined by the identity BS = (3,2713), where B is a bounded homogeneous
selection for the quotient map in ().

Of course, the map Q7! is not unique, but two inverse maps for €2 are boundedly equivalent
in the following sense:

Proposition 2.6. Q7! : RanQ ~ Dom is a quasilinear map with ambient space X. Two
different inverses of ) are boundedly equivalent.

Proof. If a, 8 € Ran ) then B(a + ) — Ba— B = (0,Q Y (a+8) —Qla—Q7'p8) e Y &g X,
hence O Ha+ 8) — Q7 'a— Q713 € Dom Q. Moreover,
197 (a+8) - 'a Q7 Bllp = [Bla+pB)—Ba-Bfa
(1Bl + B)lle + | Bar+ Bflla)
C"(ledlr + 181 R)-

Suppose that Q7' and €5 ! are obtained using two different homogenous bounded selectors, each
with norm smaller or equal to D. Then for each 8 € Ran Q2 we have (3,Q,'8), (8,95 '8) € Y @q
X. Then 715 — 0516 € Dom Q and 2516 — 93 Bllp = | (416 — 0526,0)[la < C(2D]|]lx.

OJ

<
<

A similar result was mentioned in [4]. Observe that 2 : X — Ran( is a bounded map as well
as Q7' :RanQ) — X. Hence Q7 'oQ: X — X and Qo Q7! : RanQ — Ran () are bounded.

Classical quasilinear maps €2 : X — Y were introduced by Kalton [20] to provide a description
of exact sequences of quasi Banach spaces. There are two natural situations in which quasi-linear
maps, with the same meaning as in this paper, appear: one is when considering centralizers
between Banach spaces X, Y that admit an L,.-module structure, like in [22]. A second one is
that of differentials 2 : X¢ — ¥y generated by two interpolators ¥, ®; see [11].

3. INTERPOLATORS ON KALTON SPACES

Let (Xo, X7) be an interpolation pair of Banach spaces as in [3, Section 2.3]. Both X, and
X, are continuously embedded into their sum > = Xy + X, endowed with its natural norm
|zlls = inf{||a|lx, + [|b]lx, : 2 =a+b,a € Xo,b€ X1}
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Definition 3.1. We say that a continuous operator T' : ¥ — ¥ acts on the pair (Xg, X;) if

By the closed graph theorem, each operator acting on the pair (Xy, X;) is continuous on both
spaces X and X;. Variants of the following notion of Kalton space were considered in [7, 10, 23].

Definition 3.2. Let U be an open subset of C conformally equivalent to the unit disc D. A
Kalton space for a pair (Xg, X;) of Banach spces is a Banach space § = (F(U, %), | - |l5) of
analytic functions F : U — X satisfying the following conditions:

(a) For each 6 € U, the evaluation map &g : F — X is continuous.

(b) If ¢ : U — D is a conformal equivalence and F : U — ¥ is an analytic map, then F' € F
if and only if ¢ - F € F. In this case ||¢ - F|l5 = || F||7.

It is not difficult to show that the evaluation map of the n'- derivative 5é") F — Yis
continuous for each n € N.

Definition 3.3. Let F be a Kalton space for (Xo, X1). An interpolator on F is a continuous
operator I' : F — X such that for every operator T : ¥ — X acting on the pair there exists a
continuous operator Ty : F — F satisfying T o' =1 o Ty.

Given an interpolator I' on F, we denote by Xt the space I'(F) endowed with the quotient
norm ||z||r = inf{||f|ls : f € F,I'f = x}, which is a Banach space isometric to F/ker . The
next result implies that if I'; and 'y are interpolators on F and I'1(F) = T'y(F) then the spaces
Xr, and Xy, are isomorphic.

Proposition 3.4. Let 77 : X1 — Y and Ty : Xo — Y be continuous operators between Banach
spaces with T1(X1) = To(X3). Then the quotients X1/ ker Ty and Xo/ker Ty are isomorphic.

Proof. Let ﬁ : X1/ kerT) — Y denote the injective operator induced by T;. Then

/1/:2—1 o fl : Xl/kerTl — XQ/ kerT2
is a closed and bijective operator, which is continuous by the closed graph theorem. O]
3.1. Pairs of multi-component interpolators. Here we extend the results of [T1] for pairs of

interpolators to a more general context. Let {I'; : 4 =1,...,n+ k} be a finite family of interpo-
lators on a Kalton space F(U, ). We consider the pair (U, ®) of multi-component interpolators

U= Thsn,. . . Tpp) : F—= X" and &= (Iy,...Ih): T — Xk

defined by V(f) = (Tranf,... Tk f) and O(f) = (Tkf,...T1f), and we will show that for
this pair (W, ®) we can repeat most of the arguments and constructions in [I1] for a pair of
interpolators.

We denote Xo = X, .ry) = (Ik, ..., I'1)(F), and observe that (¥, ®) is also a multi-
interpolator mapping F into X" x ¥*. Proceeding as in [I1], we obtain the following commutative
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diagram with exact rows and columns (we have excluded the arrows 0 — and — 0):

ker ¥ Nker & ——— ker (¥, ¢)
(5) kerd —— F 25 X,

‘| Jowr ]

Uker®) —— Xga — Xo

where W(ker @) is endowed with the quotient norm || - ||y, ,, and the maps 2 and p are defined
by 1Wg = (Vg,0) and p(¥f,®f) = ®f. In particular, we have an exact sequence

(6) 0 — Ulker®) —— Xyg) —— Xo — 0.

Definition 3.5. A family {®; : i € I} of interpolators on F(Xo, X1) is consistent if for each
operator T" acting on the pair (Xo, X1), there exists a continuous operator Ty acting on F so that
To®d;, =;0T5 for everyi € I.

Let Bs : X¢ — F be an homogeneous bounded selection for the quotient map ® : F — Xg.
We denote ||Bg|| = sup{||Bsx||s : ||z]le = 1}

Proposition 3.6. If the family {U,k,...,T1} is consistent and T : ¥ — X is an operator
acting on the pair then Te(®f) = ®(T5f) defines a continuous operator acting on Xg¢ with
[ To|l < | Z5]| - | Boll-

Proof. Indeed, | T(®f)lo = | To(®Bs®f) o = [®(T5 Bo®f) o < | T5] - | Boll - @ f]le, because

® has norm one as an operator from J into Xg. U

Other cases follow from here. For instance, if g € ker ® then Trg € ker ®, because ®T5g = T'Dg.
Thus, given two interpolators (¥, @), also ¥ (ker ®) is invariant under Ty.

Definition 3.7. The differential associated to (U, ®) is the map Qy o : Xo — X" given by
Q\p@ = \I/ e} Bq;..

