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ABSTRACT. We study pairs of interpolators, the differentials they generate and their associated
commutator theorems. An essential part of our analysis is the study of the intrinsic symmetries
of the process. Since we work without any compatibility or categorical assumption, our results
are flexible enough to obtain and generalize most known results for commutators or translation
operators, in particular those of Cwikel, Kalton, Milman, Rochberg [20] for differential methods
and those of Carro, Cerda and Soria [9] for compatible pairs of interpolators. We also consider
stability issues extending the results in [13, 12, 17] from the complex method to general differential
methods.

1. INTRODUCTION

We study pairs of interpolators, the derivations they generate and their associated commutator
theorems. An essential part of our analysis is the study of the intrinsic symmetries of the process
that allow us to jump from an ordered pair (¥, ®) of interpolators to its reverse pair (@, V).
Our results are flexible enough to apply to a variety of interpolation methods: those of the
kinds considered in [9] and [20], translation operators and the differential methods of [20]. In
particular, we will obtain in Section 7 some general commutator results which exhibit a kind
of symmetry. In the last section we generalize stability results in [13, 12, 17] from the complex
method to general differential methods. Our approach will be free of categorical elements. We
also avoid for most of the paper any compatibility condition in the sense of [9]. The reason to
delay compatibility assumptions until 6.1 is that, in a sense, they obscure the symmetry between
the results one obtains for an ordered pair (U, ®) of interpolators and its reverse pair (&, V).

2. PRELIMINARIES

The theory of twisted sums originated from the papers [22; 32] and was created by Kalton
[25] and Kalton and Peck [27]. A brief comprehensive account can be found in [14]. A twisted
sum of two quasi-Banach spaces Y, Z is a quasi-Banach space X which has a closed subspace
isomorphic to Y such that the quotient X /Y is isomorphic to Z.
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A short exact sequence (of quasi-Banach spaces and linear continuous operators) is a diagram

0 > Y X > Z 0

in which the kernel of each arrow coincides with the image of the preceding one. Thus, the open
mapping theorem yields that the middle space X is a twisted sum of Y and Z. The simplest
short exact sequenceis 0 =Y - Y ® Z — Z — 0 with embedding y — (y,0) and quotient map
(y,2) — z. Two short exact sequences 0 =Y — X; = Z — 0, j = 1,2, are said to be equivalent
if there exists an operator T : X; — X, such that the following diagram commutes:

0 — Y — X; — Z —— 0
I
0 — Y — X, — 7 0,

By the 3-lemma [14, p. 3] 7" must be an isomorphism. A short exact sequence is said to be
trivial, or to split, if it is equivalent to 0 - Y — Y & Z — Z — 0. Observe that the short exact
sequence splits if and only if the subspace Y of X is complemented.

Let M, N be closed subspaces of a Banach space Z, and let S); denote the unit sphere of M.
The gap g(M, N) between M and N is defined by

g(M,N) =max { sup dist(z, N), sup dist(y, M)},

€SN yeESN
and the minimum gap v(M, N) between M and N is defined by
, dist(u, V)
M,N)= f
VM N) = it | dist(u, M N N)
Note that M + N is a closed subspace of Z if and only if v(M, N) > 0 [28, Theorem 1V.4.2].

Proposition 2.1. Let M and N be closed subspaces of Z such that M + N is closed, and let
us denote R = (1/2)min{~y(M,N),v(N,M)}. If My and Ny are closed subspaces of Z and
g(My, M)+ g(Ny, N) < R, then

(1) M NN = {0} implies My N Ny = {0} and My + Ny is closed.

(2) M + N = Z implies M, + N, = Z.
In particular, if Z = M & N and g(My, M) < R then Z = M; @ N; i. e., the property of a
subspace being complemented is open with respect to the gap.
Proof. (1) Since M NN = {0} and M + N is closed, v(M, N) = inf,eg,, dist(u, N) > 0.

Suppose that there exists u € M; N Ny with |Jul| = 1. Since dist(u, M) < g(M;, M) and

dist(u, N) < g(Ny, N), our hypothesis implies

1
dist(u, M) + dist(u, N) < 57(M, N)

and dist(u, M N N) = 1, contradicting [28, IV Lemma 4.4]. Hence M; N N; = {0}. A similar
argument shows that M; + N, is closed. Indeed, otherwise for every ¢ > 0 we could find u € M;
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and v € Ny with |lu|| = |Jv]] = 1 and ||u — v|| < e. Therefore dist(u, M) < g(M;, M) and
dist(u, N) < g(Ny, N) + €, and [28, IV Lemma 4.4] would imply

1
§W(M,N) < g(My, M)+ g(Ny,N) + ¢

for every € > 0, contradicting the hypothesis.

(2) Let M~ denote the annihilator of M in Z*. Since M+ N = Z if and only if M*N N+ = {0}
and M+ + N* is closed, g(M,N) = g(M*, N*) and ~(M, N) = v(N*, M*) [28, Chapter IV],
the result is a consequence of (1). O

We refer to [28, Chapter IV] for additional information on the gap between subspaces.

Given Banach spaces X and Y and a bounded operator 7" : X — Y, it is usual in interpolation
theory to endow T'(X) with the associated quotient norm, defined as follows:

| Tx|r = inf{||z||lx : Te =Tz, z¢€ X} =dist(z, kerT).

Since the operator 7" induces an isometry x +ker " — Tz from X/ ker T onto (T'(X), || - ||7), the
latter space is a Banach space.

3. RELATIONS BETWEEN THE DERIVATIONS GENERATED BY (W, ®) AND (®, V)

We adopt the language of [9], simpler than the one used in [20], but we omit the functor
terminology because it is not necessary in our context. We consider a couple (Xj, X;) of Banach
spaces continuously embedded into their sum > = Xy + X; and to this we will simply refer as
a couple. This sum space admits a norm || - ||x making it a Banach space (see [2]). A linear
operator 7 : X — 3 is said to act on the couple (Xo, X1) if 7 : X; — X; is continuous for ¢ = 0, 1.

An abstract interpolation method for a given couple (Xo, X1) is generated by a Banach space
H, that we will call the generalized Calderon space, and a linear continuous operator ® : H — X,
that we will call interpolator on H, in such a way that, for every linear operator 7 acting on the
couple, there is a linear continuous operator T': H — H such that To® =d o T

We denote by Xg¢ the space ®(H) endowed with the quotient norm

zlle = inf{[[fll» : f € H,2f =2} (2 € Xo),

which is a Banach space. Fix ¢ > 0 for the rest of the paper. We will consider a homogeneous
map Bg : X¢ — H such that ®Bgz = x and || Be ()|l < (1 + ¢€)||z||e for each x € X.

