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Abstract. We study the stability of the differential process of Rochberg and Weiss associated

to an analytic family of Banach spaces obtained using the complex interpolation method for

families. In the context of Köthe function spaces we complete earlier results of Kalton (who

showed that there is global bounded stability for pairs of Köthe spaces) by showing that there

is global (bounded) stability for families of up to three Köthe spaces distributed in arcs on the

unit sphere while there is no (bounded) stability for families of four or more Köthe spaces. In

the context of arbitrary pairs of Banach spaces we present some local stability results and some

global isometric stability results.
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5. Stability of splitting for pairs of Banach spaces 25
5.1. Local bounded stability for coherent pairs 26
5.2. Isometric rigidity of linear derivations for optimal interpolation pairs 28
References 30

2010 Mathematics Subject Classification. 46B70, 46E30, 46M18.

Key words and phrases. Stability of splitting; twisted sums of Banach spaces; complex interpolation.
The research of the first author was supported in part by Project IB16056 de la Junta de Extremadura; the

research of the first and fourth authors was supported in part by Project MTM2016-76958, Spain.

The research of the second author was supported in part by CNPq, grant 140413/2016-2, CAPES, PDSE program

88881.134107/2016-0, and FAPESP, grants 2016/25574-8 and 2018/03765-1. The research of the third author was

supported by FAPESP, grants 2013/11390-4, 2015/17216-1, 2016/25574-8 and by CNPq, grant 303034/2015-7.
1



2 J.M.F. CASTILLO, W.H.G. CORRÊA, V. FERENCZI, M. GONZÁLEZ

1. Introduction

Stability problems associated to interpolation processes have been a central topic in the theory
since its inception. Stability issues about the differential process associated to an analytic family
of Banach spaces have also been considered since the seminal work of Rochberg and Weiss [34]. In
this paper we will start with an interpolation family (Xω)ω∈∂U on the border of an open subset
U of C conformally equivalent to the open unit disc D, and we will study different stability
problems connected to the analytic family of Banach spaces (Xz)z∈U obtained by the complex
interpolation methods of [12] and [22].
Analytic families of Banach spaces are relevant to other topics in Banach space theory such

as the construction of uniformly convex hereditarily indecomposable spaces [19], the study of
θ-Hilbertian spaces [30] introduced by Pisier, or problems about the uniform structure of Banach
spaces. Recall that the question of whether the unit sphere of a uniformly convex space is
uniformly homeomorphic to the unit sphere of a Hilbert space can be positively answered for
Köthe spaces using interpolation methods: if X0 and X1 are uniformly convex spaces, then the
unit spheres of Xθ and Xν are uniformly homeomorphic for 0 < θ, ν < 1 by a result of Daher
[16]; this fact, together with an extrapolation theorem of Pisier [30], implies that the unit sphere
of a uniformly convex Köthe space is uniformly homeomorphic to the unit sphere of the Hilbert
space (see also [11]). Thus, an extrapolation theorem for arbitrary uniformly convex spaces would
provide a positive answer to the problem.
Starting with (Xω)ω∈∂U , a complex interpolation method constructs a Banach space F of

analytic functions on U with values in a Banach space Σ and, for each z ∈ U , defines a Banach
space Xz = {f(z) : f ∈ F}, endowed with the quotient norm in F/ ker δz, where δz : F → Σ
denotes the continuous evaluation map at z ∈ U , and we get the analytic family (Xz)z∈U . An
important case is the complex method described in [4], in which U is the unit strip S = {z ∈ C :
0 < Rez < 1} and the starting family is just an interpolation pair (X0, X1) of Banach spaces. In
this case Xz = XRe z; so it is usual to consider only the scale (Xθ)0<θ<1.
An analytic family (Xz)z∈U of Banach spaces obtained by interpolation generates a differential

process (Ωz)z∈U , where Ωz is a certain non-linear map defined on Xz –see formula (3)– which
is called the derivation at z. In the context of Köthe spaces, derivations are centralizers in the
sense of [21, 22], and therefore can be used in a standard way to generate twisted sums

(1) 0 −−−→ Xz −−−→ dΩzXz −−−→ Xz −−−→ 0.

Rochberg’s approach [33], however, contemplates the formation of the so-called derived spaces
dXz = {(f ′(z), f(z)) : f ∈ F} endowed with the obvious quotient norm, and show that both
constructions are isomorphic; i.e., dXz ∼ dΩzXz.

The stability of the differential process associated to an analytic family (Xz)z∈U can be studied
at several levels. At the basic level, one considers the stability of isomorphic properties of the
spaces Xz either under small perturbations in the parameter z (local stability) or for the whole
range of the parameter (global stability). Results of this kind have been obtained by many
authors. Let us mention one obtained by Kalton and Ostrovskii [25]: If dK(A,B) denotes the
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Kadets distance between two Banach spaces A and B, a property P is said to be open if for every
X having P there exists CX > 0 such that Y has P when dK(X,Y ) < CX , while P is said to be
stable if there exists C > 0 such that if X has P and dK(X, Y ) < C then Y has P . Examples
of open and stable properties can be found in [1] and [25, Section 5]. Kalton and Ostrovskii
showed [25, Theorem 4.5] that dK(Xt, Xs) ≤ 2h(t, s), where h is the pseudo-hyperbolic distance
on U (see Definition 3.8). Thus, at its basic level, the differential process has local stability with
respect to open properties and global stability with respect to stable properties.

At the first level we consider stability problems for the family (dXz)z∈U of derived spaces. We
will also consider stability problems at level n, i.e., for the families of higher order Rochberg’s
derived spaces [33] dnXz = {( 1

n!
f (n)(z), . . . , f(z)) : f ∈ F}, which can also be interpreted as

twisted sums [5]. As a typical result, we will show a generalized form for the Kalton-Ostrovskii
result mentioned before: dK(d

nXz, d
nXη) ≤ 4(n + 1)h(z, η), which implies local/global stability

for open/stable properties of dnXz; see Theorem 3.11.
The interpretation of the derived spaces dXz as twisted sums generated by Ωz allows one to

study the stability of dXz in terms of the stability of Ωz (see Definition 4.1), which is what we will
mainly do in the paper. Recall that an exact sequence like (1) splits when Xz is complemented
in dXz; which happens if and only if Ωz can be written as the sum of a bounded homogeneous
map plus a linear map, and in this case we say that Ωz is trivial. Thus, two derivations Ωz and
Ω′
z are equivalent when Ωz − Ω′

z is trivial. Kalton’s approach to complex interpolation instead
relies on the notion of bounded equivalence: two derivations Ωz and Ω′

z are said to be boundedly
equivalent when Ωz − Ω′

z is bounded.
Probably the first stability results at level one have been those obtained by Cwikel, Jawerth,

Milman and Rochberg [14] for the minimal (θ, 1)-interpolation method applied to an interpolation
pair (X0, X1). They reinterpret the results of Zafran [36] to show that whenever Ωθ is bounded
for some 0 < θ < 1, then all Ωz are bounded and X0 = X1 up to a renorming. Kalton obtains in
[22] a similar stability result in the context of complex interpolation for pairs of Köthe function
spaces: Ωθ is bounded for some θ ∈ S if and only if Ωz is bounded for all z ∈ S and, in this case,
X0 = X1 up to an equivalent renorming. See Theorem 3.4 for the precise statement.

Kalton’s result leaves several questions unanswered, and a good part of this paper is devoted
to solving them. We complete Kalton’s result by showing: i) for complex interpolation of pairs
(X0, X1) of superreflexive Köthe spaces, Ωθ is trivial if and only if there is a weight w so that
X0 = X1(w) up to an equivalent renorming, solving the stability problem for splitting for pairs
of Köthe spaces; see Theorem 4.4. ii) The stability results for pairs remain valid for families of
up to three Köthe spaces distributed in three arcs of the unit circle T, see Theorem 4.15, but
fail for families of four Köthe spaces (Corollary 4.21), marking the limit of validity for Kalton’s
theorems. We also give other examples in which stability fails. Related with the results we have
just mentioned, Qiu [31] showed that, at the basic level, complex interpolation for families is
stable under rearrangements of two spaces, but it is not stable under rearrangements of three
spaces. But note that Qiu’s results only consider finite-dimensional spaces, while the non-stability
we study concerns isomorphic properties.
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Regarding Köthe spaces, Theorem 4.22 presents the 1-level interpretation of the classical re-
iteration result for families of Coifman, Cwikel, Rochberg, Sagher and Weiss [12, Theorem 5.1].
This result explains, to some extent, the lack of stability in the previous counterexamples and can
be used to obtain other natural counterexamples. In the construction of some counterexamples,
we use an analogue of Rochberg’s concept of flat analytic family [32]. Let ∥ · ∥ be a norm on Cn

and let (Tz)z∈D be a family of bijective linear maps on Cn depending analytically of z in D. Define
∥x∥z = ∥T−1

z x∥. Then (Cn, ∥ · ∥z)z∈D is called a flat analytic family on D. Proposition 4.17 shows
the existence of a flat analytic family of Köthe sequence spaces with norms ∥x∥z = ∥e−D(z)x∥2
(z ∈ D) generated by an analytic family D(z) of diagonal operators for which the derivation map
Ωz is linear and does not depend on z.

The existence of local or global stability for the differential process associated to complex
interpolation for a couple of arbitrary Banach spaces remains still an open problem: Assume
(X0, X1) is a pair of Banach spaces such that Ωθ is bounded for some 0 < θ < 1. Does it follow
that X0 = X1 up to equivalence of norms?
In Section 5 we present some isometric stability results valid for couples of Banach spaces.

A key role in our analysis is played by the properties of the extremal functions and by some
differential estimates for the norm in an interpolation scale. In [14, Theorem 5.2] Cwikel et al.
obtained the estimate

d

dθ
∥a∥θ,1 ∼ ∥a∥θ,1 + ∥Ωθa∥θ,1

for the minimal (θ, 1)-method applied to a pair (X0, X1) when X0 is continuously embedded in
X1. Our version of this estimate for the complex method (Lemma 5.5) is∣∣∣∣ ddt∥a∥t

∣∣∣∣
t=θ±

≤ ∥Ωθa∥θ.

from which we derive a number of stability results for pairs. For interpolation pairs (X0, X1)
satisfying a coherence condition, including regular interpolation pairs of reflexive spaces which
have a common Schauder basis or are rearrangement invariant Köthe spaces, we show in Theorem
5.6 that if supθ0<t<θ1 ∥Ωt : Xt → Xt∥ < ∞ for some 0 ≤ θ0 < θ1 ≤ 1, then X0 = X1 up to an
equivalent norm.
In many cases derivations are uniquely defined, so it makes sense to study exact stability

(instead of up to a bounded plus linear perturbation) problems. We show that exact stability
is related to isometric characterizations of X0 and X1. In particular, Theorem 5.11 provides a
complete and explicit characterization of pairs (X0, X1) of spaces for which Ωθ is linear.