Proposition 3.8. Qy ¢ : Xo ~ U(ker @) is a quasilinear map with ambient space ¥".
Proof. Indeed, if z,y € X¢ then Bg(x + y) — Be(z) — Bo(y) € ker @, and

[l Be(x +y) = Be(z) = Ba(y)lls
2011w Ball(lzlle +llylle). O

Qe +y) — Quor — Quoylv),, <
<

Definition 3.9. The derived space associated to the quasi-linear map Qg ¢ s
dQ\p,cp = \Il(ker (I)) @Q\I},é Xq) = {(U),.T) e X" x Xq) LW — Q\Ij7(bx S \I/(ker (I))},

endowed with the quasi norm ||(w, z)||qy.» = W — Qu.02||v)w o + [|12]o-
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We get an exact sequence

(7) 0 — T(ker®) —1— dQyp —— Xo — 0

with inclusion jw = (w,0) and quotient map ¢(w, ) = x.

Proposition 3.10. One has Xy o) = dSdy ¢ with equivalent quasi norms.

Proof. One just has to prove that the formal identity (w,z) — (w,z) is continuous and makes
the diagram

0 — Uker®) —— dQyg —2— Xg — 0

| H

0 — Ulker®) —— Xpyg —— Xo — 0

(8)

commutative. Indeed, let (w,z) € dQy . Since w — Qg or € V(ker @), w — Qg or = V[ for
some f € ker ® with [|f|ls < Cllw — Q07| ¢ s Thus w = Qpox + Vf = ¥(Bex + f) and
therefore (w, z) = (V(Bgz + f), ®(Box + f)) € Xy .o with

(W, )l xe < [[Bew+ [l < |[Bllellz]l + Cllw = Qu o] < max{[[Bell, C}|(w, 2)[lagy o-

Conversely, (Uf, ®f) € Xy ¢ implies @f € Xg and Uf —Qu o@f = VU(f — Be®f) € U(ker ),
hence (Vf, ®f) € ddy o. O

We obtain now the domain, range and inverse of {1y .

Proposition 3.11. One has the following identities (with equivalence of norms in (1) and (2)):
(1) Dom (Q2y ¢) = ®(ker V).
(2) Ran (Q\p’q;.) = X\p
(3) Q¢7\p = (Q\p’q;)_l.

Proof. (1) If x € Dom (Qy.¢) then 2z € X¢ and ¥VBgx € ¥(ker ). Thus VBex = Vg for some
g € ker @, hence Boxr — g € ker U and x = ®(Bgx — g) € $(ker V). Conversely, if y € ®(ker V)
then (0,y) € Xy .o, thus y € Xo and Qy oy € V(ker @), hence y € Dom (Qy ).

(2) If w € Ran (Qy o) then there exists © € Xg such that w — Qg ez € ¥(ker &) C Xy. Since
Qyor € Xy, we get w € Xy. Conversely, if w € Xy then w = ¥ f for some f € F. Since
(\Ilf’ (I)f) € Xq;@, w = \I’f € Ran (Q\p,q)).

(3) If we consider the natural exact sequence

(99 0 —— Dom (Qp.e) = Plker W) —— Xy o — Ran(Qyo) = Xy — 0,

then (U, ®)By is a bounded homogeneous selection for p, and (¥, ®)Byy = (y, 2e,wy) for each
Yy e X\p ]
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4. DIAGRAMS GENERATED BY THREE INTERPOLATORS

For an (ordered) triple of interpolators (T, U, ®) on a Kalton space F, we introduce the asso-
ciated diagram as follows: pick first the pair (¥, ®) to get diagram (Bl and then incorporate the
action of T'; one obtains the following three-dimensional diagram:

(10)  ker(T, U, ®)===========ker(Y,V, D)
ker(Y, U, @) == === === = = ker(T, U, D)
ker(V, @) = =====|== === =ker(V, D)
ker @ \ J (v <I>)<I> Ko
. x . \ :: \\\\\
U (ker ) Xw,p) —t— Xop
(1,0) ': (1, 0,3) :: :: ::
T(ker(V,®)) = ====|====="T(ker(V, D)) I I I
I I
\ :: \ :: I I
(T, W) (ker @) - Xir,v,0) f Xo I
I I S
T~ [ T~ AT
\I/(ker (I)) X(\Ij ) Xq>

The new and interesting part of this diagram is the bottom face of the cube

(11) T (ker(V, ®)) == T (ker(V, ®))
(7, l(ker Q) — (T, U, D) (F) —
l " H
U (ker ®) (U, ) (F

Let us show the interest of this construction. When only two interpolators (¥, ®) are considered
the situation was envisioned in [4], and completely described and studied in [II]: only two
“bottom faces” exist, and thus everything can be resumed in the diagram
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Ran (Q\Ij7(b)

Dom (Qq;.’q;)

Xu,o

Ran (Qq>7q/)

Qo w

P Dom (Q\I]7¢)

so that the only two new spaces are the Domain and Range of the original quasilinear maps
and no new twisted sum spaces. When three interpolators (T, ¥, ®) are considered there are six
possible permutations of the interpolators and therefore six possible “bottom face” diagrams.
This makes several new domain and range spaces as well as new twisted sum spaces appear.
We will consider an interpolation pair (X, X;) and take as Kalton space the Calderén space C
associated to the interpolation pair (see [3]); we consider the first three Schechter interpolators:
for each k € NU{0}, An(f) = f*(1/2)/k! defines an interpolator on C taking values in X, + X1,
and {Ay : k € NU{0}} is a consistent family. Indeed, if 7" is an operator acting on the couple,
then Tef = T o f defines an operator on C such that ATy = T'Ay for each k. Note also that
ker(Ay, A.) = ker Ay Nker A.. We will focus on k = 0, 1,2 in the following two situations: first,
the sampler case of a pair (fo(w™!), lo(w)) of weighted Hilbert spaces at 1/2 and then, the most
important case: the interpolation pair (¢, () at 1/2.

The diagram [abc]. Let (a,b, c) be a permutation of (0,1,2). We denote by [abc] the bottom
face of the cube generated by the triple (A,, Ay, A.):

(12) labc] Ag(ker Ay Nker Ay) == A, (ker Ay Nker A,)

; |

(Ag, Ap)(ker Ay) —— (Ay, Ay, A (C) =— AL(C)

o |

Ay(ker A,) Z (Ay, A (C) ——= A(C)

where the maps are given by
e j(ALh) = (Auh,0), k(Ayh) = (Ayh,0,0), h € ker Ay Nker A,
o [(Aug, Avg) = (Aug, Arg,0), q(Aug, Avg) = Dyg, i(Apg) = (Apg,0), g € ker A

o S(ALf, Auf  Acf) = Acf, T(Aaf, Avf, Acf) = (Auf, Acf), p(Auf,Acf) =Acf, [feC.
The quasi-linear maps. We simplify the notation for the quasi-linear maps as follows:

Qap = .00 Qoo = Qaga,ay  and Qg e = Qia, A,
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It easily follows from Proposition [3.11] that

(1) the central column of [abc| is generated by €2, ¢,

(2) the central row of [abc]| is generated by Q4 .,

(3) the lower row of [abc| is generated by q o Qg > ¢, since g o (Ay, Ay) = Ay,
(4) the left column of [abc] is generated by €2, 5. © i.