If 7: 3 — X is a linear operator acting on the couple then we get an “interpolated linear
operator” 7 : X¢ — Xg since

[T7(@/)le = I7(2Be®f)lle = [2(TBa®f)l[o < || - [T[(1 + )| 2(f)l|e-

Our main concern in this paper will be to study the situation in which we have two different
interpolators ® and ¥ acting on the same generalized Calderén space H. Such situations arise
in various settings such as those considered, for example, in [9] and [20] where one can even have
a whole sequence of interrelated operators acting on the same space H. A typical example of
this situation, probably the first which was ever considered, occurs for a given couple (Xo, X1),
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picking as H the Calderén space F(Xy, X;) of continuous bounded functions from the closure of
the unit strip in the complex plane S = {z € C : 0 < Re(z) < 1} to ¥, which are holomorphic
on S, so that the maps t — f(it) € Xy and ¢t — f(1+1it) € X; are continuous and bounded, and
endowed with the norm || f||l% = sup,er{llf(#)||xo, || (1 +it)||x, }. In this situation, we consider
the interpolator ® = dy, the evaluation map at § € S. Such choices of course mean that Xg is the
complex interpolation space [Xg, Xi]p. For the rest of this paper we will mostly consider 6 real.
In addition to dy one has, for each n € N, the evaluation operators 5§") of the n* derivative at
6. Each of those is also an interpolator on F (X, X;). In this paper we will often be considering
objects generated by pairs of interpolators (¥, ®) which generalize the previously studied objects
generated by the pair (dp, dg).

Let (¥, ®) be a pair of interpolators on H, let (U, ®) : H — ¥ x X be the map defined
by (¥, ®)f = (Uf,®f), and let Xy ¢ denote the space (¥, ®)(H) = {(U(f),D(f)) : [ € H},
endowed with the quotient norm. One thus has the following commutative diagram with exact
rows and columns:

0 0
ker U Nker ® ——— ker(¥, ¢)
(1) 0 —— ker — H LN X —— 0
v (W, ) H
0 — Ukerd) —— Xgo —— Xg —— 0

0 0

where W (ker @) is endowed with the obvious quotient norm that we will call, when necessary,
| - [[wxer@); the maps 2, p are defined by 1Wg = (¥g,0) and p(Vf,®f) = ®f, respectively, and
the sequence

(2) 0 — Ulker®) —— Xyo L s Xy —— 0
1s exact.

Definition 3.1. The derivation associated to the pair (¥, ®) is the map Qu o : Xo — X given
by Q\p’q) = ‘1/B<1>

The derivation Qy ¢ generates the so-called derived space
dQy e = {(w,z) € X X Xg : w — Qg ov € U(ker )},

endowed with the quasi-norm |[(w, 7)|lqy , = [[w — Qu.e2||w@er o) + 2] o-
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Remark 1. ||(-, )|y 4 is a quasi-norm because B (2 4 y) — Be(7) — Bs(y) € ker ®, hence
B3)  Qwe(z+y) = Qualr) = Qua(y)lle <201+ )|V : ker & = U(ker @) (lzfle + [lylle) -

Note also that ||(-,)[|qy.,, as well as 2y o depends on the choice of Bg. However, all spaces
dQy ¢ obtained with no matter which choice of ¢ and Bg are the same, and endowed with
equivalent quasi-norms.

Therefore, one has a short exact sequence
(4) 0 — Uker®) —2— dQyp —— Xo — 0
with inclusion jw = (w,0) and quotient map n(w,z) = x.

Proposition 3.2. The exact sequences (2) and (4) are equivalent. In particular Xy ¢ is isomor-
phic to d{ly .

Proof. We will show that the operator s given by (w, z) — (w, x) makes commutative the diagram

0 — Uker®) —— dQyp —— Xo — 0

0 — Ukerd) —— Xy —— Xo —— 0
Let (w,x) € dQdye. Since w — Qg or € Y(ker®), w — Qyoxr = V[ for some f € ker & with
I1flle < 1+ ¢)Jw — Quoz|, Thus w = Qyer + Vf = ¥U(Bsx + f) and therefore (w,x) =
(\IJ<B¢)$ + f), @(Bq;l‘ + f)) € Xq;,.p with

l(w,z)[[ < [|Bex + fll < (T +e)llz] + (1 +&)lw = Quoz]| < (1 +&)[(w, 2)[ay,- T

()

The space Xy ¢ would correspond, in the case of complex interpolation described above, to the
second Rochberg derived space R, [33]. See also [7] for a comprehensive approach. A forerunner
for Rochberg Rs space is the space B((J2) introduced in [34, p.323]. We thank the referee for this
information.

We study now the domain and range spaces associated to Qg ¢. The paper [9] contains a
similar analysis for compatible couples (see Section 6.1).

Definition 3.3. Let (U, ®) be a pair of interpolators on H. The domain and range of g ¢ with
respect to the short exact sequence (4) are defined as follows:

Dom(Qu o) = {zr € Xo : Qua(zr) € U(ker @)}

endowed with the quasi-norm ||T||pomy.o) = Qw02 ||wkers) + [|2]le and
RaH(Q\p@) = {w €X:dr e Xq;, w — Qq;@(l’) € \I/(ker q))}
endowed with the quasi-norm ||w||ran(ey.e) = If{[|[w — Qv o (@)||v@ere) + [|2]le : 2 € Xo, w —

Q\p@(l’) € \If(ker (I))}

We have followed the definitions in [3]. Observe that Ran(Qy ¢) is different from the set
Rang(£24) considered in [9, Definition 10], which is not a vector space in general.
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Proposition 3.4. The maps Jx = (0,x) and Q(w,y) = w define a short exact sequence

(6) 0 — Dom(Qpe) —— Xoo —— Ran(Qye) — 0.

with | J2|lay & = |#][pom and |Jw]|gan = f{]|(w, 2)llay o © (0, 7) € dQua}-

Proof. Note that x € Dom(Qy ) if and only if (0,7) € dQy e, and ||7||pomy.s) = [0, 7)[|0g.e-
Therefore J is an isometric linear operator. The image of J is closed: if a sequence (0, z,) in
Im(J) converges to (y,z) € dfdy e, then lim,z — z, = 0 and lim,y — Quo(z — 2,) = 0 in
Xo. Since Qy ¢ @ X4, — X is continuous at 0 (because Bg is so) and the inclusion X¢ — X is
continuous, y = 0.

The map (@ is well-defined and surjective: (w,z) € dfdy ¢ implies w — Qy o2 € Xg, hence w €
Ran(Qy o). Moreover, w € Ran(Qy ¢) implies the existence of x € Xg such that w — Qg ¢ € Xo,
hence (w, x) € dQy ¢.

Also it is clear that Im(J) = ker(Q) and that ||w||ran(ay ) Satisfies the required equality. [

The following result is in [3].

Corollary 3.5. The spaces Dom(Qy o) and Ran(Qy o), endowed with their respective quasi-
norms, are complete.

The short exact sequences (4) and (6) thus provide two different representations of the same
derived space dfly ¢ as a twisted sum.

Definition 3.6. Given a pair (¥, ®) of interpolators let us call (P, V) its reverse pair. Given a
derivation Qg ¢ we will call Q¢ ¢ its reverse derivation.

It is not necessary to call X ¢ the reverse of Xy ¢ since these two spaces are actually isomorphic
(by a simple permutation). Subsections 5.2, 5.3 and 5.4 provide examples of reverse pairs and
derivations. We show now that sequences (3) and (5) correspond to the reverse derivations and
display the symmetry relations between them.

Proposition 3.7. Let (¥, ®) be a pair of interpolators on H. Then
(1) Dom(Qy.¢) = ®(ker ).
(2) Ran(Qq,@) = X\Il
(3) The derivation associated to the short exact sequence (6) is Qo .