2. Preliminary results

For background on the theory of twisted sums and diagrams we refer to [2, 10]. A twisted sum
of two Banach spaces Y , Z is a quasi-Banach space X which has a closed subspace isomorphic
to Y such that the quotient X/Y is isomorphic to Z. An exact sequence 0 → Y → X → Z → 0
of Banach spaces and continuous operators is a diagram in which the kernel of each arrow
coincides with the image of the preceding one. Thus, the open mapping theorem yields that the
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middle space X is a twisted sum of Y and Z. The simplest exact sequence is obtained taking
X = Y ⊕ Z with embedding y → (y, 0) and quotient map (y, z) → z. Two exact sequences
0 → Y → X1 → Z → 0 and 0 → Y → X2 → Z → 0 are said to be equivalent if there exists an
operator T : X1 → X2 such that the following diagram commutes:

0 −−−→ Y −−−→ X1 −−−→ Z −−−→ 0∥∥∥ yT ∥∥∥
0 −−−→ Y −−−→ X2 −−−→ Z −−−→ 0.

The classical 3-lemma [10, p. 3] shows that T must be an isomorphism. An exact sequence is
said to be trivial if it is equivalent to 0 → Y → Y ⊕ Z → Z → 0. In this case we also say that
the exact sequence splits. This is equivalent to the subspace Y being complemented in X.

Kalton [21, 22] developed a deep theory connecting derivations and twisted sums for Köthe
function spaces that we briefly describe now because it is essential to understand our work. We
even present Kalton’s definition of Köthe function space since it is slightly different from the
standard one [27]. According to [22, p.482], given a σ-finite measure µ on a Polish space, and
denoting L0 ≡ L0(µ) the space of all complex-valued µ-measurable functions endowed with the
topology of convergence in measure, an admissible norm is a map ∥ · ∥X : L0 → [0,∞] such
that X = {f ∈ L0 : ∥f∥X < ∞} is a vector subspace of L0(µ), ∥ · ∥X is a norm on X with
{z ∈ X : ∥z∥X ≤ 1} closed in L0, and there exist strictly positive functions h, k ∈ L0 such
that ∥hf∥1 ≤ ∥f∥X ≤ ∥kf∥∞ for every f ∈ L0. In this case X is a Banach space continuously
embedded in L0, and it is called an admissible space. A Köthe function space is a sublattice of
L0(µ) endowed with an admissible lattice norm (|f | ≤ |g| implies ∥f∥ ≤ ∥g∥).
Let X be a Köthe function space. A centralizer on X is a homogeneous map Ω : X → L0(µ)

for which there is a constant C such that, given f ∈ L∞(µ) and x ∈ X, Ω(fx)− fΩ(x) ∈ X and
∥Ω(fx)− fΩ(x)∥X ≤ C∥f∥∞∥x∥X . A centralizer Ω on X induces an exact sequence

0 −−−→ X
j−−−→ X ⊕Ω X

q−−−→ X −−−→ 0,

where X ⊕Ω X = {(f, x) ∈ L0 × X : f − Ωx ∈ X}, endowed with the quasi-norm ∥(f, x)∥Ω =
∥f − Ωx∥X + ∥x∥X , with inclusion j(y) = (y, 0) and quotient map q(f, x) = x.
We say that a centralizer Ω is trivial if the exact sequence induced by Ω splits. Recall that an

homogeneous map F : X → X is called bounded if there is C > 0 such that ∥F (x)∥ ≤ C∥x∥ for
every x ∈ X. The following characterization of triviality is essentially known:

Proposition 2.1. A centralizer Ω : X → L0(µ) is trivial if and only if there exists a linear map
L : X → L0(µ) such that Ω− L is a bounded map from X to X.

Proof. If a map L as above exists then the map (f, x) → (f−Lx, 0) is a linear bounded projection
on X ⊕Ω X with range j(X). Indeed, f − Lx = f − Ωx + Ωx − Lx ∈ X and ∥f − Lx∥X ≤
∥(f, x)∥Ω + ∥(Ω− L)x∥X .
Conversely, if Ω is trivial then there is a bounded linear map S : X → X ⊕Ω X such that qS

is the identity on X [10, Lemma 1.1.a]. Then Sx = (Lx, x) for some linear map L : X → L0(µ).
Since ∥(Lx, x)∥Ω = ∥Lx− Ωx∥X + ∥x∥X ≤ ∥S∥ · ∥x∥X , L satisfies the required conditions. �
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3. Kalton spaces of analytic functions

Here we present the abstract version of the complex interpolation method introduced in [24]
and other previous papers of Kalton [21, 22, 25]. Along the section U will be an open subset
of C conformally equivalent to the unit disc D. The boundary of U is denoted ∂U , and we will
write T = ∂D.

Definition 3.1. A Kalton space is a Banach space F ≡ (F(U,Σ), ∥ · ∥F) of analytic functions on
U with values in a complex Banach space Σ satisfying the following conditions:

(a) For each z ∈ U , the evaluation map δz : F → Σ is bounded.
(b) If φ : U → D is a conformal equivalence and f : U → Σ is an analytic map, then f ∈ F

if and only if φ · f ∈ F, and in this case ∥φ · f∥F = ∥f∥F.

Given a Kalton space F(U,Σ), for each z ∈ U we define

Xz = {x ∈ Σ : x = f(z) for some f ∈ F}

which endowed with the norm ∥x∥z = inf{∥f∥F : x = f(z)} is isometric to F/ ker δz.

The family (Xz)z∈U is called an analytic family of Banach spaces on U , and a function fx,z ∈ F

such that fx,z(z) = x and ∥fx,z∥F ≤ c∥x∥z is called a c-extremal (for x at z).

There are many ways of generating Kalton spaces, and here is where complex interpolation
enters the game. We shall mainly consider two cases: U = S, more suitable to handle interpolation
pairs [4], and U = D, more suitable for interpolating families [12].
Next we describe the complex interpolation method for pairs as a reference, and later we will

introduce other versions of the complex interpolation method when we need them.

Complex interpolation for pairs. An interpolation pair (X0, X1) is a pair of Banach spaces,
both of them linear and continuously contained in a bigger Hausdorff topological vector space Σ
which can be assumed to be Σ = X0 + X1 endowed with the norm ∥x∥ = inf{∥x0∥0 + ∥x1∥1 :
x = x0 + x1 xj ∈ Xj for j = 0, 1}. The pair will be called regular if, additionally, ∆ = X0 ∩X1

is dense in both X0 and X1. The space ∆ endowed with the norm ∥x∥∆ = max{∥x∥X0 , ∥x∥X1}
is a Banach space, and the inclusions ∆ → Xi → Σ are contractions.
The Calderón space C = C(S, X0 + X1) is formed by those bounded continuous functions

F : S → X0 + X1 which are analytic on S and such that the maps t 7→ F (k + ti) ∈ Xk are
continuous and bounded, k = 0, 1. Endowed with the norm ∥F∥C = sup{∥F (k + ti)∥Xk

: t ∈
R, k = 0, 1} <∞, C is a Kalton space.
Since Xz = XRe z for z ∈ S, it is usual to consider only the scale (Xθ)0<θ<1. Some times, for

convenience, we will write (X0, X1)θ instead of Xθ.

3.1. Derivations, centralizers and twisted sums. Given a Kalton space F(U,Σ) and z ∈ U ,
the evaluation map δ′z : f ∈ F → f ′(z) ∈ Σ of the derivative at z is bounded for all z ∈ U (see
Lemma 3.5 for a precise estimate of its norm). We also need the following well-known fact, for
which we present a proof for the sake of later use.



STABILITY OF THE DIFFERENTIAL PROCESS 7

Proposition 3.2. For each z ∈ U , the map δ′z is continuous and surjective from ker δz to Xz.

Proof. Let φ : U → D be a conformal equivalence such that φ(z) = 0. Each g ∈ ker δz can be
written as g = φ · f for some f ∈ F, and g′(z) = φ′(z)f(z) ∈ Xz, thus δ

′
z(ker δz) ⊂ Xz and the

continuity into Xz follows from the closed graph theorem. Moreover, given x ∈ Xz and f ∈ F

with f(z) = x, g = φ(z)−1φ · f ∈ ker δz and φ
′(z) = x, hence δ′z(ker δz) = Xz. �

For each z ∈ U we consider the space dXz = {(f ′(z), f(z)) : f ∈ F}. The map ∆z : F → dXz

given by ∆z(f) = (f ′(z), f(z)) is bounded and thus dXz can be endowed with the quotient norm
∥(a, b)∥ = inf{∥f∥F : f ∈ F, f ′(z) = a, f(z) = b}. The space dXz admits an exact sequence
0 → Xz → dXz → Xz → 0 with inclusion jz(x) = (x, 0) (thanks to Proposition 3.2) and quotient
map qz(y, x) = x. All this yields a commutative diagram:

(2)

0 −−−→ ker δz −−−→ F
δz−−−→ Xz −−−→ 0

δ′z

y y∆z

∥∥∥
0 −−−→ Xz −−−→

jz
dXz −−−→

qz
Xz −−−→ 0

Thus we have a method to obtain twisted sums of the spaces Xz associated to a Kalton space.
The twisted sum space can be described using the so-called derivation map given by

(3) Ωz = δ′zBz,

where Bz : Xz → F is a homogeneous bounded selection for the evaluation map δz : F → Σ, and
the family of maps (Ωz)z∈U is the differential process associated to F.
We consider the space

dΩzXz = {(y, x) ∈ Σ×Xz : y − Ωzx ∈ Xz}

endowed with the quasi-norm

∥(y, x)∥ = ∥y − Ωzx∥z + ∥x∥z
so that one has an exact sequence 0 → Xz → dΩzXz → Xz → 0 with inclusion x → (x, 0) and
quotient map (y, x) → x. It is not hard to check [6] that this exact sequence is equivalent to
the lower row of (2). Note that different choices of selection Bz lead to different derivations Ωz,
but the difference between two of these derivations is always a bounded map, so both choices
produce isomorphic derived spaces and equivalent twisted sums.
The derivation map Ωz is said to be trivial if the associated exact sequence splits. With the

proof of Proposition 2.1 we obtain the following result:

Proposition 3.3. The derivation map Ωz is trivial if and only if there is a linear map L : Xz → Σ
such that Ωz − L is a bounded map from Xz to Xz.

A centralizer Ω on a Köthe space of functions X is called real if Ω(x) is real whenever x ∈ X
is real. Kalton’s theorem stated below establishes that all real centralizers essentially arise from
complex interpolation of an interpolation pair of Köthe spaces.
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Theorem 3.4. [21, 22]

(1) Given an interpolation pair (X0, X1) of complex Köthe function spaces and 0 < θ < 1,
the derivation Ωθ is a real centralizer on Xθ.

(2) For every real centralizer Ω on a separable superreflexive Köthe function space X there
is a number ε > 0 and an interpolation pair (X0, X1) of Köthe function spaces so that
X = Xθ for some 0 < θ < 1 and εΩ− Ωθ : Xθ → Xθ is a bounded map.