Some symmetries: isomorphic equivalence of quasi-linear maps. The following equiva-
lences are obvious, or can be derived from Proposition B.1T}
Q(b,c),a = Q(c,b),a
Qa,(b,c
(Qa,<b,c))_
(Q(a,b>,c)71 Qc,(a,b)
(Qa,b)i1 = Qb,a

= Qa,(c,b)

_

= Q(b,c),a

12

The first three Rochberg spaces [7), B0] obtained from the first three interpolators Ay, A; and
Ay applied to a suitable pair (X*, X) having a common unconditional basis are:
e Ay(C) is the interpolation space (X*, X)1/2 = 0s.
o (Ay,Ap)(C) is the Rochberg derived space Ro, in this case the twisted Hilbert space
Uy Dg, , £2. In the particular case X = ¢, this is the celebrated Kalton-Peck space Z; (see

[24] and [7]).
e (Ay, A1, Ag)(C) is the third Rochberg derived space, that we will denote R3.

5. THE CASE OF WEIGHTED HILBERT SPACES.

This test case is rather interesting and provides some insight about what occurs in other
situations. Let w be a weight sequence (we will understand as in [27, 4.e.1] a non-increasing
sequence of positive numbers such that lim w, = 0 and > w, = 00). We set wyg = w™! and w; = w
and let us consider the interpolation pair (¢3(w™'), f5(w)), whose complex interpolation space at
1/2 is f5. A homogeneous bounded selector for Ag is B(x)(z) = w?** "'z since AgB(z) = z, and
therefore B(z)'(z) = 2w* tlogw - x and Q; gz = A; Bz = 2logw - . The Rochberg R, derived
space will be

Zo(w) ={(y,z) :x € by, y—2logw-x € ly}

from where Dom g = {x € {5 : 2logw - x € ly} = ly(logw) = {(0,2) € Zy(w)} and
Ran Qo = £5((logw)~!) so that (Q;9) '2 = 572—= and thus Dom (Q,0)~! = {z € ly((logw) 1) :

2logw
(logw)™! -z € ly(logw)} = €y = Ran (Q19) !, as we already know.

Next, B(z)"(z) = 4w** 'log”w - x, and thus AyB(z) = 2log®w - . Therefore Qp 1y is the
linear map
Qo) = (AB(z), A1 B(x)) = (2 log2 w-x,2logw - IL‘)
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with domain Dom Q2 1y0 = {2 € s : (2log”>w - x,2logw - x) € Zy(w)} = l5(log”w) since one
must have 2logw -z € £, and 2log® w-x —4log® -w = —2log® w - € l5. Therefore we have some
parts of the first two diagrams [210] and [012]

by ——=1{ l5(log? w) == l5(log® w)
. | |
Zy(w) Rs ly O Rs lo(log™ 2 w)
. | | |
Uy Zy(w) —= 1y | O* l5(log ™2 w)

We need to know now who are O = Dom Qy (1 o) and B = O/l5(log? w). To get the first of those
spaces we need to know €2, 1 o). Recall from the standard diagram

ker a C—2 =/

e

EQ e Zg(w) e fg

that if A, B are homogeneous bounded selectors for a and b then
W(yv ZL‘) = B(y - Qb,ax) + A"L‘
is a selector for (b,a) and therefore Q4 = cW. With this info at hand, we need a selector W

for (A1, Ag) to then obtain Qy (10 = AsW. Now, the selector for A is Bx(z) = w** 'z as we
already know, and the selector for A; : ker 6y — ¢5 is mch where ¢ is a conformal mapping

with ¢(1/2) = 0. Therefore, W(y,z) = ﬁB(y — (1 07) + Bz, and elementary calculations
yield
1 "(1/2 1
Ooianv:) = ZW001/2) = aly = Do) + 2Ly = 1) + 35471 /2)
¢"(1/2) 2
= 21 (y —21 . —(y — 21 . 21 .
ogw - (y ogw - x) + 2@’(1/2)@ ogw-x)+2log w - x

Setting d = ;;/((11//22)) one gets Qo n0y(y,2) = (2logw + d)y — (2 log?w + 2dlogw)x. This

yields Dom Q10 = {(y,2) € Zo(w) : (2logw + d)y — (2log” w + 2dlogw)x € (5} and then
Dom Qs 1.0)[pomas s = {(0,2) € Za(w) : (2log? w + 2dlogw)z € ly} = lo(log” w). And since
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dy — 2dlogwzx € 5 when (y,z) € Zy(w) one gets

O = {(y,x) € Zy(w) : (2logw + d)y — (2log® w + 2dlogw)z € £y}
= {(y,7) € Zy(w) : logwy — log® wx € ly}
= {(y,x) € Zy(w) : logw(y — logwz) € 5}
= {(y,x):x€ly and y—logwz € ly(logw)}.

By obvious reasons we will call this space O = Zg,ogw)(w). It is clear that O is a twist-
ing 0 — ly(logw) — Zpy0gw)(w) — la(logw) — 0 of 3(logw) obtained with the same
quasilinear map Qx = 2logwx. This is a bonus effect of working with weighted spaces in which
all maps are linear. On the other hand, B is the domain of AQQ; %170)' We will show later in
Proposition [6.0] that Ag(ker Ag) = Ag(ker Ay) = Aj(ker Ay) = A;(ker Ag), which in this case
yields Dom (2) = /3(logw) = B = {5. Thus, giving the analogous meaning as before to the
space Zy, ((logw)-1)(w), diagrams [210] and [012] are

by ——= 1 l5(log?® w) =——== l5(log” w)
| |

Za(w) Rs by Zég(logw)(w) Rs €2(10g_2 w)
] | |

ZQ(U}) I EQ 62

Zb((logw)—l) (w) e 62 <1Og72 w)

that we can identify as the pullback space A = {((y,0,2) € R3} generated with the map
Qo.(1,0) | Dom 0, 07 = —(21log? w + 2d log w)z. We thus get that [102] and [201] are
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l5(logw) === ly(log w) Uy =—= 1,
Zpy(10g w) (W) Rs lo(log ™% w) /L\ Rs lo(log™t w)
U5 (log w) A* lo(log % w) ly(log w) —— Zo — l5(log ™" w)

The vertical sequence on the left is defined by Qz = 2logwz because this is the derivation
associated to the interpolation couple (fo(w™'logw), fo(w log w)),y = la(logw). It is moreover
easy to check the diagram for inverse mappings

l

|

Uy (log w) O U5 (logw)

T

(>(log” w)

since Dom Q = {z € ly(logw) : logwx € lr(logw)} = {x € lry(logw) : log? wx € o} = £y(log® w)
one gets that [021] and [120] are

ly(log® w) == l5(log® w) [
N Rs3 lo(log™ " w) Z, Rs 0y
fg(log_l U}) O* f (log w 62 (10g71 ’LU) — = A —— 62

An interesting question which we left out of the scope of this paper is to investigate the case
of weighted ¢,-spaces, or even weighted versions of a given space with an unconditional basis.
In this context the first thing we lose is duality: Z, is not isomorphic to Z7, so there are more
spaces and the hidden symmetries probably disappear.