Proof. (1) If z € Dom(Qy,¢) then z € X¢ and ¥Bgx € U(ker ®). Thus VBgz = ¥g for some
g € ker @, hence Bpx — g € ker ¥ and x = ®(Bgx — g) € P(ker V). Conversely, if y € & (ker V)
then y € Xg and there is f € ker ¥ such that y = ®(f). We have Bg(y) — f € ker®, so
U(Bg(y) — f) = Qua(y) € U(ker ®). Hence y € Dom(Qy ¢).

(2) If w € Ran(Qy o) then there exists © € Xg such that w — Qg ¢ € U(ker @) C Xy. Since
Qyor € Xy, we get w € Xy. Conversely, if w € Xy then w = Uf for some f € H. Since
(Vf,@f) € Xy.o, Proposition 3.4 implies w = ¥ f € Ran(Qy o).

(3) We have to show that X¢ ¢ = {(w,2) € ¥ x Xy : w — Qg gz € P(ker ¥)}. If f € H, then
UfeXyand @f — Qo oV f =@(f — ByVf) € ®(ker ¥) because f — ByVUf € ker U.
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Conversely, if 2 € Xy and w— Qg gz € O (ker V) then x = Vh and w—PByx = g with h € H
and g € ker U. Thus ®(g + Byz) = w and ¥(g + Byz) = VByx = z, hence (w,z) € Xoy. O

Clearly gy ¢ sends Dom(€y ¢) into W(ker @), which coincides with Dom(€2¢ ¢) by Proposition
3.7, and thus the general situation is described by the diagram.

(7) Ran(Q\p,@) oy
Qy e
Dom(Q4 ) Xvo Ran(Qe,v)
Qs v
oo Dom(Qy ¢)

Cabello denotes in [3] 2 = Qg ¢ and U = Qg y. He then claim that “the roles of U and (2
are perfectly symmetric” in [3, p. 48] and refers to the Kalton-Peck case obtained by complex
interpolation in which the pair ¥ = d; and ® = dy, in which Dom(Q¢ v) = Xo = Ran(Qqe ). It
is not hard to check that Q¢ ¢Qy ¢ is bounded see below Theorem 4.1 (4’) and (5), therefore,
thinking in boundedly equivalent terms we could also denote Q¢ ¢ = Qg,}q, We will not pursue
this line in this paper.

4. THE BOUNDED SPLITTING THEOREM

We study now the bounded splitting of the induced sequences. Recall that the short exact
sequence

(8) 0 — Y(ker®) —— dQgo —— Xo¢ —— 0

generated by the derivation €y ¢ boundedly splits if Qg ¢ : Xo — U(ker @) is bounded. The
sequence splits if there is a linear map L : X¢ — 3 such that Qg¢ — L : Xo¢ — W(ker @) is
bounded. The following result extends and completes [12, Theorem 3.16].

Theorem 4.1. For a pair (U, ®) of interpolators, the following conditions are equivalent:

(1) H =ker & + ker .
(2) Xo = P(ker V).
(3) Xy = U(ker ®).
(4) DOHI(QQ@) = Xq,.
(5) DOm(qu,\p> = X\p

The above conditions are also equivalent to their “topological” counterparts:
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(1) H = ker ®+ker U and there exists C' > 0 such that for every f € H we can find g € ker U
and h € ker ® with f = g+ h, ||g|| < C||f]| and ||h]| < C|f]-

@)
(3") Xy = W(ker ®) with equivalent norms.
(4") Q.o is bounded from X¢ to V(ker ).
(57)

Proof. (1) < (2) because ®(H) = ®(ker V) if and only if H = ker & +ker ¥. Similarly (1) < (3).

Clearly (3) = (4) and, by Proposition 3.7, (4) = (3). Similarly (2) < (5).

(1) = (1) Since H = ker ® + ker ¥, the map ¥ : ker® — Xy is open. Thus there exists
¢ > 0 such that, for every f € H, we can find g € ker ® with ||g|| < ¢||f]] and ¥ f = ¥g. Then
f—gekerW, [|f —gll <A +)|f] and =g+ (f —9)

(2) = (27) follows from dist(f, ker ®) < dist(f, ker & Nker ¥) and the open mapping theorem,
and the proof of (3) = (3’) is similar.

(3’) = (4) is a consequence of ||Qy o fllv = [[¥Bofllw < ||¥]|(1+¢)|flle, (47) = (37) follows
from Proposition 3.7, and the proof of (2’) < (5’) is similar. O]

In particular, Theorem 4.1 shows that the sequence
9) 0 —— VUlker®) —— dQdy 9 —— Xo —— 0
boundedly splits precisely when H = ker ® + ker ¥, which also happens if an only if
(10) 0 —— OkerV) —— dQgo —— Xy —— 0

boundedly splits. Thus, it also shows the symmetry between the results for a pair of interpolators
and for its reverse.

Corollary 4.2. Qg ¢ s bounded if and only if its reverse Qo v is bounded.

We however could not decide whether it is true that Qg ¢ is trivial if and only if so is Qg v.

5. EXAMPLES

Several relevant examples in the literature admit a formulation in the scheme of pairs we have
just presented. They include Cwikel, Kalton, Milman, Rochberg differential methods [20], the
compatible and almost compatible pairs of interpolators of Carro, Cerda and Soria [9], see Section
6.1, the translation operators considered by Cwikel, Jawerth, Milman and Rochberg [19] and, of
course, the complex and real methods.

5.1. Differential methods. The so-called differential methods of Cwikel, Kalton, Milman and
Rochberg [20] correspond to our schema of two interpolators (¥, @), and this is the content of [20,
Section 5]. With the same notation used there (see [20] for precise definitions): B = (X,, X1),
X = (Xp, X1) is a couple of (Laurent compatible) pseudolattices, and

3(X7§) = {(bn)nEZ : bn € XO N X17 (ejnbn)nEZ € :X:j(B])7j = 07 1}
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is endowed with the norm [|(b,)| = max;_q; [|(€/",)]|x,(5,)- Fix the open annulus A = {z € C
1 < |z] < e}, so that Laurent compatibility allows one to identify the elements of §(X, B) with
certain analytic functions f : A — Xy + X;. For s € A, two interpolators ®, : J(X, B) — X and
U, : J(X, B) — ¥ are given by

Oy((bn)) = 8"by and Wy((by)) = Y _ns" b,

As it is observed in [20], the identification of the space §(X, B) with certain analytic functions
f A — Xo+ X, implies that the pair of interpolators (U, @) adopt the form ®,(f) = f(s)
and Vy(f) = f'(s). It is carefully shown in [20] that these methods subsume most versions of
the real and complex interpolation methods [20, Section 4]; and also the method of compatible
and almost-compatible pairs of interpolators of Carro, Cerda and Soria [9] to which we will
return later (see [20, Section 5]); in particular, the differential condition [20, Def. 3.4] is there to
get almost-compatible pairs of interpolators, while an additional condition (the left-shift maps
boundedly J(X, B) into itself) is required to make the pair of interpolators compatible.