(3) The derivation Ωθ is bounded as a map Xθ → Xθ for some θ if and only if X0 = X1, up
to an equivalent renorming. In this case Ωθ is bounded for all θ.

3.2. Distances and isomorphisms. It is not difficult to translate results (at levels 0 and 1)
from the open unit disk D to the open unit strip S, and conversely. Indeed, if φ : S → D is
a conformal map and (Xω)ω∈D is an interpolation family on D, then Yz = Xφ(z) provides an
interpolation family (Yz)z∈S on S. The corresponding derivation maps are related as follows:

ΩS
z = φ′(z)ΩD

φ(z).

Given s ∈ U , we denote by φs : U → D a conformal equivalence taking s to 0. In the case
U = S an example is given by

(4) φs(z) =
sin (π(z − s)/2)

sin (π(z + s)/2)
(z ∈ S)

for which φ′
s(s) = π/(2 sin πs). The conformal equivalence φs is unique up to a multiplicative

constant: any other conformal equivalence ψs taking s to 0 can be written as ψs = f ◦φs, where
f(z) = eiθz [3, Lemma 13.14].
Given F(U,Σ) and z ∈ U , we denote by δnz : F → Σ the evaluation of the n-th derivative at z.

We will need the following estimates:

Lemma 3.5. Let F(U,Σ) be a Kalton space, s ∈ U and n ∈ N. Then
(1) ∥δns : F → Σ∥ ≤ n!/dist(s, ∂U)n.

(2) ∥δ′s : ker δs → Xs∥ = inf{∥δ′sx∥ : x ∈ ker δs, dist(x, ker δ
′
s) = 1} = |φ′

s(s)|.

Proof. Given a positively oriented closed rectifiable curve Γ in U for which z belongs to the inside
of Γ, the Cauchy integral formula [26, Appendix A3] establishes that, for each n ∈ N0,

f (n)(z) =
n!

2πi

∫
Γ

f(ω)

(w − z)n+1
dw.

We take a number r with 0 < r < dist(s, ∂U) and denote by Γ the boundary of the open disc
D(s, r). By the Cauchy integral formula

∥f (n)(s)∥ ≤ n!

2π

∫
Γ

∥f(ω)∥
rn+1

d|w| ≤ n!

rn
∥f∥F,

and since we can take r arbitrarily close to dist(s, ∂U), we get estimate (1).
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(2) Clearly ∥δ′s : ker δs → Xs∥ ≥ inf{∥δ′sx∥ : x ∈ ker δs, dist(x, ker δ
′
s) = 1}, and given g ∈ ker δs

the function f(z) = φ′
s(s) · φs(z)−1g(z) is in F and satisfies f(s) = g′(s) and ∥f∥ = |φ′

s(s)|∥g∥.
Therefore ∥δ′sg∥s = ∥f(s)∥s ≤ |φ′

s(s)|∥g∥, and we get ∥δ′s : ker δs → Xs∥ ≤ |φ′
s(s)|.

Also, given x ∈ BXs and ε > 0, we can take f ∈ F with ∥f∥ < (1 + ε) and f(s) = x. Then
g(z) = φ′

s(s)
−1φs(z) · f(z) defines g ∈ ker δs with ∥g∥ < (1 + ε)/|φ′

s(s)| and g′(s) = x. Hence

δ′s(Bker δs) ⊃ |φ′
s(s)|(1 + ε)−1BXs ,

and we get inf{∥δ′sx∥ : x ∈ ker δs, dist(x, ker δ
′
s) = 1} ≥ |φ′

s(s)| finishing the proof. �

Part (2) of Lemma 3.5 says that δ′s : ker δs → Xs is a multiple of a quotient map: the induced
injective map ker δs/(ker δ

′
s ∩ ker δs) → Xs is |φ′

s(s)| times an isometry.

Lemma 3.6. For each f ∈ F and s ∈ U , we have Ωs(f(s))− f ′(s) ∈ Xs with

∥Ωs(f(s))− f ′(s)∥s ≤ 2∥δ′s : ker δs → Xs∥∥f∥ ≤ 2∥f∥/dist(s, ∂U).

Proof. From Ωs(f(s)) − f ′(s) = δ′s (Bs(f(s))− f) with Bs(f(s)) − f ∈ ker δs, we get the first
part. For the rest, note that the operator δ′s : ker δs → Xs is bounded by Lemma 3.5. �

Proposition 3.7. Let s, t ∈ U .

(1) The spaces ker δs and F are isometric. Consequently, ker δs and ker δt are isometric.
(2) For every n ∈ N, ∩0≤k≤n ker δ

k
s and F are isometric.

Proof. The operator ds : F → ker δs given by ds(f)(z) = f(z)φs(z) is clearly well-defined and
injective, and it is surjective because each g ∈ ker δs can be written as g = φs · f with f ∈ F.
To prove (2), just note that (ds)

n+1 : F →
∩

0≤k≤n ker δ
k
s is also an isometry. �

Let s, t ∈ U . The map φs · f ∈ ker δs → φt · f ∈ ker δt is a bijective isometry, but we need a
more precise description. Note that the map φs,t : U → D defined by

φs,t(z) =
φs(z)− φs(t)

1− φs(t)φs(z)
(z ∈ U)

is a conformal equivalence satisfying φs,t(t) = 0. Moreover, denoting α = φs(t) ∈ D, one has

∥φs − φs,t∥∞ = sup
z∈U

|φs(z)− φs,t(z)| = sup
λ∈D

∣∣∣∣λ− λ− α

1− αλ

∣∣∣∣
= sup

ω∈T

∣∣∣∣ω − ω − α

1− αω

∣∣∣∣ = sup
ω∈T

∣∣∣∣α− αω2

1− αω

∣∣∣∣
= sup

ω∈T

∣∣∣∣αω − αω

ω − α

∣∣∣∣ ≤ 2|α|,

since |αω − αω| ≤ |αω − αα|+ |αα− αω| = 2|α||ω − α|.

Definition 3.8. ([25]) The pseudo-hyperbolic distance h(·, ·) on U is defined by h(s, t) = |φs(t)|.
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Given two closed subspaces M,N of a Banach space Z, and denoting BM the unit ball of M ,
the gap g(M,N) between M and N is defined as follows:

g(M,N) = max
{

sup
x∈BM

dist(x,BN), sup
y∈BN

dist(y,BM)
}
.

The Kadets distance dK(X, Y ) between two Banach spaces X and Y is the infimum of the gap
g(i(X), j(Y )) taken over all the isometric embeddings of i, j of X, Y into a common superspace.
We have:

Proposition 3.9. [25, Theorem 4.1] Let E and F be closed subspaces of a Banach space Z.
Then dK(Z/E,Z/F ) ≤ 2g(E,F ).

Proposition 3.10. For each n ∈ N ∪ {0}, g
(∩

0≤k≤n ker δ
k
s ,
∩

0≤k≤n ker δ
k
t )
)
≤ 2(n+ 1)h(s, t).

Proof. We proceed inductively on n. For n = 0, we take a norm-one φs · f ∈ ker δs. Since
φs,t · f ∈ ker δt is norm-one and ∥φs · f −φs,t · f∥F = ∥φs−φs,t∥∞ ≤ 2h(s, t), and we can proceed
similarly for each norm-one φt · f ∈ ker δt, we get g (ker δs, ker δt) ≤ 2h(s, t).
Moreover if the estimate holds for n− 1 then it also holds for n because

an+1 − bn+1 = an+1 − anb+ anb− bn+1 = an(a− b) + (an − bn)b. �
Since F/

∩
0≤k≤n ker δ

k
s = dnXs, Propositions 3.9 and 3.10 provide the following result:

Theorem 3.11. Given s, t ∈ U and n ∈ N ∪ {0}, dK(dnXs, d
nXt) ≤ 4(n+ 1)h(s, t).

Corollary 3.12. Let P be an open (resp. stable) property. Assume that there is s ∈ U so that
dnXs has P. Then dnXt has P for all t ∈ U (resp. for all t in an open disc centered in s).

3.3. Bounded stability. Let F(U,Σ) be a Kalton space and let z ∈ U . Then the exact sequence
0 → Xz → dXz → Xz → 0 associated to Ωz : Xz → Σ splits if and only if there exists a linear
map L : Xz → Σ such that Ω− L takes Xz to Xz and it is bounded (Proposition 3.3). Kalton’s
work justifies the importance of the case Ωz bounded in interpolation affairs. Let us accordingly
introduce a few related notions.

Definition 3.13. The derivation Ωz is bounded when it takes values in Xz and it is bounded as
a map from Xz to Xz. In this case we will say that the induced exact sequence boundedly splits.

Bounded splitting admits the following characterizations.

Theorem 3.14. Let F(U,Σ) be a Kalton space and let s ∈ U . The following assertions are
equivalent:

(1) δs : ker δ
′
s → Xs is surjective.

(2) F = ker δs + ker δ′s.
(3) There exists M > 0 such that each f ∈ F can be written as f = g + h with g ∈ ker δs,

h ∈ ker δ′s and max{∥g∥F, ∥h∥F} ≤M∥f∥F.
(4) δ′s(F) ⊂ Xs.
(5) δ′s : F → Xs is bounded.
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(6) Ωs(Xs) ⊂ Xs.
(7) Ωs : Xs → Xs is bounded.

Proof. Clearly (1) ⇐ (2) ⇐ (3), (4) ⇐ (5) and (6) ⇐ (7). Moreover (4) ⇔ (6) and (5) ⇔ (7)
follow from Lemma 3.6. We will prove (1) ⇒ (3) ⇒ (5) and (4) ⇒ (2).

(1) ⇒ (3): Let f ∈ F with ∥f∥ = 1. Since δs : ker δ′s → Xs is surjective, it is open. So
there exists r > 0 such that we can find h ∈ ker δ′s with ∥h∥ ≤ r∥f(s)∥s and h(s) = f(s). Since
∥f(s)∥s ≤ ∥f∥, taking g = f − h ∈ ker δs we obtain (3) with M = r + 1.

(3) ⇒ (5): Let f ∈ F. Then f = g + h with g ∈ ker δs, h ∈ ker δ′s and ∥g∥F ≤M∥f∥F, hence

∥δ′s(f)∥s = ∥δ′s(g)∥s ≤ ∥δ′s : ker δs → Xs∥ · ∥g∥F ≤M∥δ′s : ker δs → Xs∥ · ∥f∥F.

(4) ⇒ (2): We know that the operator δ′s : ker δs → Xs is surjective. So taking a linear
selection ℓ : Xs → ker δs for δ

′
s, for each f ∈ F, ℓ(f ′(s)) ∈ ker δs and f − ℓ(f ′(s)) ∈ ker δ′s. �

Condition (6) shows that the requirements in Definition 3.13 are redundant. Condition (2) in
Theorem 3.14 provides a neat description of how the twisted sum space dΩsXs splits when Ωs

is bounded. Indeed, since dΩsXs = F/(ker δs ∩ ker δ′s) and the subspace Xs embeds in dΩsXs as
ker δs/(ker δs ∩ ker δ′s), condition (2) gives

F

ker δs ∩ ker δ′s
=

ker δs + ker δ′s
ker δs ∩ ker δ′s

=
ker δs

ker δs ∩ ker δ′s
⊕ ker δ′s

ker δs ∩ ker δ′s
.