6. THE CASE OF KALTON-PECK SPACES

Things are not as simple here as in the weighted case. We will however profit from some
symmetries (some obvious, some hidden) to complete the six diagrams as the reader can see in
Section [l Peculiarities about the structure of the spaces will be considered in the next section.
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First of all, let us observe that all the spaces in the diagrams admit symmmetric Schauder
decompositions:

Proposition 6.1. The unit vector basis (e,) is a symmetric basis for the three Banach spaces
A(C), Ap(ker A,) and Ay(ker Ay Nker A,).  Similarly, (Ag, Ap)(ker A.) and (A,, Ay)(C) ad-
mit a symmetric two-dimensional decomposition and (A, Ay, A.)(C) admits a symmetric three-
dimensional decomposition.

Proof. Let X be one of the first three spaces and let P, denote the natural projection onto the
subspace generated by {ej,...,e,}. Since P, is a norm-one operator on (., and (1, (P,) is a
bounded sequence of operators on X by Proposition Clearly (e,) is contained in X and
generates a dense subspace. Since for each = € span{e, : n € N}, P,z converges to x in X,
it does for each x € X. Thus (e,) is a Schauder basis for X, and considering the operators
associated to permutations of the basis, Proposition implies that the basis is symmetric. The
remaining results are proved in a similar way, using the operators induced by P, in each of the
remaining spaces. O

The next result shows that some of the spaces in the diagrams coincide. Note that algebraic
equality implies isomorphism by Proposition B.4]

Proposition 6.2. The following equalities hold:

(1) Ag(ker Ay Nker Ag) = Ay(ker Ag) = Ao(C),

(2) (Ag, Ap)(ker Ag) = (A1, Ag)(C),

(3) Ay(ker(Ag, Ag)) = Ag(ker Ay).
Proof. Let ¢ : S — D be a conformal equivalence such that ¢(1/2) = 0. Since ¢'(1/2) # 0, we
can define ¢ = ¢/(1/2)71 - .

(1) For each g € ker Aq there is f € C such that g = ¢ - f, hence Ajg = Agf, and we get
Aq(ker Ag) C Ap(C). Conversely, if f € C then g = ¢ - f € ker Ay and Agf = Ajg, so the
second equality is proved. The first equality can be proved in a similar way. It was proved in [7]
Theorem 4] that j(xy,z) = (21, 20,0) and ¢(y2,y1,Yo) = yo define an exact sequence

0 —— (A1, 40)(C) . (Ag, A1, Ao)(C) —= A(C) —— 0,

and (2) follows from (Aq, Ay, Ag)(ker Ag) = ker ¢ and (Aq, Ay, 0)(C) = Im j.
(3) Note that y € Ag(ker Ay) if and only if (0,y) € (A1, Ag)(C) = (Aq, Ay)(ker Ay); equiva-
lently, v € Aj(ker Ag Nker Ag) = Ay (ker(Ag, Ag)). O

Next we identify the corner spaces as Orlicz sequence spaces.

Proposition 6.3. Ag(ker Ay) = ¢ and Ag(ker Ay Nker Ay) = £, the Orlicz sequence spaces
associated to the Orlicz functions f(t) = t*(logt)? and g(t) = t*(logt)?(log | log t])?.

Proof. The first equality was essentially proved in [24]. With our notation,
Ao(ker AI) = Dom QI,O = {.CL’ € 62 . QL(].T € 62}
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and €y : ly = o is given by Q; o = 2z log(|z|/||x||2). Thus
Ag(ker Ay) = {x € by : xlog|z| € by} = (5.
Similarly, since Ag(ker Ay Nker Ay) = Dom Qa1y,0 and Qa1y,0 1 o = log X Lo is given by
Q)00 = (23: log” ﬁ, 2xlog ﬂ)
1] 1]

(see [7]), Ag(ker A; Nker Ay) = {z € €y : (2xlog® |z|,22log |z|) € Z,}. Hence x € Ag(ker A N
ker Ay) if and only if x € ly, 2xlog |x| € ¢5 and

1
21 log? |z| — Q1 o(zlog |z]) = 27 log? |z| — 4z log || log wlogall € (.
|z 1og ||l
Since log |z log|z|| = log |z| + log | log |z||, we conclude that
Ag(ker Ay Nker Ag) = {x € {5 : xlog|z| - log|log|z|| € b} = ¢,. O

The second equality in the following result was observed in [4].
Proposition 6.4. Ay(ker Ag) = A(C) = ;.
Proof. For the first equality, (A, Ag)(C) = (Aq, Ay)(ker Ag) by Proposition [6.21 Thus
reA(C) & (x f(1/2)=(f'(1/2), f(1/2)) for some f € F
s (z,9'(1/2) = (¢"(1/2),4'(1/2)) for some g € ker Aq
&z e Ag(ker Ag).

For the second equality, since Zy = (A1, Ag)(C), we have a natural exact sequence
(13) 0 —= Ag(ker Ay) = b —— Zy —= A(C) —= 0

with i(x) = (0, z) and p(y,x) = y. Moreover there is a bijective isomorphism U, : Zy — Z5 given
by Uz(y, ) = (—z,y) [24]. Since i*Us = p, we get A;(C) = £3. O

The following three results were unexpected for us since, at first glance, the first two spaces
look incomparable. We do not know which of these results are true “in general” (they are true
in the weighted case considered earlier):

Proposition 6.5. Ag(ker Ay) = Ag(ker Ay) = £4.

Proof. The second equality is proved in Proposition [6.3]1 Moreover, the map 2o : 5 — ( is
given by Q0 = 2z log?(|z|/||z||). Thus

Ag(ker Az) = DomQy g = {x € £y : wlog® 2] € Ag(ker Ag) = }}.
Since ; = {x € by : wlog |z € Ly}, 05 = {x € L : xlog " |z| € £y} [27, Example 4.c.1]. Then
zlog? || _ zlog? || ’
log(|z|log? |z|)  log|z| + 2log[logz| ~ =

x € Ag(ker Ay) & z € 5 and

Thus z € Ag(ker Ay) if and only if xlog |z| € l5; equivalently x € /;. O
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It was proved in [6] that there exists a bijective isomorphism Us : Ry — R defined by
Us(g, w1, w0) = (w0, —71, T2); more precisely, given (r2, 71, 7o) and (y2, Y1, yo) in Ry one has

<U3(372,.§U1,LUO), (y27y17y0>> = <x07y2> o <.T17y1> + <.§U27y0>.
Proposition 6.6. Ay(ker A;) = Ay(ker Ag) = /3.