5.2. Translation operators. Consider an ordered pair (®y,®,) of evaluation interpolators
both associated to a differential interpolation method as above in which the left-shift opera-
tor (bn)nez — (bn—1)nez is bounded on X;(B;),j = 0,1. The associated derivation ®yBsg, is the
translation map Ry, considered in [20, 19]. In this case the reverse derivation associated to the
reverse pair (®,,®y) is obviously R, 9. Observe that R, : Xy — X, is clearly bounded, and
therefore the induced short exact sequence 0 — X, — dR,y — Xy — 0 splits. Slightly less
obvious is that also the natural sequence generated by R, ¢, namely,

0 —— CID,,(kerCDQ) > v, > Xg — 0

splits: this is consequence of Theorem 4.1 and
Lemma 5.1. J(X, B) = ker @, + ker ®.
Proof. Pick f € J(X,B) and set f = 2%f 4 9=2f It is only required to check hat both

0—v 0—vd
—fed (X, B) and z:y f € (X, B). This essentially means checking that whenever f € (X, B)
then also zf € J(X, B), and this follows from the left-shift assumption. O

Corollary 5.2. &, (ker ®y) = X, with equivalence of norms.

5.3. Kalton-Peck maps. The arguably simplest case, that of the couple (¢, ¢;) and the inter-
polators ¥ = §j, and ® = dy from complex interpolation yield Xg = £, for p = 0~ with associated
derivation

]

[Ei

—usually called the Kalton-Peck map— and derived space Xy ¢ = Z,, the so-called Kalton-Peck
spaces [27]. According to [27, Lemma 5.3 (c)], Dom(Qws) = {4, is the Orlicz sequence space
generated by f,(t) = t?|logt|?, while Ran({2y ¢) can be obtained by duality as the Orlicz space
;= {y generated by the Orlicz conjugate function f; of f, [19]. According to [30, Ex. 4.c.1],

Quo(xr) =palog
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the Orlicz function f, is equivalent to g,(t) = t7|log t|P=9) = ¢9|logt|=? at 0, for pg = p + q.
Thus, the two sequences generated by g ¢ and Qg ¢ form the particular case of diagram (7):

Qs w
£9q ’\

Que |

p ep

Qs w j\
k‘ gfp
=l

While Q2 can be described, up to a bounded perturbation, as Qx = 2x log Tela” the general formula
for U seems too be complicated to compute. We can provide however some hints.

Claim. Fix p =q = 2. One has
n _1 n
) B
(50) -

for large n. Indeed, set z,, = 2?21 e;. By the very definition of Orlicz norm, and taking into ac-
count that Orlicz functions are defined on some neighborhood of 0, one has n = ||z, |2, log” |||,

Let W be Lambert’s function on (0, 00), so that t = W (te!) for every ¢t > 0. One has t = W (t)e""'®
and thus

W(vn) = W(||lznllg, log [|2allg.) = log |24,

which yields ||z, ||, = eVV? = W\(/jﬁ)' Now, to calculate U(z,) we must find functions f, €

F(lss,tr) such that f)(3) = z, and ||f,| < Cllzn|lg, for n big enough and some constant C
independent of n. For a =) aje; € oo if
|a;] >2Z
e.
<||(l||2 !

a;

=llall: >
|a;]

it ), Ju3) = @ and 11l =l S o = o Then J3(3) =, and

. Now, W is asymptotic to log(x) — log(log(z)) = log e (see [16]) so that

Vo wem VR
log v/n W(y/n)

Thus, g, are the desired functions and, for n large enough,

o (Z ) = 90(3) = Jiog 7 2=

i=1

then f, €

Similarly, the couple (Lo (), L1(11)) generates by complex interpolation at 6 the space Ly (1),

A
fllp

Peck Z, space. The spaces Z, and Z, are identical in definition but not in their properties

p = 67! with associated derivation Q,(f) = pflog s and derived space the “big” Kalton-
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simply because ¢, and L,(u) spaces have different properties depending on whether the measure
is atomic or not. The reverse pair (Jy, ) generates the reverse decomposition with the Lorentz
spaces Ly, (Ly)* and reverse derivation U,,.

5.4. Weighted Kothe spaces. Fix a Kothe function space X with the Radon-Nikodym prop-
erty, let wy and w; be weight functions, and consider the interpolation couple (Xy, X;), where
X; = X(wj), j = 0,1 with their natural norms. In [12, Proposition 4.1] we showed that
Xy = X(wy) for 0 < 0 < 1, where wy = wj ’w{. For ¥ = §) and & = &, we obtain
Quof =log g—; - f, a linear map. Let us determine Dom(§y ¢) and Ran(Qy ¢):

Claim 1: Dom(Qy.e) = X (wp) N X (wy )log Z—é’) with equivalence of norms.

Indeed, z € Dom(S2y,e) if and only if both = and 2y e(z) = log ;' belong to X (wj).

-1
Claim 2: Ran(Qy e) = X (wp) + X (wp ‘log Wkl ) with equal norms.
If w € Ran(Qy ), then we may write w = w — log 'tz + log ytz with w —log o € X (wp)

-1
) and

and z € X (wy). Then log Z—;x € X(wy ’log g—(l)

[

), hence w € X (wp) + X (wp )logi—;

HX(we)JrX(we)log %"1) < ||w||Ran(Qq,7¢).

If we X(wp) —l—X(wg’logz—é’ ), then w = y + z with y € X(wy) and z € X(wg‘loglwv—é‘ ).

Also, there is x € X(wp) such that z = log 3>z and ||z||X( |

w1
0|log 3,

-, = ||| x (wy)- SO We get the

other inclusion and the other norm estimate.

To finish the description of Dom(Qy ¢) and Ran(Qy ), let us denote wy = min{wy,w;} and
wy = max{wg,ws }-
Claim 3: X (wo) N X (w1) = X (wy) with equivalence of norms.

Let # € X(wy). Then max{|woz||x, [lorz|x} < || = max{||z/lx @), %/l x@n} < %/l -

If € X(wp) N X(wq) and A is the set where wy < wy then wyx = wizxa + wez(l — x4), SO

lwovzllx < flwrzllx + [lworllx < 2[|2]|xwonx ()
and we get the other inclusion.

Claim 4: X (wo) + X (w1) = X(wa) with equivalence of norms
Let © = z9+ 21 € X(wp) + X(w1) with z; € X(w;), 7 =0,1. We have

lwoaz|lx < lwamollx + lwazi|lx < [Jwozollx + [lwizillx = [|Tollx(wo) + |71l x (w1)-

Since o and xy are arbitrary, ||7||xw.) < [|2] x(wo)+Xx (). Now let & € X(wn), and let A be as
above. Let 1o = xx4 and o1 = (1 —x4). Then z; € X(w;), 7 = 0,1, and ||| x (w) + |71 x (1) <
2]|2|| x (wn), SO We obtain the other inclusion.

-1
Jwe

then by Claims 2 and 4 we have Xy = X (w) with equivalence of norms. Let x € Xy and let us

In order to calculate Qg g, recall that Xy = Ran(Qy ¢). If we let w = min{1,

log Z_(l)
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suppose that min{1,

z—0
By(a) given by By(x)(=) = () (log )\ is in #, its norm is ||(log 2) 2l = |12l xw)
and ¥(By(z)) = x. So Qs v = ®(By()(2)) = (log )~ "a.