4. Stability of splitting for Köthe function spaces

We will consider the following notions of stability:

Definition 4.1. We say that a differential process (Ωz)z∈U :

(1) has local stability if whenever Ωz0 is trivial then there is ε > 0 such that Ωz is trivial for
|z − z0| < ε.

(2) has local bounded stability if whenever Ωz0 is bounded then there is ε > 0 such that Ωz

is bounded for |z − z0| < ε.
(3) has global stability if whenever Ωz0 is trivial then Ωz is trivial for all z ∈ U .
(4) has global bounded stability if whenever Ωz0 is bounded then Ωz is bounded for all z ∈ U .

Theorem 3.4 shows that when an analytic family is generated by an interpolation pair (X0, X1)
of Köthe spaces then the differential process is “rigid”, in the sense that whenever Ωz0 is bounded
at some point z0 then X0 = X1, up to some equivalent renorming. Here we will prove that:

• The differential process associated to families of up to three Köthe spaces distributed in
arcs enjoys global (bounded) stability; in fact, it is “rigid” in the case of bounded stability
and “rigid” up to weighted versions in the case of stability. See Section 4.3.

• The differential process associated to families of four spaces can fail local bounded stability
(Proposition 4.17) or local stability (Proposition 4.19).



12 J.M.F. CASTILLO, W.H.G. CORRÊA, V. FERENCZI, M. GONZÁLEZ

4.1. Stability for pairs of Köthe spaces. After Kalton’s bounded stability theorem (Theorem
3.4), it is a reasonable guess that “nontrivial scales” of Köthe spaces correspond to “nontrivial
centralizers”. The difficulty is that the non-triviality notion involves uncontrolled linear maps, as
we can see in Proposition 3.3. Thus, while Kalton shows [22] that the centralizer Ωθ associated to
the scale (X0, X1)θ of Köthe function spaces is bounded if and only if X0 = X1 up to equivalence
of norms, the following question remained open: Does the triviality of Ωθ imply that X0 and X1

are equal, or at least isomorphic?

We shall now prove global stability for pairs of Köthe spaces. The following sentence in [8,
p. 364] clearly suggests that it was known to Kalton, at least in the domain of Köthe sequence
spaces: If (Z0, Z1) are two super-reflexive sequence spaces and Zθ = (Z0, Z1)θ for 0 < θ < 1
is the usual interpolation space by the Calderón method, one can define a derivative dZθ which
is a twisted sum Zθ ⊕Ω Zθ which splits if and only if Z1 = wZ0 for some sequence of weights
w = (w(n)) where w(n) > 0 for all n. These remarks follow easily from the methods of [22].

Next we recall Kalton’s formula [22, (3.2)] for the centralizer Ωθ corresponding to a couple of
Köthe function spaces (X0, X1) and 0 < θ < 1. It is well known [7] that Xθ coincides with the
space X1−θ

0 Xθ
1 , with

∥x∥θ = inf{∥y∥1−θ0 ∥z∥θ1 : y ∈ X0, z ∈ X1, |x| = |y|1−θ|z|θ}.
We fix c > 1. For each x ∈ Xθ we write |x| = |a0(x)|1−θ|a1(x)|θ with ∥a0(x)∥0, ∥a1(x)∥1 ≤ c∥x∥θ,
where a0 and a1 are chosen homogeneously.
Then Bθ(x)(z) = (sgnx)|a0(x)|1−z|a1(x)|z gives an extremal for x at θ, and we obtain

(5) Ωθ(x) = δ′θBθ(x) = x log
|a1(x)|
|a0(x)|

.

Given a Köthe function space X of µ-measurable functions, a weight w is a positive function
in L0(µ). We denote by X(w) the space of all measurable scalar functions f such that wf ∈ X,
endowed with the norm ∥x∥w = ∥wx∥X . From the approach in [9] we get the following general
version of a well-known result for Lp-spaces [4, Theorem 5.4.1]:

Proposition 4.2. Let X be a Köthe function space with the Radon-Nikodym property, and let
w0, w1 be two weights. Then (X(w0), X(w1))θ = X(w1−θ

0 wθ1) for 0 < θ < 1, with associated linear
centralizer Ωθ(x) = log(w1/w0) · x for x ∈ X.

Proof. By [24, Theorem 4.6], the space (X(w0), X(w1))θ is isometric to the spaceX(w0)
1−θX(w1)

θ

endowed with the norm

∥x∥θ = inf{∥a∥1−θw0
∥b∥θw1

: a ∈ X(w0), b ∈ X(w1), |x| = |a|1−θ |b|θ}

= inf{∥w0a∥1−θX ∥w1b∥θX : a ∈ X(w0), b ∈ X(w1), |x| = |a|1−θ |b|θ}.
Standard lattice estimates such as [28, Proposition 1.d.2] imply that

∥x∥θ ≥ inf{∥w1−θ
0 a1−θwθ1b

θ∥X : |x| = |a|1−θ |b|θ} = ∥x∥X(w1−θ
0 wθ

1)
,

and the reverse inequality can be obtained by using w0a = w1b = w1−θ
0 wθ1x.
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To obtain Ωθ on Xθ, observe that Bθ(x)(z) = (w1/w0)
θ−zx is a bounded homogeneous selector

for the evaluation map δθ. Indeed, Bθ(x)(θ) = x while ∥Bθx∥ = ∥x∥Xθ
as it follows from

∥Bθ(x)(0 + it)∥w0 = ∥Bθ(x)(1 + it)∥w1 = ∥w1−θ
0 wθ1x∥X = ∥x∥Xθ

. �
Complex interpolation between two Hilbert spaces always yields Hilbert spaces [24]. Let us

show that the induced derivation is trivial.

Corollary 4.3. Let (H0, H1) be an interpolation pair of Hilbert spaces. Then for every 0 < θ < 1
the derivation Ωθ is trivial.

Proof. It follows from Proposition 4.2, since [17, Lemma 2.2] shows that (H0, H1) is equivalent
to an interpolation pair (ℓ2(I), ℓ2(I, w)), where I is a set and w : I → R is a positive weight. �
Next we solve the stability problem for the splitting in the case of a pair of Köthe spaces,

completing Theorem 3.4.

Theorem 4.4. Let (X0, X1) be an interpolation pair of superreflexive Köthe function spaces and
let 0 < θ < 1. Then Ωθ is trivial if and only if there is a weight w so that X1 = X0(w) up to
equivalence of norms.

Proof. Recall that X0, X1 are spaces of µ-measurable functions. The proof goes in two steps:

Step 1. If Ωθ is trivial then there are weighted versions Yi of Xi so that if Ψθ is the associated
derivation, then there is a real function f ∈ L0(µ) so that, denoting also by f the multiplication
map by f , Ψθ(x)− fx ∈ Xθ and Ψθ − f is a bounded map on a dense subspace of Xθ.

Since we are dealing with interpolation of Köthe function spaces, there is a positive function
k > 0 such that ∥x∥Xj

≤ ∥kx∥∞ for j = 0, 1. Consider the couple (Y0, Y1), where Yj = Xj(1/k),
j = 0, 1. We denote the derivation induced at θ by this couple by Ψθ. Then Yθ = Xθ(1/k) and
Ψθ is trivial. The advantage of working with Yθ is that it contains the characteristic functions of
measurable sets.
Since Ψθ is a centralizer, there is a constant c > 0 such that for every a ∈ L∞(µ) and every

x ∈ X we have ∥Ψθ(ax)− aΨθ(x)∥Xθ
≤ c∥a∥∞∥x∥Yθ , and since it is trivial, there is a linear map

L so that Ψθ − L takes values in Yθ and is bounded there. The techniques in [9] (Lemmas 3.10
and 3.13) show that after some averaging it is possible to get a linear map Λ such that Ψθ − Λ
takes values in Yθ, is bounded there and Λ(ux) = uΛx for every unit u (every function with
|u| = 1). Since characteristic functions can be written as the mean of two units one gets that if
s =

∑
i λi1Ai

is a simple function then Λ(sx) = sΛ(x). Now, simple functions are dense in L∞,
so given a ∈ L∞ pick a simple s so that ∥a− s∥ ≤ ε. Since

Λ(ax) = Λ((a− s)x) + Λ(sx) and aΛ(x) = (a− s)Λ(x) + sΛ(x),

it follows that for some constant K

∥Λ(ax)− aΛ(x)∥ = ∥Λ((a− s)x)− (a− s)Λ(x)∥ ≤ K∥a− s∥∥x∥ ≤ Kε∥x∥
which shows that Λ actually verifies Λ(ax) = aΛ(x) for every a ∈ L∞. It is then a standard fact
that Λ must have the form Λ(x) = gx on the subspace Y b

θ of bounded elements of Yθ.
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Since Yθ is superreflexive, it is σ-order continuous by Theorem 1.a.5 and Proposition 1.a.7 in
[28]. So Y b

θ is dense in Yθ.
Now, there is also h > 0 such that ∥hx∥L1 ≤ ∥x∥Yj , j = 0, 1. The centralizer Ψθ is bounded as

a map from Yθ into Y0 + Y1, so it is bounded from Yθ into L1(hdµ). The same is true of Ψθ − Λ,
so Λ is bounded from Yθ into L1(hdµ).
Let x ∈ Yθ, and take a sequence (xn) ⊂ Y b

θ such that xn → x. Then, by the previous
considerations, taking limits in L1(hdµ),

Λ(x) = lim
n

Λ(xn) = lim
n
gxn = gx.

So Λ(x) = gx for every x ∈ Yθ.
Write g = g1+ ig2, with g1, g2 real functions. Formula (5) shows that the centralizer Ψθ is real.

So, for every x ∈ Yθ real we have

∥Ψθ(x)− g1x∥Yθ ≤ ∥Ψθ(x)− gx∥Yθ ≤ C∥x∥Yθ
for some constant independent of x.
For x ∈ Yθ write x = x1 + ix2, with x1, x2 real. Then, for some constant C ′ independent of x

∥Ψθ(x)− g1x∥Yθ ≤ ∥Ψθ(x)−Ψθ(x1)−Ψθ(ix2)∥Yθ
+∥Ψθ(x1)− g1x1∥Yθ + ∥Ψθ(x2)− g1x2∥Yθ

≤ C ′(∥x1∥Yθ + ∥x2∥Yθ)
≤ 2C ′∥x∥Yθ

where we have used the quasilinearity of Ψ and the lattice properties of Yθ. We take f = g1.

Step 2. The spaces Y0, Y1 are weighted versions of each other.