Proof. The second equality is proved in Proposition [6.4] and we derive the first equality from
Proposition [0 by constructing an isomorphism from Ag(ker A;) onto Ag(ker Ay)* that takes e,
to e, for every n € N. Recall that if M and N are closed subspaces of X with N C M then
(M/N)* ~ N+/M*. Thus, with the natural identifications we get

(A (ker Ag Nker Ay))*
(A1, Ag) (ker Ag))-

<A1, A0> (ker Az)
Aq(ker Ag Nker Ay)

Ag(ker Ay) ~ = Ag(ker Ag)* ~
and

- <A0, A2>(ker Al)
BalkerAy) = Ag(ker Ay Nker Ay)’

and we conclude that Us; induces an isomorphism from As(ker A;) onto Ag(ker Ay)* by
showing that Us takes (Ag, Ag)(ker Aq) onto (A (ker Ag N ker AQ))l and Ag(ker Ay N ker Ap)
onto ((Ay, Ag)(ker Ag))*. Indeed, A;(ker Ay N ker Ay) can be identified with the subspace
of the vectors (0,7,0) in Rs. Then (A;(ker AgNker Ay))" is the subspace of the vectors
(z,0,2) in R}, which coincides with Us ((Ag, Ag)(ker Ay)), and similarly (A;, Ag)(ker Ay)t =
Us (Ag(ker Ay Nker Ay)), and it is clear that the induced isomorphism takes e, to e, for every
n € N. O

Propositions [6.5] and [6.6] yield:
Proposition 6.7. A;(ker Ay) = Ay (ker Ay) = 0.
Proof. Proposition implies ker Ag + ker Ay = ker Ay + ker Ay, from which we get
Aj(ker Ag) = Ay (ker Ag + ker Ag) D Ay(ker Ay),
while Proposition implies ker Ay + ker Ay = ker Ay + ker A, Thus
Aq(ker Ag) = Aq(ker Ay + ker Ag) D Aq(ker Ag),

and the result is proved. O

6.1. Construction of the diagrams. The six diagrams are special cases of Diagram (I2)). Of
course, (A,, Ay, A.)(C) ~ Rj for each (a, b, c).
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Diagram [210]: By Proposition 6.2 As(ker Ay Nker Ag) = Aj(ker Ag) = A¢(C) ~ fy and
(Ag, Ay)(ker Ag) = (A1, Ag)(C) ~ Zy. We thus get

by ==l

|

Zy —> Rz ——= 1l

Lo

€2—>ZQ—>€2

The two quasilinear maps generating the two middle sequences are €25 1y9 and €5 (1 0); both can
be found explicitly in [7] and at the appropriate places in this paper.

Diagram [012]: Let us denote O = (Ao, A1) (ker Ay) as before. By Propositions [6.3] and 6.7
Ag(ker Ay Nker Ay) = £, and A;(ker Ay) = f5. So we have the spaces in the left column. The
next result provides the spaces in the lower row.

Proposition 6.8.
(a) Aq(C) is isomorphic to £,
(b) (A1, A2)(C) is isomorphic to O*.
Proof. (a) By Proposition[6.3] ¢, = Ag(ker Ay Nker Ay) which is isomorphic to a closed subspace
of Rz, namely {(z2,71,70) € Rz : x2 = x; = 0}. Hence £; ~ R3/ (Ag(ker A; N ker Ay))*. Since
(Ag(ker Ay Nker Ay))" = Us ((Ag, Ay)(ker Ay)) then
Rs ~
<A0,A1><keI'A2) R
(b) The space (O = (Ao, Aj)(ker Ay) is isomorphic to {(zs,x1,29) € R3 : 22 = 0}, a
closed subspace of Rs. Hence O ~ R%/((Ag, A)(ker Ay))*". Since ((Ag, Ay)(ker Ay))*
Us (Ag(ker A; Nker Ay)) then

AQ(C) ~

Rs

(A1, Ag)(C) ~ Ao(ker Ay Nker A,)

~ (O O

We thus get the diagram:

—/

s}

if)
Elg

O<— §<—
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Diagram [201]: €5 1y >~ €210y gives the central column (coincides with that of [210]), and
Propositions and [6.3 give the lower row. Thus, denoting A = (A, Ag)(ker A;) we get

Uy ==y

.

e

U ——> Zy — 0}

Arguing as in the proof of Proposition [6.8, we get.
Proposition 6.9. (As, Ag)(C) is isomorphic to N* = (Ag, Ag)(ker Ay)*.

Proof. Since A = (Ay, Ag)(ker Ay) is a subspace of Ry, A* ~ RE/ ((Ag, Ag)(ker Ay))*. Since
((Ag, Ag)(ker Ay))" = Us (Aq(ker Ay Nker Ag)) then

(Ag, Ag)(C) ~ Rs/ (Ar(ker Ay Nker Ag)) ~ A" O

Diagram [120]: Qp9y0 =~ Q)0 gives the central row, and Aj(ker Ay N ker Ag) = ¢ and
Ag(ker Ag) = £} by Propositions[6.2}, 6.3 and .6 Since A* =~ (Ag, Ag)(C) by Proposition 6.9 and
Ao(C) = Ly, we get

by =—=1{y

L

Zy —> Rz ——= 1l

.

R

Diagram [021]: Qo,2,1y == Qo,(1,2) gives the central column and €29 91 =~ 20y,1 gives the central
row. Since Ag(ker A;) = £} by Proposition 6.6, we get

EQ - Eg
N ——> Ry —> 0}
f—=0 —1
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Diagram [102]: 1 0,2) == Q1,12,0) gives the central column, and €2 )2 =~ €20 1y gives the central
row. Moreover, Ag(ker Ay) >~ ¢ by Proposition [6.5 So we get

by =—=1{y

L

O—>R3—>€;

]

lp — N L

7. STRUCTURE OF THE NEW SPACES

In this section we describe interesting isomorphic properties of the spaces appearing in the
diagrams. Recall that a Banach space X is said to be hereditarily (5 if every infinite dimen-
sional subspace of X contains a subspace isomorphic to ¢5. Observe that being hereditarily ¢,
is not inherited by quotients. In fact, every separable reflexive space is a quotient of a reflexive
hereditarily ¢5 space [2, Theorem 6.2].

Proposition 7.1. All the spaces appearing in the diagrams are hereditarily .

Proof. Each infinite dimensional subspace of a reflexive Orlicz sequence space contains a copy
of ¢, for p € [a, ], being a (resp. [) the lower (resp. upper) Boyd index of the space [26]
Proposition 1.4.3, Theorem 1.4.6]. Since R3 has type 2 — ¢ and cotype 2 + ¢ for each ¢ > 0,
the same happens with ¢; and ¢, and their dual spaces, hence their Boyd indices are 2 and
these spaces are hereditarily ¢5. The remaining spaces are hereditarily ¢, too because this is a
three-space property [14]. 0

Recall from [25, Corollary 13] that if M is an Orlicz function satisfying the Aj-condition
and 2 < ¢ < oo then the space ¢); has cotype ¢ if and only if there exists K > 0 such that
M (tx) > Kt1M(x) for all 0 < ¢,z < 1. Consequently:

Corollary 7.2. The spaces £y and £, have cotype 2 and their dual spaces £} and €} have type 2.
We need one more technical result:

Proposition 7.3. Let X be a Banach space.

(a) If X has type 2 then every subspace isomorphic to Uy is complemented.
(a) If X has an unconditional basis and cotype 2 then every subspace of X isomorphic to ls
contains an infinite dimensional subspace complemented in X .