-1
— wi\—1 w1 \—1 . .
} = (log£t)~". Then (log &)~z € X(wp) = Xo, and the function

5.5. Orlicz spaces. Recall that an N-function is a map ¢ : [0,00) — [0,00) which is strictly
increasing, continuous, ¢(0) = 0, ¢(t)/t — 0 ast — 0, and ¢(t)/t — oo as t — co. An N-
function ¢ satisfies the Ag-property if there exists a number C' > 0 such that ¢(2t) < Cp(t) for
all £ > 0. When an N-function ¢ satisfies the Ao-property, the Orlicz space L,(p) is Ly(p) =
{f € Lo(p) : (| f]) € L1(p)} endowed with the norm || f|| = inf{r > 0: [ @(|f]/r)dp < 1}.
Given ¢y and ¢; two N-functions satisfying the As-property and 0 < 6 < 1 then a com-
bination of [23] and [13, 18] yields (Ly, (1), Ly, (1)), = Ly(pr) where o7 = (251) ™ (011"
is an N-function satisfying the As-property. In particular, when t = o5 (t)p; ' (t) we have
(Lo (1), Lgpl(,u))l/2 = Lo(u) the associated derivation is, for || f||2 = 1,
1 (f?)
Ql/2(f) f log 8061(]02) :
The determination of the spaces d€/2, Dom(£2/2) and Ran(€2; /) requires a somewhat con-
torted digression into the theory of Fenchel-Orlicz spaces that will appear in [8]; we combine
[13, 18] and [8] to get:

Proposition 5.3. Let ({4,,0s,) be a couple of Orlicz sequence spaces. Fiz 0 <6 < 1. Then
L - _iIN1=0/ 170
(1) (£¢07€¢1) = é ®0 with ¢9 ' (% 1) (¢1 1) :
(z1)
(2

) Qo(z) = Ty <x log =L T )> where x = xoxy i a Lozanovskii factorization of x (see [13]).
(3) d is a Fenchel-Orlicz space (see [1]).
)

(4) Dom(Qg) = lg, where Og(z) = ¢y (x log i(x)>
450 (w)

There is an especially interesting case we can mention: pick £, an Orlicz sequence space with
¢ an N—function for which there are p > 1 and M > 0 such that for every A € (0, 1] and for
;‘;(28) < M. For instance, if ¢, has nontrivial type then we may suppose
that ¢ has the previous property [1]. Now, g is a multiple of the quasilinear map defined in
[1], so that d€2p turns out to be isomorphic to the Fenchel-Orlicz space £, with Young function
Y : C* — [0,00) given by ¥(z,y) = ¢(y) + ¢(z — ylog|z|). The isomorphism T : dQy — £y is
given by T'(z,y) = (x,py). If £(t) = (0,¢) then Dom(y) = le. Since ¢(t) < p(tloglt|) on a
neighborhood of 0, actually Dom(£2) = Ci (s 10g]t))-

every s > ( we have

6. COMPATIBILITY-LIKE CONDITIONS

Some special pairs of interpolators were studied in [9, Definition 3.1 and Remark 3.2]:

Definition 6.1. A pair of interpolators (U, ®) on the same space H is called almost compatible
when V(ker @) C Xg, and it is called compatible when U(ker ®) = Xg.
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In the case of a compatible pair of interpolators, the identity Xy ¢ = d€y ¢ appears in [9,
Prop. 7.2], answering question 6 of [19]. Observe that compatibility assumptions always refer to
an ordered pair, which means that (¥, ®) can be compatible but (®, ) not. In fact, one has

Lemma 6.2. If the two pairs (¥, ®) and (®,V) are compatible then Xo = Xy and both Qg ¢
and Q¢ v are bounded.

Proof. 1f the pair (¥, ®) is compatible then X¢ C Xy. If both pairs are compatible then X¢ =
Xg = U(ker &) and Theorem 4.1 concludes. O

The assertion in the Lemma fails for almost-compatibility since when the pair (¥, ®) is com-
patible then the pair (®, V) is almost-compatible. In the case of compatible pairs (¥, ®), the
short exact sequence (4) becomes

(11) 0 — Xo —— qu;ﬂ; X > 0

So dfy ¢ is a twisted sum of Xg with itself. When (¥, @) is almost compatible, since the inclusion
map X¢ — X is continuous, the map ¥ : ker & — X3 is continuous by the closed graph theorem.
Similarly, when (W, ®) is compatible, the inclusion X¢ — Xy is continuous.

Let us now consider what occurs when the same derivation is used to generate twisted sums
with larger spaces. This is interesting to cover the case of almost compatible interpolators.

Definition 6.3. Let (U, ®) be a pair of interpolators on H. We say that a subspace Z of ¥ is
suitable for (¥, ®) if U(ker ®) C Z and there is a norm || - ||z on Z such that (Z,] - ||z) is a
Banach space and the inclusion (Z, || - ||z) = X is continuous.

The derivation 2y ¢ and a suitable space Z for (¥, ®) generate a derived space

dQ\I;’(I,(Z) = {(U),ﬂ?) € XX Xq, W — Qq;@l' S Z},

endowed with [(w,z)lloz , = [[w — Quez|/z + [|z[le, which can be showed to be a quasi-norm
arguing as in Remark 1. We also obtain a short exact sequence
(12) 0 > 7 > dQ\p’q)(Z) Xq; 0

with inclusion w — (w, 0) and quotient map (w,z) — =.

The case (¥, ®) almost compatible and Z = X was studied in [9].

Definition 6.4. Let (U, ®) be a pair of interpolators on H, and let Z be a suitable space for
(U, ®). We define the domain and the range of Qg ¢ with respect to the short exact sequence
(12) as follows:

Dom(Qf ) = {z € Xo : Quo(z) € Z}
endowed with Hx||D0m(Qi¢) = Qv oz||z + ||2|0, and
Ran(Q7 o) ={w € ¥ : 31 € Xo, w— Quo(x) € Z}
endowed with HwHRan(Qg’(b) = inf{||lw — Quo(@)|z + ||z]|e : v € Xo, w — Quo(z) € Z}.
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The arguments in the proof of Proposition 3.4 give the following result:
Proposition 6.5. Let (¥, ®) be a pair of interpolators on H, and let Z be a suitable space for
(U, ®). Then the maps Jx = (0,z) and Q(w,y) = w define a short exact sequence
(13) 0 —— Dom(0%4) —2= dQye(Z2) —2= Ran(QZ4) — 0.
with 72llaz , = 17 bz 1) 004 [0]ancaz ) = BE, )0y 5 (0,7) € A2 0(2)}.

Corollary 6.6. The spaces Dom(Qf ;) and Ran(Q ), endowed with their respective quasi-
norms, are complete.

The following result of [9, Theorem 3.8] gives a description of the domain in the almost-
compatible case.

Proposition 6.7. Let (V,®) be an almost compatible pair of interpolators on H. Then
Dom(Q3%) = @ (V1 Xg).

It would be interesting to determine Ran(QfIfib) for (¥, ®) almost compatible.