Pick w0 = eθf and w1 = e(θ−1)f . By the previous proposition,

(Yθ(w0), Yθ(w1))θ = Yθ(w
1−θ
0 wθ1) = Yθ

with associated centralizer Ω(x) = log(w0/w1)x = fx = Υ(x). Thus Ψθ − Ω is bounded and, by
part (3) of Theorem 3.4, we get Y0 = Xθ(w0) and Y1 = Xθ(w1), up to a renorming. �

Theorem 4.4 implies that the map Ωθ, when trivial, is a bounded perturbation of a multipli-
cation map. This is a consequence of the symmetry properties of the Köthe space. Now we can
complete Corollary 4.3 with the following result stating that twisted Hilbert spaces induced by
interpolation of Köthe spaces are trivial only in the obvious cases.

Proposition 4.5. A twisted Hilbert space induced by interpolation at θ = 1/2 between a super-
reflexive Köthe space X and its dual is trivial if and only if for some weight w we have X = L2(w)
with equivalence of norms.

Proof. If the twisted space is trivial then since X1/2 = L2 (see, e.g., [9]), and since spaces on the
whole scale are weighted versions of each other, X and X∗ are equal to L2(w) and L2(w

−1) with
equivalence of norms, respectively, for some weight. �
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4.2. Complex interpolation for families. Here we describe the interpolation method given
in [12] with a few modifications introduced in [13] which we will need in the remaining of this
section.
We consider an interpolation family (Xω)ω∈T such that each Xω is continuously embedded in

a Banach space Σ, the containing space, and there exists a subspace ∆ of ∩ω∈TXω, the inter-
section space, such that for every x ∈ ∆ the function ω 7→ ∥x∥ω is measurable and satisfies∫
T log

+ ∥x∥ωdt < ∞. We also suppose that there is a measurable function k : T → [0,∞)

satisfying
∫
T log

+ k(ω)dt <∞ and ∥x∥Σ ≤ k(ω)∥x∥ω for every x ∈ ∆ and every ω ∈ T.
We denote by G0 the space of all analytic functions on D of the form g =

∑n
j=1 ψjxj, with ψj in

the Smirnov classN+ (see [18, Section 2.5]) and xj ∈ ∆, such that ∥g∥ = ess supω∈T ∥g(ω)∥ω <∞.
Moreover G is the completion of G0.
For each z0 ∈ D we define two spaces. The first one is X{z0}, the completion of ∆ with respect

to the norm ∥x∥{z0} = inf{∥g∥ : g ∈ G0, g(z0) = x}, and the second one is X[z0] = {f(z0) : f ∈ G}
endowed with the natural quotient norm.
By [13, Proposition 1.5] X{z0} = X[z0] isometrically for every z0 ∈ D when G ≡ G(D,Σ) is a

Kalton space.

Given z ∈ D, the Poisson kernel Pz(ω) on T (see [12, Section 1]) provides the harmonic measure
dµz(ω) = Pz(ω)dω on T, and each function α on T which is integrable with respect to dµz can
be extended to an harmonic function on D by the formula

(6) α(z) =

∫
T
α(ω)Pz(ω)dω.

The harmonic conjugate α̃ of α with α̃(0) = 0 is given by α̃(z) =
∫
T α(ω)P̃z(ω)dω, where P̃z(ω)

is the conjugate Poisson kernel. Next we state the reiteration theorem for later use.

Theorem 4.6. [12, Theorem 5.1] Let (X0, X1) be an interpolation pair of Banach spaces, let
α : T → [0, 1] be a measurable function, and let Xω = (X0, X1)α(ω) for ω ∈ T. Then {Xω}ω∈T is
an interpolation family and X[z] = (X0, X1)α(z) for each z ∈ D, α(z) given by (6), with equality
of norms. Moreover, if both infω∈T α(ω) and supω∈T α(ω) are attained, then X{z} = X[z].

Complex interpolation for admissible families of Köthe spaces. In [22] Kalton considers a
variation of the complex interpolation method in [12] for families of Köthe function spaces of
µ-measurable functions, where µ is a σ-finite Borel measure on a Polish space. For U = D, he
defines the notion of admissible family of Köthe function spaces {Xω}ω∈T, for which there exist
two strictly positive h, k ∈ L0(µ) such that given x ∈ L0(µ), we have ∥xh∥1 ≤ ∥x∥ω ≤ ∥xk∥∞
for every w ∈ T. The family is strongly admissible if, additionally, there exists a countable
dimensional subspace V of L0(µ) such that V ∩BXω is L0(µ)-dense in BXω for a. e. ω ∈ T. These
conditions hold in most reasonable situations; for example, if the family is finite and the spaces
are separable then the family is strongly admissible. We refer to [22] for the details.

Given an admissible family {Xω}ω∈T of Köthe spaces, the role of Kalton space (Definition 3.1)
is played by the space N+(D) of functions f : D → L0(µ) such that
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• for µ-almost every s, the function Fs : D → C defined by Fs(z) = f(z)(s) belongs to the
Smirnov class N+ for every z ∈ D;

• ∥f∥ = ess supω∈T ∥f(ω)∥ω < ∞, where f(ω) is the radial limit of f(z) in the L0(µ)-
topology (which exists by Fubini’s theorem).

The definition of N+(D) in [22] does not include the condition ∥f∥ = ess supω∈T ∥f(ω)∥ω <∞,
but we will need it. This amendment is harmless since [22, Proposition 2.4] asserts the existence
of extremals in our space, which means that the new space N+(D) yields the same spaces Xz.

Remark 1. By [22, Lemma 2.2], each f ∈ N+(D) belongs to the Hardy space H1(L1(hdµ)), hence
N+(D) consists of analytic functions f : D → L1(hdµ), the norms of the evaluation maps are at
most 1, and the operation of multiplying by a conformal map is isometric on N+(D). Moreover
the arguments in [12] allow us to show that N+(D) is closed in H1(L1(hdµ)). Thus N+(D)
satisfies the conditions in Definition 3.1 with Σ = L1(hdµ).

We also need to recall the following notions from [22].

Definition 4.7. A semi-ideal is a cone I ⊂ L+
1 such that g ∈ I and 0 ≤ f ≤ g imply f ∈ I. A

strict semi-ideal is a semi-ideal which contains a strictly positive element.

Given a Köthe function space X, we consider the semi-ideal IX of all f ∈ L+
1 such that

supx∈BX

∫
f log+ |x| dµ <∞ and there is x ∈ BX such that

∫
f |log |x|| dµ <∞.

The indicator of X is the map ΦX : IX → R given by ΦX(f) = sup
x∈BX

∫
S
f log |x| dµ.

We will need the following result:

Theorem 4.8. [22, Theorem 4.7] Given a strongly admissible family {Xω}ω∈T, there is a strict
semi-ideal I such that for each z0 ∈ D and f ∈ I, we have I ⊂ IXz0

, the map t 7→ ΦXeit
(f) is

bounded and measurable, and

ΦXz0
(f) =

1

2π

∫ 2π

0

ΦXeit
(f)Pz0(e

it)dt.

The core of Kalton’s method is that centralizers on a separable Köthe space X actually live
on L1(µ). Precisely, given a centralizer Ω on X, then L1 = XX∗ by Lozanovskii’s factorization
[29]. Note that both X and X∗ are spaces of functions. Thus for each f ∈ L1, there exist x ∈ X
and x∗ ∈ X∗ such that f = xx∗ and ∥x∥∥x∗∥ ≤ 2∥f∥, so one can set

Ω[1](f) = Ω(x)x∗.

This is a centralizer on L1 and there is a constant C > 0 so that, whenever f = yy∗ with
y ∈ X, y∗ ∈ X∗,

∥Ω[1](f)− Ω(y)y∗∥L1 ≤ C∥y∥∥y∗∥.
See [21, Theorem 5.1] for details. When X = Lp (1 < p < ∞), Ω[1](f) = u|f |1/qΩ(|f |1/p), where
u|f | is the polar decomposition of f and p−1 + q−1 = 1.
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Given a centralizer Ω on a Köthe space X, Kalton considers the strict ideal IΩ ⊂ L1 of those
elements f ∈ L1 for which Ω[1](f) ∈ L1, and defines on IΩ the functional

ΦΩ(f) =

∫
Ω[1](f)dµ.

The crucial properties of this functional are established in the next result:

Theorem 4.9. [22, Proposition 7.4]

(1) Let (X0, X1) be an interpolation couple of Köthe spaces and let Ωθ be the derivation map
associated with Xθ. Then on a suitable semi-ideal one has ΦΩθ = ΦX0 − ΦX1.

(2) Let {Xω}ω∈T be a strongly admissible family. If Ω is the centralizer associated to Xz for
z = 0, then on a suitable strict semi-ideal I ⊂ IΩ one has that for every f ∈ I

ΦΩ(f) =
1

2π

∫ π

−π
e−itΦXeit

(f)dt.

4.3. Stability for families of three Köthe spaces. Here we prove the global stability of both
splitting and bounded splitting for interpolation families consisting of three spaces distributed
on arcs of T. The starting point is the generalization of the formula Xθ = X1−θ

0 Xθ
1 for families

presented in [22, Theorem 3.3] that Kalton credits to Hernández [20]. Note that the statement
in [22, Theorem 3.3] suppose that the family is strongly admissible, but the proof is valid for
admissible families.

Definition 4.10. Given Köthe spaces X(1), . . . , X(n) and positive numbers a1, . . . , an we define

n∏
j=1

X(j)aj = {f ∈ L0 : |f | ≤
n∏
j=1

|fj|aj , fj ∈ X(j)}

endowed with the norm ∥f∥∏ = inf{
∏n

j=1 ∥fj∥
aj
X(j)}, where the infimum is taken over all choices

of fj ∈ X(j) so that |f | ≤
∏n

j=1 |fj|
aj .

The following result provides the associated derivation map. For the sake of clarity we have
included a streamlined proof of the factorization theorem.

Proposition 4.11. Let {A1, . . . , An} be a partition of T into arcs, and let {Xω}ω∈T be the
admissible family given by Xω = X(j) for ω ∈ Aj, j = 1, . . . , n. If µz0 is the harmonic measure

on T with respect to z0, then Xz0 =
n∏
j=1

X(j)µz0 (Aj).

In particular, if X is an admissible Köthe function space, wj are weights and we take X(j) =

X(wj), then the family {Xω}ω∈T as above is admissible and Xz0 = X(
∏
w
µz0 (Aj)

j ) for z0 ∈ D,
with associated derivation Ωz0(x) = −

(∑
j

ψ′
j(z0) logwj

)
x, where ψj is an analytic function on

D such that Reψj = χAj
on T and Reψj(z0) = µz0(Aj).
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Proof. Pick f ∈ Xz0 . In order to apply [22, Lemma 3.2 and Theorem 3.3], recall that if E denotes
the Köthe function space on D× T with norm ∥ϕ∥E = ess sup ∥ϕ(·, ω)∥Xω then there is ϕ ∈ E so
that ∥ϕ∥E = ∥f∥Xz0

and

|f(s)| = exp

(∫
T
Pz0(ω) log ϕ(s, ω)dω

)
.

By Jensen’s inequality

|f(s)| ≤
n∏
j=1

(
1

µz0(Aj)

∫
Aj

ϕ(s, ω)Pz0(ω)dω

)µz0 (Aj)

.