Proof. (a) is a consequence of Maurey’s extension theorem; see [19, Corollary 12.24]. (b) The
following argument is similar to the proof of [29, Theorem 3.1] for subspaces of L,, 1 < p < 2,
with an unconditional basis. Let (e,) be an unconditional basis of X, let (x}) be a normalized
block basis of (e, ), and take a sequence (c¢;) of scalars and a successive sequence (Bjy) of intervals
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of integers so that xz, = ). B, Ci¢i- We consider the sequence of projections (Py) in X defined
by Pre; = e; if j € By, and Pye; = 0 otherwise. Let () be a norm-one projection on span{e; :
J € By} onto the one-dimensional subspace generated by x;. We claim that Px = )" QP
defines a projection on X onto the closed subspace generated by (x). If x € X then > 7, P
is unconditionally converging and || >";~, Pyz| < D||z|| for some D > 0. Moreover, since X has

cotype 2, (37, 1Pz |?)? < E| Y pe Pex|| for some E > 0. We write Q. Pz = sz, for each

k. Then
~ 1/2 - 1/2
(Z |sk|2> < <Z ||ka||2> < E-D|az|.
k=1 k=1
Hence > 7, QpPyx converges, and it is easy to check that P is the required projection. 0

Corollary 7.4. Each infinite dimensional subspace of one of the spaces Ly, Ly, €} and £} contains
a complemented copy of {s.

In the next result, observe that Z; ~ Z3. Hence X is (isomorphic to) a subspace of Z; if and
only if X* is a quotient of Z,.

Proposition 7.5. None of the spaces (), O, N and N* is (isomorphic to) a subspace or a
quotient of Zs.

Proof. Tt was proved in [24] Theorem 5.4] that every normalized basic sequence in Z, has a
subsequence equivalent to the basis of one of the spaces ¢ or £;. Thus none of the four spaces is
a subspace of Z; because () and A contain a copy of ¢, and (O* and A* contain a copy of ¢3, as
we can see in the diagrams. O]

Next we extend to R3 some of the fundamental structure results for Z, from [24]:

Proposition 7.6. An operator 7 : Ry — X either is strictly singular or an isomorphism on a
complemented copy of Rs.

Proof. Since the quotient map in the sequence 0 — o — R3 — Zy — 0 is strictly singular (see
[7) an operator 7 : Ry — X is strictly singular if and only if 7|, is strictly singular. So, let 7
be a non-strictly singular operator. Let us assume first that 7|y, is an embedding so that we can
assume that ||7(y,0)|| > ||y|| for all y € ¢5. Observe the commutative diagram:

Uy =——={

2 l l (1,2)
(7,id)

Ry ——=X DRy —X

| |o

Zy PO X

e The composition @ (7,1id) is strictly singular since it factors through .

e Q(7,id) = Q(7,0) + Q (0,id).
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e ((0,id) is an embedding since
1Q0,2)| = inf [|(0,2) = (7,2)(y)|| = inf [[(=7y,z —y)|
yela yels

= Inf {IIr(y, 0)ll + ll= = yll} = Iyl + ll= = Nyl = ll=Il

Thus, Q(7,0), being the difference (or sum) between a strictly singular operator and an embed-
ding, has to have closed range and finite dimensional kernel [27, Proposition 2.c.10] and therefore
it must be an isomorphism on some finite codimensional subspace of R3, and the same happens
to 7. All subspaces of R3 with codimension 3 are isomorphic to R3 and thus we are done.

In the general case, we assume that 7|y is an embedding for some subspace U = [u,, : n € N]
of /5 generated by normalized disjointly supported blocks u,, of the canonical basis. Define the
operator 7y : X — X given by 1y(e,) = u,. It was shown by Kalton [21] that if Sy : Zo — Zs
is the operator Sy(e,,0) = (u,,0) and Sy (0,e,) = (4 0Un, uy,) then there is a commutative
diagram

0 Uy > Lo ly > 0
(14) ml lsy lm
0 ly > Lo lo > 0
Observe that we can describe the operator Sy as given by the matrix Sy = 2(; 2u l;)gu

The theory developed in [I2, Proposition 7.1] explains why the upper-right entry of the matrix
has to be 2ulogu. Analogously, there is a commutative diagram

0 7 Ra ly 0
(15) sUl lRU lm
0 > Lo R ly > 0

with the operator Ry emerging from the theory developed in [12, Proposition 7.1} and given by

u 2ulogu 2ulog?u
Ry=1| 0 u 2ulogu
0 0 u

Since 7y is an into isometry, so are Sy and Ry. Thus, Ry[Rs] is an isometric copy of R3. Let
us show it is complemented. With that purpose, consider RY the space R3 constructed with each
block u,, in place of e,; namely, ZY is the twisted sum space U @®qu, U constructed with Qllj’o(u) =

2>\, log L for u € U and then RY is the space RY GBQEJQ o U with the corresponding definition

Ju]
for Q%J),O. We can in this way understand Ry as an operator R}, : RY — R3 in the obvious form:
Ry (un,,0,0) = Ry(en,0,0), R (0,uy,,0) = Ry(0,e,,0) and R (0,0,u,) = Ry(0,0,e,). Consider
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the diagram

R/

RY - Rs
| E
RY)* R
(R3) P 3

Here Dy is the obvious isomorphism between RY and (RY)* induced by D. The diagram is
commutative: for normalized blocks u;, u;, ug, ug, Upm, v, one has

Ry (tg, up, ue) = (ug + 2up log uy, + 2u, log? te, up + 2 1og ue, ue)
while
D (uZ + 2ujlog u; + 2uy log2 Up, Uj + 2uy log uy, uk) (ul + 2y, log uy, + 2u, log2 Uy, Uy + 2y 1O Uy, un)
is
(wi+2u; log u;+2uy log® g )y, — (wj+2uy log uy ) (wm+2uy, log uy, ) +uk (w42, log wy,+2u,, log® u,,)
namely
Oin 420, log u+ 26, log? u— Ojm — 20, log u— 20y, log u— 40y, log? w+ 81+ 26m 1og u+ 26, log® u
which is 0;,, — dj, + iz Thus
Ry DRy (wg, wg, ug) (g, U, uy) = DRy (ug,ug, ug) (R (g, U, )
(R (ua, wg, un), Ry (w; i, )
= Oin — Ojm + Okt
= Dy(u;, uj, ug)(ug, Uy, y)

Therefore, D[}IRQJ*D is a projection onto the range of Ry, as desired, and one can repeat the
same argument as before working now with 7|y instead of 7|,. 0J

Corollary 7.7. FEvery operator from Rs into a twisted Hilbert space is strictly singular. In
particular, Rs does not contain complemented copies of either Zy or {s.

Proof. That R3 cannot be a subspace of a twisted Hilbert space was proved in [6]. O
Corollary 7.8. The six representations of R as a twisted sum in the diagrams are non-trivial.

Proof. Since R3 contains no complemented copy of /5 and R3 ~ R [6], by Corollary [Z4] the
exact sequences Zy = Rz — s, N — Rz =} and (O — R3 — {; have strictly singular
quotient map, while fy — R3 — Z3, {y — R3 — A" and {;, — Rs — (O* have strictly
cosingular embedding. Of course, the second part is a dual result of the first one. OJ

We now improve those results. In [24) Theorem 5.4] it is proved that every normalized basic
sequence in Z, admits a subsequence equivalent to the basis of one of the spaces ¢, or £;. We
obtain the corresponding results for Rj:
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Theorem 7.9. Fvery normalized basic sequence in Rs admits a subsequence equivalent to the
basis of one of the spaces Uy, Uy, l,.