7. THE GENERAL FORM OF A COMMUTATOR THEOREM

Recall that given two maps A, B in the suitable conditions, their commutator is defined as the
map [A, B] = AB— BA. A number of papers [9, 10, 15, 19, 20, 21, 29, 33, 34| contain statements
about the boundedness of commutators in interpolation scales, known as commutator theorems-
The purpose of this section is to show that there is just one commutator theorem from which all
the existing versions can be derived. Let 7 be a linear operator acting on the couple and let

C(r) = max{||7: Dom(Qev) — Dom(Qsv)l], |7 : Ran(Qe v) — Ran(Qs v)}|
H(r) = inf{||T:-H—-H||: VT =7V, T =r1d}.
One has:

Theorem 7.1 (Abstract commutator theorem I). Let (Xo, X1) be an interpolation couple of
Banach spaces and let (U, ®) be a pair of interpolators on H. If T is a linear operator acting on
the couple then there is a commutative diagram

0 —— Dom(Qp ) —— Xov —— Ran(Qsv) > 0

| = |-

0 ——r DOHI(QQ\I;) E— X'I),\IJ — Ran(Q‘I’y‘I’) 0

where (1,7T), which represents the operator (1,7)(w,x) = (Tw, Tx), is bounded. The commutator
map [T,y ¢] : Ran(Qe v) — Dom(Qq w) is bounded and satisfies the estimate

(14) 17, Quo]|| < 2H(7)|| Bo||-
and thus
(15) (7, 7)| < C(7) + [|[7, Qw,0]|
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Proof. If the reader has been surprised to see Qg ¢ instead of Qy o, recall that Dom(Qg ) =
U(ker @) and Ran(Qe v) = Xo so that the commutative diagram above is exactly

0 —— \If(kerCID) — X\p@ E— Xq> — 0

| len |-

0 — Y(ker®) — Xgo —— Xo —— 0
and the derivation associated to the exact sequence is {1y . Now, observe that the statement
makes sense since z € X = Ran(Qq ) implies that (7Q¢ v — Qs w7)z € U(ker ®). Moreover, the
operator 7 : U(ker ®) — W(ker ®) is well-defined and continuous: if x € W(ker @), i.e., x = ¥U(g)
with ®(g) = 0 then ®(7T'g) = 7(Pg) = 0 and thus
T(x) =7(¥(9)) = ¥(Tg)) € U(ker D).
The operator (7,7) : Xy — Xy o is well-defined: if (w, z) € Xy ¢, namely w—VBgx € V(ker @)
then w — VBgx = Vg for some g € ker & and thus
Tw— VBerx = Tw—VIT'Bsxr +VI'Bsx — VBgTx
7w — TV Bsx + VT Bex — VBeTx
T(w — VBgz) + ¥V (I'Bsx — BeT)
= 7VU(g9) + ¥ (T'Box — BeT)
= VU(Tg)+ VY (TBsxr — BsT)
which means that 7w — VBgra € W(ker @) since both T'g and T'Bgsx — BeTax belong to ker @
and thus (7w, 7z) € Xy . It is continuous since, by the previous identity,

[(rw,72)]| = |l7w — YBeT2||w(kera) + [|[77]|0
< [ UTg|lwkerad) + |V (T'Box — Bo7) [|[wera) + |70
< C()(w, z)[| + [[[7, Qw,0](7) || w(ker )

and

H[T, Q\I/,@](:E)H\Il(kerd)) = ||TQ\I/,<1>SU - Q\I/,<I>7—x||\11(ker<1>)
”7“11349(33) — ‘Iqu)(Tl')H\p(kerq))
= [[UTBg(x) — ‘I’Bcb(Tx)H\p(ker@)
< 2H(7)||Be|l[|l

OJ

Estimate 15 is there to show that an explicit estimate for the norm of the middle operator is
possible. It is perhaps worthwhile to remark that || V| “does not appear” in the estimate above
because ||V : ker & — W(ker ®)|| = 1. Observe that estimates (15) and (14) are not the same,
even if they are equivalent. Indeed, estimate (15) means that

7w — Qu 72| pom(2s.0) < C ([lw = Qu.0Z||Dom(©s.v) + 1%/ Ran(@e.0))
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while (14) means
17,07 — Qu.oTZ || Dom(Qs.4) < C”HOCHRan(QM,)

for suitable constants C’, C".

Now, our setting so far has been to consider only one single couple (X, X;) of Banach spaces
and the “interpolation space” Xg¢ was so with respect to linear operators (Xo, X1) — (Xo, X1).
A standard interpolation method is often understood to mean a procedure which, given two
(suitable) Banach couples (Xo, X7) and (Yp, Y1) yields two spaces X,Y so that every bounded
linear operator 7 : (Xo, X1) — (Yo, Y1) is also a bounded map X — Y. Such modification can be
easily implemented: given two suitable couples (Xg, X;), (Yo, Y1) of Banach spaces we need

(1) Two Banach spaces H*, H* of functions.

(2) Two interpolators ®% : HX — X + X; and ®Y : HY — Y, + Y] in such a way that, for
every linear operator t acting from the couple (Xy, X;) to the couple (Yp,Y:) (i.e., such
that ¢ acts continuously ¢ : Xo + X7 — Yy + Y7 as well as Xy — Yy and X; — Y)) there
is a linear continuous operator 7' : HX — HY such that t o ®X = Y o T,

Everything of what has been exposed so far translates verbatim to this two-couples context;
except, perhaps, that a linear operator ¢t : ¥ — XY is said to act between the couples X =
(X0, X1) and Y = (Yo, Y1) if t : X; — Y} is continuous for ¢ = 0,1. In this general situation the
commutator theorem becomes:

Theorem 7.2 (Abstract commutator theorem II). Let X = (Xo, X1),Y = (Yo, Y1) be couples of
Banach spaces and let (0%, ®X) (resp. (¥Y,®Y)) be a pair of interpolators on HX (resp. HY ).
If 7 1s a linear operator acting between the couples X — Y then there is a commutative diagram

0 —— DOHI(Q(I)X7\I;X) —_— X(DX,\I/X —_— Ran(Qqﬂ(’\pX) — 0

(16) Tl l(m lT

0 —— Dom(Q¢Y7\IjY) E— Y.:DY,\I/Y —_— Ran(Qq)Y,\I,Y) — 0

where (1,7), which represents the operator (t,7)(w,z) = (Tw,7x), is bounded. Equivalently, let
[7,9] denote the generalized commutator map Tyx gx — Qv wv7. Then [1,9)] : Ran(Qex gx) —
Dom(Qey yv) is bounded. One has similar estimates as in Theorem 7.2.

When the pairs (U, ®X) and (¥, d¥) are compatible then the diagram (16) adopts the more

standard form:
O —> Xq>X —> X\IIX7<I>X —> Xq;.X —> O

| i e

0 — Yor —— Yyvgyr —— Yor —— 0

and yields a recognizable estimate: the generalized commutator map [7,Q] : Xgx — Yav is
bounded. The reverse version of Theorem 7.2 has exactly the same form just interchanging ¥
and ®. However, even if from the abstract point of view both theorems are “the same” they may
lead to quite different concrete estimates, of which a few examples follow. For the sake of clarity
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and to simplify notation we will formulate the results assuming X =Y, but simple modifications
yield the general case.