Set fj(s) =
1

µz0 (Aj)

∫
Aj
ϕ(s, ω)Pz0(ω)dω so that

∥fj∥X(j) =

∥∥∥∥∥ 1

µz0(Aj)

∫
Aj

ϕ(·, ω)Pz0(z)dω

∥∥∥∥∥
X(j)

≤ 1

µz0(Aj)

∫
Aj

∥ϕ(·, ω)∥X(j)Pz0(ω)dω ≤ ∥ϕ∥E .

Then fj ∈ X(j) and |f | ≤
∏

|fj|µz0 (Aj), and thus ∥f∥∏ ≤
∏

∥fj∥
µ(Aj)

X(j) ≤ ∥ϕ∥. So ∥f∥∏ ≤ ∥f∥Xz0
.

Assume now that |f | ≤
∏

|fj|µz0 (Aj), and let ϕ be given by ϕ(s, ω) =
∏

|fj(s)|φj(ω) , where φj is
a harmonic function which coincides with χAj

on T, j = 1, . . . , n. Then φj(z0) = µz0(Aj), and

|f(s)| ≤
∏

|fj(s)|φj(z0) = exp
(
log
∏

|fj(s)|φj(z0)
)

= exp
(∑

log |fj(s)|φj(z0)
)
= exp

(∑∫
T
log |fj(s)|φj(ω) Pz0(ω)dω

)
= exp

(∑∫
Aj

log |fj(s)|φj(ω) Pz0(ω)dω

)

= exp

(∑∫
Aj

log
∏
k

|fk(s)|φk(ω) Pz0(ω)dω

)

= exp

(∫
T
log
∏

|fj(s)|φj(ω) Pz0(ω)dω

)
= exp

(∫
T
log ϕ(s, ω)Pz0(ω)dω

)
.

Therefore, ∥f∥Xz0
≤ ∥ϕ∥ = max ∥fj∥X(j). If we multiply each fj by

∏
∥fi∥

µz0 (Ai)

X(i)

∥fi∥X(i)
then we

still have that |f(s)| ≤
∏

|fj(s)|µz0 (Aj) and ∥f∥Xz0
≤
∏

∥fj∥
µz0 (Aj)

X(j) . Since the functions fj are

arbitrary, we get ∥f∥Xz0
≤ ∥f∥∏.

For the second part, let h1 and k1 be functions that show that X is admissible. We set
h = h1 minwj and k = k1 maxwj. Then h and k are such that ∥xh∥1 ≤ ∥x∥z ≤ ∥xk∥∞ for every
x ∈ X and z ∈ T. Also ∥xwjh1∥ ≤ ∥x∥X(wj) ≤ ∥xwjk1∥∞. Since it is clear that BX(wj) is closed
in L0, each space X(wj) is admissible.
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Since Xz0 =
∏
X(j)µz0 (Aj), for every x ∈ Xz0 one has

∥x∥z0 = inf
{∏

∥xj∥
µz0 (Aj)

X(j) : |x| ≤
∏

|xj|µz0 (Aj)
}

= inf
{∏

∥wjxj∥
µz0 (Aj)

X : |x| ≤
∏

|xj|µz0 (Aj)
}

≥ inf
{
∥
∏

(wjxj)
µz0 (Aj)∥X : |x| ≤

∏
|xj|µz0 (Aj)

}
≥ inf

{
∥
∏

w
µz0 (Aj)

j x∥X : |x| ≤
∏

|xj|µz0 (Aj)
}

= ∥x∥
X(

∏
w

µz0 (Aj)

j )
,

where the first inequality follows from ∥xθy1−θ∥ ≤ ∥x∥θ∥y∥1−θ and an induction argument, and

the second one from |x| ≤
∏

|xj|µz0 (Aj). Moreover, taking fj =
∏

k w
µz0 (Ak)

k w−1
j x, we get the

reverse inequality. Now let

F (z) =
∏
k

w
µz0 (Ak)

k

x∏
j w

ψj(z)
j

.

Then F ∈ N+(H), F (z0) = x, and for ω ∈ Aj one has

∥F (ω)∥Xj
=

∥∥∥∥wj∏w
µz0 (Ak)

k

x

wj

∥∥∥∥
X

= ∥x∥Xz0
.

Therefore F is a 1-extremal function for x. Moreover

Ωz0(x) = F ′(z0) = −
∏

w
µz0 (Aj)

j x
∏
k

w
−ψk(z0)
k

∑
j

ψ′
j(z0) logwj = −

(∑
j

ψ′
j(z0) logwj

)
x,

and the proof is done. �

We now pass to the study of the (bounded) stability. We first observe that the extension to D
of a conformal transformation on D taking z0 to 0 takes an arc of T onto an arc of T. So we can
assume without loss of generality that z0 = 0, and so we will do throughout this section.

Lemma 4.12. Let A0 = [θ0, θ1), A1 = [θ1, θ2) and A2 = [θ2, θ0) be a partition of [0, 2π). For
j = 0, 1, 2, set αj = 1

2π

∫
Aj
P0(e

it)dt and βj = 1
2π

∫
Aj
e−itdt. Then the vectors a = (α0, α1, α2),

b = (Re(β0), Re(β1), Re(β2)) and c = (Im(β0), Im(β1), Im(β2)) are linearly independent in R3.
Consequently, we can find aj ∈ C such that

∑
ajαj = 0 and

∑
ajβj = −1.

Proof. We begin by noticing that
∑
αj = 1 and

∑
βj = 0. So a cannot be written as a linear

combination of b and c. Also, the only way for {a, b, c} to be linearly dependent is if b is a
multiple of c. We have

−i
2
β0 = − sin

θ1 − θ0
2

sin
θ1 + θ0

2
+ i sin

θ0 − θ1
2

cos
θ0 + θ1

2
, and

−i
2
β1 = − sin

θ2 − θ1
2

sin
θ2 + θ1

2
+ i sin

θ1 − θ2
2

cos
θ1 + θ2

2
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So, if we consider the matrix with lines b and c, up to a factor of −i
2
the determinant of the first

two columns is

− sin
θ1 − θ0

2
sin

θ1 + θ0
2

sin
θ1 − θ2

2
cos

θ1 + θ2
2

+ sin
θ0 − θ1

2
cos

θ0 + θ1
2

sin
θ2 − θ1

2
sin

θ2 + θ1
2

= sin
θ0 − θ1

2
sin

θ2 − θ1
2

(
cos

θ0 + θ1
2

sin
θ2 + θ1

2
− sin

θ1 + θ0
2

cos
θ1 + θ2

2

)

= sin
θ0 − θ1

2
sin

θ2 − θ1
2

sin
θ2 − θ0

2

which is zero if and only if two of the θ′js are equal, which is not the case. �

The expressions for αj and βj are provided by Theorems 4.8 and 4.9.
It follows from Kalton’s Theorem 3.4 that given two interpolation couples (X0, X1) and (Y0, Y1)

such that (X0, X1)θ = (Y0, Y1)θ (up to renorming) and Ωθ = Υθ (up to a bounded map) for some
0 < θ < 1, then X0 = Y0 and X1 = Y1 (up to renorming). Next we give the version for three
spaces on arcs of that result. The proof is essentially an adaptation of the proof of the uniqueness
part of Theorem 7.6 of [22].

Theorem 4.13. Let {Xω : ω ∈ T} and {Yω : ω ∈ T} be two strongly admissible families with
Xω = X(j) and Yω = Y (j) for ω ∈ Aj, j = 0, 1, 2, where {A0, A1, A2} is a partition of T into
arcs. Let Ω0 and Ψ0 be the corresponding derivations at z0 = 0. If X0 = Y0 (up to renorming)
and Ω0 −Ψ0 is bounded then X(j) = Y (j) (up to renorming) for j = 0, 1, 2. Moreover, Ωz −Ψz

is bounded for every z ∈ D.

Proof. Since Ω0 and Ψ0 are equivalent, so are Ω
[1]
0 and Ψ

[1]
0 by definition, and then

d(ΦΩ0 ,ΦΨ0) = sup
∥f∥≤1,f∈I

∣∣ΦΩ0(f)− ΦΨ0(f)
∣∣ <∞.

We can use now Theorems 4.8, 4.9 and Lemma 4.12 to get equations that determine ΦX(j) in
terms of ΦX0 , Re(Φ

Ω0) and Im(ΦΩ0); and the same for ΦY (j) in terms of ΦY0 = ΦX0 , Re(Φ
Ψ0),

and Im(ΦΨ0). More specifically, on a suitable strict semi-ideal one has:

α0ΦX(0) + α1ΦX(1) + α2ΦX(2) = ΦX0

Re(β0)ΦX(0) +Re(β1)ΦX(1) +Re(β1)ΦX(2) = Re(ΦΩ0)

Im(β0)ΦX(0) + Im(β1)ΦX(1) + Im(β1)ΦX(2) = Im(ΦΩ0)

α0ΦY (0) + α1ΦY (1) + α2ΦY (2) = ΦY0

Re(β0)ΦY (0) +Re(β1)ΦY (1) +Re(β1)ΦY (2) = Re(ΦΨ0)

Im(β0)ΦY (0) + Im(β1)ΦY (1) + Im(β1)ΦY (2) = Im(ΦΨ0)
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Lemma 4.12 establishes that there is a unique solution for the numerical system

α0x+ α1y + α2z = a

Re(β0)x+Re(β1)y +Re(β1)z = b

Im(β0)x+ Im(β1)y + Im(β1)z = c

and two uniformly bounded sets of data (a(x), b(x), c(x)) and (a′(x), b′(x), c′(x)) with bounded
difference will produce two solutions ΦX(j) and ΦY (j) with bounded difference. So we can use [22,
Proposition 4.5] to conclude that X(j) = Y (j) (up to renorming) for j = 0, 1, 2. �
Now, after a preparatory lemma, we consider the stability results for three Köthe spaces.

Lemma 4.14. Let X be a Köthe function space, let {A0, A1, A2} be a partition of T into arcs,
and let f ∈ L0(µ). Then there are weights ωj such that taking Yω = X(ωj) for ω ∈ Aj and
j = 0, 1, 2, the admissible family {Yω : ω ∈ T} yields Y0 = X with derivation map Ω0(x) = f · x,
a (linear) multiplication map.

Proof. Write f = f1+ if2. By Lemma 4.12 there are real numbers a0, a1, a2 such that
∑
ajαj = 0

and
∑
ajβj = −1, and there are real numbers b0, b1, b2 such that

∑
bjαj = 0 and

∑
bjβj = −i.

Set wj = eajf1+bjf2 . Then Y0 = X(wα0
0 w

α1
1 w

α2
2 ) = X and Ω0 = −

∑
βj(ajf1 + bjf2) = f . �

Theorem 4.15. Let {Xω : ω ∈ T} be the strongly admissible family with Xω = X(j) for ω ∈ Aj
and j = 0, 1, 2, where {A0, A1, A2} is a partition of T into arcs. If the derivation map Ω0 is trivial
then there are weights wj such that X(j) = X0(wj) with equivalence of norms. In particular, Ωz

is trivial for every z ∈ D.