Proof. Let (yn, Tn, 2n)n be a normalized basic sequence in R3. If ||z,|| — 0 we can assume that
> ||znll < oo and thus that, up to a perturbation, (y,, x,) is a basic sequence in Z, that therefore
admits a subsequence equivalent to the basis of either ¢, or ¢; [24, Theorem 5.4]. If, ||z,|| > ¢
then we can assume after perturbation that there is a block basic sequence (u,,) in ¢ such that
> lzn — unl] < co. Since

(yn7 xn7 Zn) - (yn7 xn7 Zn) - (Q(Z,l),ounu U‘n) _'_ <Q<2,1>,Oun7 un)
- ((yrw xn) - Q(Z,l),Ouna Zn — un) + (Q<2,1),0un7 un)

and z, —u, — 0 we can assume that ((y,, 2,) —2,1),0Un, 2n —Uy,) admits a subsequence equivalent
to the basis of either ¢ or £;. We conclude showing that (€21),0tUn,u,) is equivalent to the
canonical basis of /;,. And thus the plan is to show that Z(xn§2<271>70un, > xnuy,) converges in
Rs if and only if (x,) € £,. In order to show that, we simplify the notation: let x be a scalar
sequence, let u = (u,) be the sequence of blocks and let us denote zu = > x,u,. Showing that
(2€2,1),0u, zu) converges in Ry is the same as showing that its norm is finite. Recall that for a
positive normalized z one has Q1) 0(2) = (22 log” 2, 2z log 2). Since

1(2€2,1).0u, 2u) Ry = [[(2€22,1).00 = Q1) o (2u) || 2o +|zullz = [[(2Q20,1) 00— Q2 0 (1) | 2, + [l 2|2
assuming ||u,|| = 1 for all n and ||zu|| = 1 then
1Qo1y0u — Qe nolru) = (22ulog?u,2zlogu) — (2zulog?(zu), 2zulog(zu))

(2zu( log® u — log® zu), 2zu(log u — log(ux)))
= (2x (log® u — (log® x + log® u + 2log z log u), —22u logx))
(—2zu (log® x + 2log x logu), —2zu log z))
and therefore one gets
[(2Q2,1y,0t — Qay0(zw)] 2, = || (—2zu(log® z + 2log xlog u), —2zulog z)) ||z,

= || — 2zu(log® z 4 2log xlog u) + 4zulog x log (2zulog x) ||2 + ||22u log 2|2

= |[|2zu (log2 z + 2log2logz + 2log zloglog x) |2 + ||2zulog z||».
That means that the sequence z satisfies z(log|z|) log|log |z|| € ¢5; namely, x € ¢,,. O

Let us obtain a few consequences. First, about the structure of Rs:

Proposition 7.10. R3 has no complemented subspace with an unconditional basis.

Proof. If (x,) were an unconditional basic sequence in R3 generating a complemented subspace, it
would admit a subsequence (x,, ) equivalent to the basis of one of the spaces 5, (¢, ¢, by Theorem
[9. Since this subsequence would generate a complemented subspace of Rz, we would conclude
that R3 contains a complemented copy of /5, by Corollary [[.4] which cannot happen. U

Then about the structure of its subspaces:
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Lemma 7.11. None of the spaces N, N*, (), Ox is either a subspace of a quotient of Zy. In

particular, none of the spaces N\, () is isomorphic to Zs.

Proof. We need to from [6] the estimates for the cotype constants of R3 that show that Rs, ¢,
and £} are not subspaces or quotients of Z,. This, and diagrams [012], [021] and [102]

by=——=1 lg=—=1 ly=—=1;
- - .
O Rs ¢ A Rs T O—=Rs——=1
.
ly O Iy i O } by —= N —— ¢}
yield the result. O

Moreover
Proposition 7.12. The spaces A and () are not isomorphic to their dual spaces.

Proof. Both A and () are subspaces of Rg3, hence Theorem applies. But A* and ()* contain
a copy of (3, as we can see in the diagrams, while the canonical basis of (} (or any of its
subsequences) is not equivalent to those of £, ¢; or /. U

Proposition 7.13. A is not isomorphic to either () of ()*.

Proof. The idea for the proof is to show that every weakly null sequence in A contains a subse-
quence equivalent to the canonical basis of either ¢, or ¢4, so that A cannot contain either ¢; or
% and therefore it cannot be isomorphic to either O or . Why it is so is essentially contained
in the displayed proof of Theorem [Z.9] taking into account that the elements of A have the form
(y,0,2). Our interest is now in showing that when (u,) are blocks in ¢ (actually in £;) and
> (xnyn,0,u,) converges in Rs then x = (z,,) is in either ¢, or ¢,. Using the same notation as

then, since |[(zy, 0, zu)|lz, = | (zy,0) — Q<2,1>,0(3:u)HZ2 + ||zulls,, and since (zy,0) and zu con-
verge when x € /5, our only concern is when Q<271>70(xu) converges in Zs. But this means that
x € Dom Q<271>70 = Eg. [

Proposition 7.14. The spaces A and N* do not contain {5 complemented. Consequently, they
do not have an unconditional basis.
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Proof. Consider the diagram [120]

ly=—=1;

1.

Ly —— Rz ——{y

e

e

Its lower sequence comes defined by A(x) = zlog?z, obtained from the composition Q)00 =
(zlog® z, zlog ) with the projection onto the first coordinate. Let u be a sequence of disjoint
blocks of the canonical basis of /5 and let = € /5.

Azu) = zulog’(zu) = zu (log z + logu)?)
= xu (log2 z 4 log? u + 2log z log u)
= zulog® z + zulog?® u + 2zulog z log u

Observe that the second term z — zulog? u is linear while the third term & — 2z log zu log u is,
up to a weight, the Kalton-Peck map relative to the subspace [u] generated by w and thus it is, up
to a linear map, the map x — € () (see [§]). This map is bounded when considered with value
sin its range £}. All this yields that Al is, up to a linear plus a bounded map, A. Therefore the

exact sequence 0 — £} — A" — {3 — 0 is singular, thus its dual sequence 0 — £, — A s ly — 0,
which is the left column in diagram [201], is cosingular. Assume that A contains a subspace A
isomorphic to ¢, and complemented by some projection P. Since @) is strictly singular, there
exist an infinite dimensional subspace A" C /5 and a nuclear operator K : A’ — A such that
I — K :A — Aisan embedding. Passing to a further subspace if necessary we may assume that
the nuclear norm || K ||, is strictly smaller than 1. Let N be a nuclear operator on A extending
K with || N||, < 1. Then 1, — N is invertible and (1, — N)~' = >, N*, and it is easily seen
that -
(1n—N)oPo(1,—N)*

is a projection on A, hence of /5 onto A’. This cannot be since the sequence is cosingular. Since
A is reflexive, it immediately follows that A* cannot contain ¢5 complemented. As for the second
part, since A is a subspace of Rg3, the argument in the proof of Corollary also proves the
result. O]

Now we consider the strict singularity of the quotient maps in the six diagrams.