7.1. Commutator theorem for weighted spaces. We refer to Example 5.4. Let Xy = X (wy)
and X; = X (w;) be weighted versions of the same base space X. In this case we claim that the
commutator theorem for € = €5 5 and for its reverse U = {155 are the same: call a = log - so

that Q(f) = af and let min = min{1, |a|~" }wy and maz = max{1, |a|}ws. The continuity of the
commutator [, Q] : X (wg) — X (wy) means

lwe (7(af) —arf)llx < l|wafllx
while when Ug = a~'g, the continuity of [r, U] : X (min) — X (maz) means
|7(a g) —a"rg]| < lgllmin
Thus, assuming min = l|a|  wy and maxr = wyla| then |wpa(r(a"'g) —a"
la"twpgl|x which, by simple change of variable g = af, becomes, as we knew,

TQ)HX

[woa (7(f) = a™'r(af)) ||y = lws (am(f) = 7(af))llx < llwofllx.

7.2. Commutator theorems for Kalton-Peck maps. Picking the couple (L,,,L,,) the
derivation at & = (1 — 9) + Hi is the Kalton-Peck map K,(z) = p(— — —)a:log IIL;i\l , and
the standard commutator theorem means the estimate

LN @)
(‘“ : ||:c||p) @) los 12T,

for an operator 7 acting on the couple (L,,, L, ). The reverse pair (Ly,, (Ly,)*) (see section 5.3)
with reverse derivation U, yields the estimate

I7(Bp) = Gy (r(2)),, < Cllzllzy, )

Thus, if one picks the case ((, 1) and p = 1/2, the computations in Subsection 5.3 yield,
recalling that z, = > " e;:

< Cllzlly

p

H L~ Gy )| <o

7.3. Commutator theorems for convexifications. The Kalton-Peck map admits a more
general form. Fix 0 < # < 1. According to [13, Prop. 3.6], if X is a Banach space with 1-
unconditional basis then its p-convexification is the space Xy = ({o, X)g for p = 671 (conversely,
if X is p-convex and X7 is its p-concavification then ({, X?)y = X) with induced derivation

||

21 x,

Kx,(z) =pz log
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Accordingly, the commutator estimate is

T(xlog d )—T(:}:)logm

] x, I ()|,

< C||x||X9
Xo

for any operator 7 acting on the couple (X, /s,).

7.4. Commutator theorems for Lorentz spaces. Kalton-Peck maps can be defined on an
arbitrary Banach space X having a 1-unconditional basis in the form
|z
Ky(x) =xlog ——
[l ]lx
Observe that, in principle, one does not know if there is a couple (Xg, X7) so that X = (Xo, X1)g
for some # or even if, even in that case, whether Ky is the associated derivation. In a Kothe
function space X C Lg over a measurable subset of (0,+00), a second Kalton map [25] can be
defined. Consider the rank function r,(t) = m{s : |f(s)| > |f(¢)| or [f(s)|=|f(t)] and s <
t}, where m is the Lebesgue measure and f € X. The Kalton map on X is defined as
kx(x) =z logr,

The general case of Lorentz spaces L, , can be treated now following [5]: if (Lypg.q05 Lp1.g1)e = Lpg
with % =(1- 9)]%0 + 91%1 and % =(1- Q)qio + Hqil then the associated derivation is

= ()t (2 (2 ) (32 et

The case of L, spaces follows from this by setting ¢o = pp and ¢; = p;. One thus gets, for
operators T acting on the couple (Ly, 40, Lp, .4 ), the commutator estimate

[782p,q(x) — Qp,q(T@))Hp,q < Cllzlpq
This is remarkable since neither of the estimates
||TKLp,q ('T> - KLp,q (T(x))”p’q S CHx“IMI
||T'L€vaq (x) - K'Lp,q (T(x))”p,q S CHxHP:q

does, in principle, hold since neither K, , nor xr, , are the right derivations. These results are
new even compared with those in [11]. We cannot however leave unnoticed [11, Theorem 27] in
which a remarkable connection between the complex derivation and the real derivation appears

7.5. Commutator theorem for Orlicz spaces. We continue form section 5.5 with the par-
ticular situation there described: when ¢ = o5 (t)¢1 " (£), (Ly, (/L),L@1<u))1/2 = Lo(p) and the

-1
associated derivation is €29 = f log wil(f ") for || f|l2 = 1. The direct commutator estimate is
/ 00 (/2
thus , ,
-1/ f —1/_7(f)
o1 () o1 (i)
7| flog ——5"~ —7'(f)10g71—7(f)22 < C|fll2
20 (1m 2o (renm) |,



DIFFERENTIAL PROCESSES GENERATED BY TWO INTERPOLATORS 19
for an operator 7 acting on the couple (Ly, (1), Ly, (1)).

7.6. Commutator theorems for translation operators. Cwikel, Kalton, Milman, Rochberg
obtain in [20, Theorem 3.8 (ii)] a commutator theorem for translation mappings which, as they
say [20, p.278]:

On the other hand, it is not at all clear to us at this stage how one could obtain a

result like part (ii) of Theorem 3.8 in the abstract setting of [9].

The result was integrated in the scheme of [9] by Cerda in [15, p.1018] as Proposition 7.4 below.
The idea observed by Cerda is to consider the (non-compatible) pair of interpolators (®g, ®,)
associated to a differential interpolation method. In this case the derivation ®yBg, is the trans-
lation map Ry, as described in Subsection 5.2.

Proposition 7.3. [Commutator theorem for translation maps| There is a commutative diagram

0 — Py(ker d,) Xo X, — 0
‘rl J{(T,T) J,T
0 —— @9(1{61'(1)1,) > X@}V Xl, — 0

More precisely, the commutator map [T, Ry, ] : X, — ®g(ker ®,)) is bounded.

It is not necessary to formulate the reverse form as we observed in Example 5.2. The statement
in Proposition 7.3 is not, in principle, that in [20, Theorem 3.8 (ii)] or [15, Cor. 4.3] since those
results establish that the commutator map [7, Ry, | : X, = X is bounded, as it is obvious since
Ro © X, — Xy is bounded, while Proposition 7.3 asserts that [7,Ry,] : X, — P®g(ker ®,) is
bounded. However, by Corollary 5.2, ®y(ker ®,) = Xy and thus also Ry, : X, — Py(ker d,)
is bounded. The estimate one obtains in this form [15] for the commutator is however more
interesting:

Proposition 7.4. One has
I[7. Roo] : Xy = Py(ker @,)|| < g(ker @, ker @)
Proof. From the last estimate in the proof of Theorem 7.2 we get

17 Rl (@)l 9300 < 90T Ba, (x) — PoBa, 7|, (20
= dist (T'Bs,(z) — Be, Tz, ker ®p)
< |ITBs,(x) — Be, 7|1y g(ker @y, ker Pyp)
< 2T Ba, ||[|z]l, g(ker @, ker ®g)

since T'Bg,(x) — Bg, 72 € ker ®,,. O

This estimate is similar to [15, Corollary 4.2] although Cerda uses an adaptation of the
Krugljak-Milman metric [29] (see Section 8).
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8. STABILITY ISSUES

We now enter into stability issues; namely, what occurs when, for a fixed couple (X, X;)
(or two fixed couples (Xo, X7) and (Yp, Y1)) of spaces we have a family (®,).cr of interpolators
or a family (V,, ®,)aecr of pairs of interpolators indexed by the elements of a metric space E.
In standard applications (complex or real interpolation, differential methods, orbits method) the
space F is the base space behind the construction of the generalized Calderén space H: a domain
in the complex plane, an annulus in the complex plane, the space Ag+ A; for a fixed interpolation
couple (Ag, A1), ...