Proof. If Ω0 is trivial then arguing as in Theorem 4.4 (up to passing to weighted versions of the
spaces) we get f ∈ L0(µ) so that Λ(x) = f ·x is a linear map, and Ω0−Λ takes X0 into X0 and it
is bounded on X0. We take X = X0 in Lemma 4.14 so that we obtain a new family {Yω : ω ∈ T}
which is strongly admissible, since Xw is so, and whose induced centralizer at 0 is Λ. By Theorem
4.13, we obtain that X(j) = X0(wj) with equivalence of norms for some suitable weights.
To see that Ωz is trivial for every z ∈ D, observe that the Kalton spaces N+({Xω}) and

N+({Yω}) associated to the families {Xω} and {Yω} coincide, with equivalence of norms. In
particular, Xz = Yz for all z ∈ D, with equivalence of norms.
Let Λz be the trivial centralizer induced by {Yω} at z. Given x ∈ V , we fix (1 + ϵ)-extremals

Fx ∈ N+({Xω}) and Gx ∈ N+({Yω}) so that Ωz(x) = δ′zFx and Λz(x) = δ′zGx. Thus there are
some constants C,C ′ such that, for all x ∈ V , one has

∥Ωz(x)− Λz(x)∥Xz = ∥δ′z(Fx −Gx)∥Xz

≤ ∥δ′z : ker δz → Xz∥∥Fx −Gx∥N+

≤ C(∥Fx∥N+({Xω}) + ∥Gx∥N+({Yω}))

≤ C(1 + ϵ)(∥x∥Xz + ∥x∥Yz)
≤ C ′∥x∥Xz .

Since Λz is trivial and V is dense in Xz, the derivation Ωz is trivial. �
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Observe that our reasoning does not work for general families of three spaces not distributed
in arcs. This should be compared with the results of [31], previously obtained in [15].

4.4. (Bounded) stability fails for families of four Köthe spaces. Here we show that the
statement of Theorem 3.4 is no longer true for arbitrary families of Köthe spaces.
Let c00 denote the space of finitely non-zero sequences of scalars. A sequence of functions

(φn) which are continuous on D and analytic on D induces a family of diagonal linear maps
D(z) : c00 → c00 (z ∈ D) given by D(z)(xn) = (φn(z)xn). We define a family of Banach spaces
{Xs : s ∈ T} by taking as Xs the completion of c00 with respect to the norm ∥x∥s = ∥e−D(s)x∥2.
Moreover, for x ∈ c00, we define ∥x∥Σ = inf{∥x1∥z1 + · · ·+ ∥xn∥zn}, where the infimum is taken
over all n ∈ N, zi ∈ T, and xi ∈ c00 such that x = x1 + · · ·+ xn.

We claim that ∥.∥Σ is a norm on c00. Indeed, the only difficulty is to show that ∥x∥Σ = 0 implies
x = 0. Let x = (aj) ∈ c00 with a

k ̸= 0. Note that e−D(z) is the multiplication operator associated
to the sequence (e−φn(z)). If |φk(z)| ≤M , then

∣∣e−φk(z)
∣∣ = e−Re(φk(z)) ≥ e−M . Therefore∑

∥xj∥zj =
∑

∥e−D(zj)xj∥2 ≥ e−M
∣∣ak∣∣ ,

and we conclude that ∥x∥Σ > 0.

Let Σ be the completion of c00 with respect to ∥.∥Σ. Then for each ω ∈ T we have Xω ⊂ Σ with
inclusion having norm at most 1. Note also that the projection Pn onto the first n coordinates
is a norm-one operator on Xω for each ω ∈ T, and also on Σ.

Proposition 4.16. The above defined family (Xω)ω∈T is an interpolation family with containing
space Σ and intersection space ∆ = c00. Moreover, for every z0 in D one has:

(1) X{z0} = X[z0]. Thus we can denote Xz0 = X{z0} = X[z0].

(2) The space Xz0 is the completion of c00 with respect to the norm ∥x∥z0 = ∥e−D(z0)x∥2.
(3) Ωz0x = D′(z0)x for x ∈ c00.

Proof. (1) Let x ∈ c00. Clearly ∥x∥[z0] ≤ ∥x∥{z0}. Let f ∈ F (see Section 3) be such that
f(z0) = x. Take n such that Pn(x) = x and define g(z) = Pn(f(z)). Then g(z) =

∑n
j=1 ψj(z)ej,

where (ej) is the canonical basis of ℓ2. Since ψj(z)ej = (Pj − Pj−1)f(z) and f is analytic when
viewed as a Σ-valued function, we get that ψj is analytic. If z ∈ D, then

|ψj(z)| ∥ej∥Σ = ∥(Pj − Pj−1)f(z)∥Σ ≤ 2∥f(z)∥Σ ≤ 2∥f∥F .
Hence ψj ∈ H∞, the space of bounded analytic functions on D, which is contained in the Smirnov
class N+. Also, for almost every z ∈ T we have ∥g(z)∥Xz = ∥Pn(f(z))∥Xz ≤ ∥f(z)∥Xz ≤ ∥f∥F .
Thus g ∈ G and ∥g∥G ≤ ∥f∥G. Since g(z0) = Pn(f(z0)) = x, we get ∥x∥{z0} = ∥x∥[z0].
To prove (2), let x ∈ c00 and let g(z) = eD(z)−D(z0)x ∈ G. Then g(z0) = x, and for z ∈ T we

have ∥g(z)∥Xz = ∥e−D(z0)x∥2. Thus ∥x∥z0 ≤ ∥e−D(z0)x∥2. Take f ∈ G such that f(z0) = x. Given
a non-zero y ∈ c00, define h(z) = ⟨e−D(z)f(z), y⟩.
It follows that h ∈ H∞. Indeed, f may be written as a finite sum

∑
fixi, with fi ∈ N+ and

xi ∈ c00. Since e−D(z) is bounded, we have that e−D(z)fi(z) ∈ N+. This implies that h ∈ N+,
and since it is bounded on T, h ∈ H∞ [18, Theorem 2.11]. Moreover, ∥h∥H∞ ≤ ∥f∥G∥y∥2. Hence
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|h(z0)| =
∣∣⟨e−D(z0)x, y⟩

∣∣ ≤ ∥f∥G∥y∥2. Since ∥f∥G can be taken arbitrarily close to ∥x∥z0 and y is

arbitrary, ∥e−D(z0)x∥2 ≤ ∥x∥z0 .
(3) We have shown that the following function g is an extremal function for x = (aj) at z0:

g(z) = eD(z)−D(z0)x = (eφ1(z)−φ1(z0)a1, eφ2(z)−φ2(z0)a2, . . .).

Then g′(z) =
(
φ′
n(z)e

φn(z)−φn(z0)an
)
, hence Ωz0x = g′(z0) = (φ′

n(z0)a
n) = D′(z0)x. �

By Proposition 4.16, there is no local bounded stability for arbitrary families of Köthe spaces:

Proposition 4.17. Let D(xn) = (wnxn) be an unbounded diagonal operator on c00.

(1) The choice D(z) = zD yields an analytic family for which Ωz = D for every z ∈ D.
(2) The choice D(z) = z2D yields an analytic family such that Ωz = 2zD for every z ∈ D.

Therefore Ω0 = 0 while Ωz is unbounded for z ̸= 0.

We pass now to show that there is no local stability for families of Köthe spaces.

Proposition 4.18. Let p : T → [1,∞) be a measurable function and let α : D → C be an analytic
function on D satisfying Re (α(z)−1) = p(z)−1 on T, and such that inf Re(ω) and supRe(ω) are
attained on T. We consider the interpolation family (ℓp(ω))ω∈T. Given z0 ∈ D with α(z0) ∈ R,
the interpolation space at z0 is ℓp(z0) with derivation

Ωz0 ((xn)) = −α
′(z0)

α(z0)

(
xn log

|xn|
∥x∥ℓp(z0)

)
.

Proof. The containing space for the family is ℓ∞, and the intersection space may be taken as c00.
We first check that

f(z) =

(
|xn|

α(z0)
α(z)

xn
|xn|

)
is a 1-extremal for x = (xn) ∈ c00 with ∥x∥p(z0) = 1. The function f is analytic, f(z0) = x, and
f ∈ G because for every z ∈ D

∥f(z)∥p(z)p(z) =
∑

|xn|Re(
α(z0)
α(z)

)p(z) =
∑

|xn|α(z0) =
∑

|xn|p(z0) = 1.

Therefore, ∥x∥z0 ≤ ∥x∥p(z0). Hence ∥x∥z0 = ∥x∥p(z0) by Theorem 4.6. Moreover for non-zero
x = (xn) ∈ ℓp(z0) one has

Ωz0(x) = ∥x∥ℓp(z0)Ωz0

(
x

∥x∥ℓp(z0)

)

= ∥x∥ℓp(z0)

− xn
|xn|

(
|xn|

∥x∥ℓp(z0)

)α(z0)
α(z0) α(z0)

α(z0)2
α′(z0) log

|xn|
∥x∥ℓp(z0)


= −α

′(z0)

α(z0)

(
xn log

|xn|
∥x∥ℓp(z0)

)
,

and the proof is complete. �
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An exact sequence is singular when the quotient map q is strictly singular; i. e. no restriction
of q to an infinite-dimensional subspace is an isomorphism. A derivation is said to be singular if
the induced exact sequence is singular [6]. Obviously, singular derivations are not trivial.

Proposition 4.19. The family (ℓp(z))z∈T with p(z)−1 = Re ((z2 + 2)−1) yields Ω0 = 0 and Ωz

singular for 0 ̸= z ∈ D.

Proof. Since p(z)−1 ∈ [1/3, 1] it turns out that p(z) ∈ [1, 3]. We thus set α(z) = z2 + 2 on D. In
that case we get α(z) ∈ R if and only if z = t or z = it, t ∈ R. By the previous lemma, Ω0 = 0,
and for z = t and z = it, t ̸= 0, Ωz is a nonzero multiple of the Kalton-Peck map on ℓp(z0), and
therefore it is singular. Moreover, the choice αz0(z) = z2 + 2 − iIm(α(z0)) yields that Ωz0 is a
nonzero multiple of the Kalton-Peck map for any z0 ∈ D, z0 ̸= 0. �
The moral of all this. We can present two explanations for the fact that families of two or
three Köthe spaces have global (bounded) stability and are even rigid in different senses while
families of four spaces do not. The first one emerges from the proof of Theorem 4.13: any point
in the interior of the convex hull of three points admits a unique representation as a convex
combination of them, but this is false for four points. The second one arises from the reiteration
theorem for families [12]. Using that result to set the initial configuration one gets:

Theorem 4.20. Let α and (X0, X1)α(ω) for ω ∈ T be as in Theorem 4.6, let Ωs denote the
derivation corresponding to (X0, X1)s for 0 < s < 1, and let z0 ∈ D. Then the derivation
corresponding to the family (X0, X1)α(z) at z0 is Φz0 = w′(z0)Ωα(z0), where w = α + iα̃ and α̃ is
the harmonic conjugate of α with α̃(z0) = 0.