Proposition 7.15. The following maps are strictly singular:
(1) Qo, Q1, Q2, Qr, Qo1, Qao, Qoz, Q12 and Qa1

(2) P10, Po,1s P2,0, Po2; P21 and P12
(3) 41,05 40,15 42,0, 40,2 -
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Proof. (1) That Qy, Q1, @2, Q10 and Qy; are strictly singular is a consequence of Proposition
[[.8, because /5, ¥, Uy and Z> do not contain R3. The lower part in the diagram [120]

Zy —— Ry~ 4

lm,o leo ‘

a2,
U —— A" =0 ly

plus the technique used before shows that 2, hence (g2, is strictly singular. Therefore, its
restriction py o is strictly singular too. Consider then the two inverse representations

Uy

pl,QT
Po,2

by —=0O ——=1{;

|

ty

The restriction of p; o to £ is the canonical inclusion of ¢; into f5, which is strictly singular due
to the criterion [27, Theorem 4.a.10] asserting that given two Orlicz spaces £y, £ for which the
canonical inclusion ) : ¢); — ¢ is continuous then ) is strictly singular if and only if for each
B > 0 there is a sequence 71, ..., 7, in (0, 1] such that

> M(zit) = B>  N(rt)

for all ¢ € [0, 1]. This yields that the canonical inclusions ¢, — ¢; — {5 are strictly singular by
straightforward calculations. Thus, also pg is strictly singular and consequently the lower part
of diagram [102]

Q2
O—>’R3—>£g

ipoz lQoz ‘

Oy —— A 2 g

yields that Qoo, hence Q2 too, is strictly singular. (2) the maps are restrictions of @1, Qo1,
()20 and Qo 2. (3) follows from Corollary [.4] because Z; and A* contain no complemented copy
of EQ. L]

We have been unable to prove that ¢; » and g, ; are strictly singular, from where it would follow
that () and (O* do not have an unconditional basis.
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8. THE FENCHEL-ORLICZ APPROACH

A rich theory [I] 32] contemplates Z5 as a Fenchel-Orlicz space, with the meaning described
next. Recall that a function ¢ : C" — [0,00) is a Young function if it is convex, ¢(0) = 0,
lim; . p(tz) = 00 and p(zz) = p(z) for every z € C of norm 1 and for every  # 0. A Young
function ¢ generates the Fenchel-Orlicz space

A 1
b, = {(z”);51 € C" : 3p > 0 such that Z‘p(;ﬂ) < oo}

endowed with the norm [[(27) 51/, = inf{p > 0 : 35 ¢(;27) < 1} For n = 1 we obtain Orlicz
spaces. In general, the Rochberg spaces R,, generated by the sequence of interpolators (A,) are
Fenchel-Orlicz spaces in a natural way (see [10]), i.e., for 8 € (0,1) fixed and n > 2 there is a
Young function ¢, : C* — [0, 00) such that the identity is an isomorphism between R,, and /.
At this point, what we need to know is that the spaces f5, Z5, R3 are Fenchel-Orlicz spaces in
the following way:

o (5 is L4u), the Orlicz space generated by the Orlicz function ¢ (z) = fo(z) = |zo|?.
® 7y is Ly, the Fenchel-Orlicz space generated by the quasi-Young function

@ (21, 29) = |21 — w9 log |zo||* + |z0|*.

Keep track that
— ¢ (21,0) = |21]% 50 lo = {(z,y) € Ly 1 y = 0}.
— (0, 20) = |mglog |zo||? + |x0|? ~ f, s0 l = DomKP = {(2,y) € Ly : v = 0}.
® Rz is L), the Fenchel-Orlicz space generated by the quasi-Young function

¢ (29, 1, 20) = ¢ (21, m0) + 0V (22 — 921 20)[2])

R (1/2
il

) and gz(2) = |z[*7!

where the reader should recall that Ali] stands for x, so that

g.(2) = 2|z|* 'z log|z|, and thus
ga&[l] = g:/v(l/Q) = 2z log |l‘| NOWa we set Y(z1,20) = Yo + %g$1_gs€0[1}7 with ® - S—Da
conformal map such that go(%) =0 and k; is adjusted so that g, 2)[1] = 1.

One therefore has
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p(2)
g($17$0)(’z) = Guo(2) + ko gl“172:v010g|$0|(z)
, z -
= |zo|* o + %\xl — 2z log |2o||** ! (21 — 220 log |20|)
2

/
2
gle7$0)(z) - g;()(z) + (k:_zg:vlgz()[l]) (2)
= 2|x0|2z*1xolog|xo|

p(2)

ko
¢'(2)

ko

‘2,271(

2|z — 2x log |xo| x1 — 2x0 log|zol) log (|21 — 22 log |xo]|)

|2z71(

|x1 — 2x¢ log |0 x1 — 2x0log |zol)

forol® = )+ (5000

¢(2)

whatever
ko

= 4|zo|* g log? || +

/
z _
+ Spk( )4\1’1 — 220 log |20||** (21 — 220 1og |20|) log (|21 — 220 log |zo]])
1
z _
+ Spk( )|x1 — 2log |zo||** ! (21 — 220 log |2|)
2
hence
1
g(l‘l,l‘o)[Q] = ag T :Bo (1/2)
'(1/2
= 2w log® x| + %2(3:1 — 2x01og |xo|) log(|z1 — 220 log |xol])
2
1 1 2
+ M(azl — 2z log | 7))
2ks

In particular

® g2 =0
® Gz, 0)[2] _ ¢ /2)233 10g|£17 ‘_'_ 24 1/2)le
BEIEY

® J0.20)[2] = 21‘0 log? |zo| + ¢ 1/2) 2(—2xq log |xo]) log |22 log |xo|| —2x¢ log |zo|)

Some notation will render thmgs easier. For nonempty A C [n], let i, : R4 — R"™ be the
natural inclusion induced by A (for example, if A = {2} C [2], then i4s(2) = (2,0,0)). Given a
Young function ¢ on R"! we set o4 = @ 0iy and it is easy to see that ¢4 is a Young function.

In conclusion:

(1) 6P (22) = 6@ (22,0,0) = 3P(0,0) + ¢V (23) = |2|? generates the space L.
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(2) 0" (@1) = 6P(0,21,0) = 6 (21, 00+ (900, 0)[2]) = s [*+| #5221 loglr |+ 512
generates the space (.

(3) (()3)( 0) = gb(?’)((), 0,29) = ¢(2)(0, xo) + |g(0,x0)[2}|2 generates the space f

(4) 6252 (@, 1) = 6O (22, 21,0) = 62 (21,0) 46 (23— G(ay 0)) = |21 [+ ]2~

“"”S/ 2) T |2 generates the space Zs.

227, log| a1 |—

()

¢§ 3(1’2, 7o) = ¢O) (22,0, 20) = (0, 20) + |72 — G(0.20)[2]]* generates the space A.
(6) o)

) (21, 70) = 690, 21, 70) = G2 (1, 20) + g(as ) [2]|° gemerates the space O.
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