Stability issues refer to the possibility of transferring properties of ®, (resp. (¥, ®;)) to
properties of ®, (resp. (Vy, ®,)) when s is close to t. Our basic tool is the gap, described in
Section 2. Given two interpolators on the same generalized Calderén space H let us define

g(P, V) = g(ker @, ker V).

This parameter is equivalent to the Krugljak-Milman metric [29] p(®, W) = sup ;<1 [9(f) — ¥ (f)|
An immediate application of Proposition 2.1 yields:

Proposition 8.1. Let (¥, ®) and (Vy,Dy) be two pairs of interpolators on the same gener-
alized Calderon space H, such that H = kerW¥ + ker®. There exists C' > 0 such that if
max{g(ker ¥, ker ), g(ker ®, ker ®;)} < C' then H = ker ¥ + ker ®;.

We will also need a technical lemma:
Lemma 8.2. Let (U, D) be two interpolators on H. Then
g(V(ker @), &(ker ¥)) = g(ker @, ker V).

Proof. Here, as in Proposition 3.2, we identify W(ker ®) and ®(ker ¥) with the subspaces
ker & /(ker U N ker @) and ker ¥/(ker ¥ Nker ) of Xy o = H/(ker U N ker &). Moreover, given
f €M, we denote f = f+ (ker U Nker®) € Xo o

For f € ker ¥, the equality follows from

dist (f,qf(ker@)) = inf{[|f— | : g€ U(kerd)}
= inf{||[f —g—h|: g €ker®, h € ker ¥ N ker O}
= inf{||f — gl : g € ker @} = dist (f, ker ).
0

8.1. Continuous families. Let F be a metric space and let (®4)4ep and (Vy)4ep be two families
of interpolators on the same generalized Calderén space H.

Definition 8.3. The family (®4)acr will be called continuous if
lim g(®¢, @) = 0.
t—s
A family of pairs (Vq, @q)acr will be called bicontinuous if (Pg)ger is continuous and

limg( ker W, N ker ®;, ker ¥, N ker @S) = 0.
t—s
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Continuous interpolation methods yield stability results:

Proposition 8.4. Let (®¢)icr be a continuous family of interpolators on H and let Ry s = ¢ B,
be the translation map. Fach s € E has a neighborhood V' such that for each t € V' the derivation
Ris s trivial if and only if R is trivial.

Proof. Recall that “R;, is trivial” means that the sequence 0 — ®y(ker®,) — X, —
X — 0 splits, so that X;; = ®y(ker &) & N for some closed subspace N of X,  and thus
¥ (Py(ker &4), N) > 0. Since the family of interpolators in continuous lim; .4 g(ker ®;, ker &) =
limy s (P4, Ps) = 0 and thus there is some neighborhood V' of s so that

g(Dy(ker @), Dy(ker D)) = g(ker Py, ker @) < (Py(ker By), N)

which means that also ®;(ker ®;) is complemented in X;, = X;; and thus the sequence 0 —
O, (ker ;) = X, — X; — 0 generated by R, splits. O

Also, a standard using of Proposition 2.1 yields, under the same conditions as above:

Proposition 8.5. Fizx s € F.

(1) If (®4)ier is a continuous family of interpolators on H then there is € > 0 such that if
d(t,s) < ¢ and the sequence 0 — ker &, — H — X, — 0 splits then each short exact
sequence 0 — ker &, — H — X; — 0 splits and X; is isomorphic to X

(2) If (U4, @y)ier is bicontinuous then there is € > 0 such that if d(t,s) < e and the sequence
0 = kerUs Nker®y, =+ H — Xy, o, — 0 splits then each exact sequence 0 — ker ¥, N
ker @, = H — Xy, o, — 0 splits and Xy, o, 15 isomorphic to Xy, o, .

Examples of continuous and bicontinuous families of interpolators are provided by the differ-
ential methods of [20]. With the same notation as in Section 5.1 one has:

Proposition 8.6. The family of pairs (Vy, ®;)ien is bicontinuous.

Proof. We use here the identification of b = (b,,) with the function on A given by f,(2) = > 2"b,.
To prove the first part, pick f € ker @, and define the function g(z) = f(2)/(z — s) when z # s
and g(s) = f'(s). According to [20, Lemma 3.11] the function g, identified with its Laurent
expansion g(z) = Y 2"g, is also an element of J(X, B) and with a bound ||g|| < C| f|| for a
constant C' > 0 independent on f. Pick the function (z — t)g(z) € ker ®; to obtain

1/(2) = (z = )g(2)Il = I(z = s)g(2) = (z = )g(2)[| = |s — tlllgll < |s = L|CIIf]
Thus g(ker ®;, ker @) < C|t — s|, which shows that the family (®;) is continuous.
For the second part, if f € ker U, N ker @, repeat the previous argument to get the function
h € J(X, B) given by h(z) = f(2)/(2—s) when z # s and h(s) = f'(s) with a bound ||h|| < C||f]];
and then the function g € (X, B) given by g(z) = h(z)/(z — s) when z # s and g(s) = h/(s)
with a bound ||g|| < C||k||. Form the function (z — t)?g(z) € ker ®; N ker ®, to obtain

1f(z) = (z = %g(2)l = [I(z = 9)*g(2) — (z = 1)°g(2)]

= |(z=9)" = (z = t)*lllgl
< (sl = [t* + 220t = s))C*| ]
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Thus lim,_, g(ker ¥y N ker &y, ker ¥, N ker &) = 0. O

The bicontinuity of the pair (d;,d;); associated to the complex method in the unit strip was
studied in [13], obtaining the estimate

9(No<j<n—1 ker 5z, Mo<j<n—1 ker 5§) <2(n+ 1)h(t,s)

where h(-) be the hyperbolic distance on the strip. Observe, moreover, that g(d;,d;) € {0,1} as
it can be easily shown: it follows from Lemma 8.2 that d;(ker §;) = X; by standard compatibility,
while &, (ker d;) = X, only when H = ker §; + ker §; according to Theorem 4.1. If this is the case
(the induced sequence splits) then g(d;, ;) = 0. Otherwise, d;(kerd;) is a proper subspace of
d; (ker 0;).

9. TWO REMARKS ON PROBLEMS DERIVED FROM THE RESEARCH IN THIS PAPER

We have attempted to present the bare bones of an interpolation method and its associated
differential process. In doing so, the reader might be surprised by our “non-functorial” approach
to interpolators. A categorical analysis of the material presented in this paper is perhaps possible.
A second aspect is whether every interpolation method, or every interpolation method obtained
via some couple (#H, ®), admits an associated differential process. This question already appears
implicitly formulated in [7, 6.3] and explicitly in [6] in the form: Does Calderén’s “upper”
method produce twisted sums? The same can be asked for the Orbits method (see the Krugljak -
Milman approach via Benson spaces in [29]). This issue connects with the categorical aspects of
the problem: Of course that given a method (#, ®) nothing prevents one to consider the couple
of interpolators (0, ®), but this is not what is expected. What one wants instead is an “intrinsic”
way to produce ¥ out of ®; and here it is where the categorical approach should pay off.
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