Proof. Fix z ∈ D and x ∈ X0 ∩X1, and take a c-extremal f for x at α(z) in the Calderón space
C(X0, X1). By [4, Lemma 4.2.3] we may assume that f is a linear combination of functions with
values in X0 ∩ X1. Included in the proof of [12, Theorem 5.1] is the fact that g = f ◦ w is an
extremal for x at z with respect to the family (X0, X1)α(z), and ∥g∥ ≤ ∥f∥. Therefore Φz(x) =
(f ◦ w)′(z) = w′(z)Ωw(z)(x). Finally Ωw(z) may be chosen as Ωα(z) by vertical symmetry. �
Theorem 4.20 can be seen as the 1-level version of Theorem 4.6. It shows that the derivation

maps of
(
(X0, X1)α(ω)

)
ω∈T are always multiples of the derivation maps of the initial pair.

Corollary 4.21. Let (X0, X1) be an interpolation pair, let Ωθ be the derivation at θ ∈ (0, 1), let
B0 = {eiθ : θ ∈ [0, π

2
] ∪ [π, 3π

2
]} and let α = χB0 : T → [0, 1]. Consider the interpolation family

{(X0, X1)α(w) : w ∈ T}. Then for z = t or z = it, t ∈ (−1, 1), we get Xz = (X0, X1) 1
2
with

derivations Φ0 = 0 and Φz equal to a multiple of Ωθ with θ = α(z) for 0 ̸= z ∈ D.

A case similar to that in Proposition 4.19 can be obtained with two spaces distributed on four
arcs on T as above: just consider X0 = ℓ∞ and X1 = ℓ1, which produces Xz = ℓ2 for every z = t,
z = it, t ∈ (−1, 1) and Φ0 = 0 while Φz is a non-zero multiple of the Kalton-Peck map on Xz for
values of z ∈ D arbitrarily close to 0. Thus, the differential process lacks local stability.

The next result explains, to some extent, the exceptional character of the previous examples.
It is a direct consequence of Theorem 4.20.
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Theorem 4.22. Let (X0, X1) be an interpolation pair of Köthe function spaces, and let us con-
sider the notation of Theorem 4.20.

(1) If the derivation Φz0 is bounded for some z0 ∈ D such that 0 < α(z0) < 1 and w′(z0) ̸= 0,
then X0 = X1 with equivalence of norms and Φz is bounded for each z ∈ D.

(2) If the derivation Φz0 is trivial for some z0 ∈ D such that 0 < α(z0) < 1 and w′(z0) ̸= 0,
then X0 is a weighted version of X1 and Φz is trivial for each z ∈ D.

5. Stability of splitting for pairs of Banach spaces

For general Banach spaces, the problem of existence of local or global stability remains open.
Here we give some positive results for pairs of sequence spaces with a common basis and pairs of
Köthe function spaces. In the latter case, they provide more information than the results given
before, which have an isomorphic nature, while Theorem 5.11, under the additional hypotheses
it imposes, yields isometric uniqueness and stability.
In this section we will use an alternative description of the complex interpolation method for

pairs which is given in [16]. Let X = (X0, X1) be an interpolation pair of Banach spaces and, for
z ∈ S, let P S

z be the Poisson kernel on ∂S at z.
For 0 < θ < 1 and 1 ≤ p < ∞, we consider the spaces F

p
θ(X) and F∞(X) of all functions

F : S → Σ which are analytic on S, such that F (j + it) ∈ Xj for j = 0, 1 and t ∈ R, the maps
fj : t ∈ R → F (j + it) ∈ Xj (j = 0, 1) are Bochner measurable, F has a Poisson representation
F (z) =

∫
∂S F (w)P

S
θ (w)dw for z ∈ S, and

∥F∥p
F
p
θ (X)

=

∫
R
∥f0(t)∥pX0

P S
θ (t)dt+

∫
R
∥f1(t)∥pX1

P S
θ (1 + it)dt <∞

for 1 ≤ p <∞, or ∥F∥F∞(X) = maxj=0,1 ∥fj∥L∞(R,Xj) <∞ for p = ∞.

It is not difficult to check that F∞(X) endowed with the norm ∥ · ∥F∞(X) is a Kalton space of

analytic functions on S. Moreover, the associated spaces Xθ coincide (with equality of norms)
with the spaces obtained in Section 3 using the Calderón space C [16].
Given 0 < θ < 1 and t ∈ R, the invariance under vertical translations of S implies that given

f in the Calderón space C such that f(θ) = x, the function g(z) = f(z − it) is in C and satisfies
∥f∥C = ∥g∥C and g(θ+ it) = x; and the same is true for F∞(X). Thus Xθ = Xθ+it isometrically,
and it is enough to study the scale (Xθ)0<θ<1.
Recall that an interpolation pair (X0, X1) is regular if ∆ is dense in both X0 and X1. We need

the following properties of the map θ → ∥ · ∥θ.
Lemma 5.1. Let (X0, X1) be a regular interpolation pair and let 0 ≤ θ0 < θ1 ≤ 1. For every
x ∈ Xθ0 ∩ Xθ1, the map θ 7→ ∥x∥θ ∈ R is log-convex on (θ0, θ1); it is therefore continuous with
right and left derivatives on any point of (θ0, θ1).

Proof. For each θ ∈ [θ0, θ1] one has ∥x∥θ ≤ ∥x∥1−tθ0
∥x∥tθ1 when θ = (1− t)θ0+ tθ1: the case θ0 = 0,

θ1 = 1 is well-known, and the general case is a consequence of the reiteration theorem for complex
interpolation [4, Theorem 4.6.1]. From this it follows that the map θ 7→ log ∥x∥θ is convex on
[θ0, θ1], and therefore continuous with right and left derivatives at every point of (θ0, θ1). �
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5.1. Local bounded stability for coherent pairs. We begin by introducing the special in-
terpolation pairs we study in this section.

Definition 5.2. We say that an interpolation pair (X0, X1) is coherent if there exists an in-
creasing sequence (En) of finite-dimensional subspaces of ∆ = X0 ∩X1 such that ∆0 = ∪n∈NEn
is dense in ∆, and for every x ∈ En we can select a 1-extremal fx,θ so that the corresponding
derivation map Ωθ takes En into En.

Note that the restriction of a derivation map to a finite-dimensional subspace is always
bounded. The following result provides examples of coherent pairs.

Proposition 5.3. Let (X0, X1) be a regular interpolation pair of reflexive spaces. Suppose that

(1) X0 and X1 have a common monotone basis (en), or
(2) X0 and X1 are rearrangement invariant spaces on [0, 1].

Then (X0, X1) is coherent.

Proof. Given 0 < θ < 1 and x ∈ Xθ, there exists a 1-extremal gx,θ by [16, Proposition 3].
(1) Take En = [e1, . . . , en] and denote by Pn the natural norm-one projection from Σ onto En.

For x ∈ En, if gx,θ is a 1-extremal then fx,θ(z) = Pn (gx,θ(z)) defines a 1-extremal that satisfies
the remaining conditions because all norms are equivalent on En and for y ∈ En

Ωθ(y) = f ′
y,θ(θ) = (Pngy,θ)

′ (θ) = Pn
(
g′y,θ(θ)

)
.

(2) The proof is similar: For each n ∈ N we take as En the subspace generated by the
characteristic functions of the intervals

(
(k − 1)/2n, k/2n

)
, k = 1, . . . , 2n. The arguments in the

proof of [28, Theorem 2.a.4] show that

Pnf =
2n∑
k=1

2n
(∫ 1

0

fχn,kdt

)
χn,k

define a norm-one projection from Σ onto En. �

The proof of the following result is a part of the proof of the main Theorem of [16]. We include
some details for the convenience of the reader.

Lemma 5.4. Given (X0, X1) a regular interpolation pair with X0 reflexive, x ∈ ∆, θ ∈ (0, 1)
and a 1-extremal fx,θ one has ∥fx,θ(z)∥z = ∥x∥θ for every z ∈ S.

Proof. It is enough to prove the result when ∥x∥θ = ∥fx,θ∥F∞(X) = 1. We select x∗ ∈ (Xθ)
∗ ≡

(X∗)θ such that ∥x∗∥ = ⟨x, x∗⟩ = 1. As in Daher’s proof, we select f∗ ∈ F2
θ(X

∗) with f∗(θ) = x∗

and ∥f∗∥F2
θ(X

∗) = 1.

Using [4, Lemma 4.2.3] we can show that g(z) = ⟨fx,θ(z), f ∗(z)⟩ defines an analytic function.
Since |g(z)| ≤ 1 for every z ∈ S and g(θ) = 1, the maximum principle for analytic functions
implies that g(z) = 1 for every z ∈ S. In particular ∥fx,θ(z)∥z ≥ 1, hence ∥fx,θ(z)∥z = 1. �
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Lemma 5.5. Let (X0, X1) be a regular interpolation pair with X0 reflexive, let x ∈ ∆ and let
0 ≤ θ0 < θ < θ1 ≤ 1. Suppose that there is a 1-extremal fx,θ which is derivable at z = θ as a
function with values in both spaces Xθi (i = 0, 1), and consider the derivation Ωθ(x) = f ′

x,θ(θ).
Then the right and left derivatives of t 7→ ∥x∥t at θ are bounded in modulus by ∥Ωθ(x)∥θ.

Proof. By Lemma 5.4 ∥x∥θ = ∥fx,θ(θ + ε)∥θ+ε. Hence

lim
ε→0+

1

ε

∣∣∥x∥θ+ε − ∥x∥θ
∣∣ ≤ lim sup

ε→0+

1

ε
(∥fx,θ(θ + ε)− x∥θ+ε)

≤ lim sup
ε→0+

(
∥Ωθ(x)∥θ+ε + ∥1

ε
(fx,θ(θ + ε)− x)− Ωθ(x)∥θ+ε

)
≤ lim sup

ε→0+

(
∥Ωθ(x)∥θ+ε +max

i=0,1
∥1
ε
(fx,θ(θ + ε)− x)− Ωθ(x)∥θi

)
.

Note that Ωθ(x) belongs to Xθ0 ∩Xθ1 by hypothesis. So, by Lemma 5.1, we have that ∥Ωθ(x)∥θ+ε
tends to ∥Ωθ(x)∥θ. Since 1

ε
(fx,θ(θ + ε)− x) tends to Ωθ(x) in Xθi , i = 0, 1, we get:

(7)

∣∣∣∣d∥x∥tdt
|t=θ±

∣∣∣∣ ≤ ∥Ωθ(x)∥θ .

�

Next we give some conditions on an interpolation pair (X0, X1) implying X0 = X1 up to an
equivalent renorming.

Theorem 5.6 (Local bounded stability). Let (X0, X1) be a coherent interpolation pair of reflexive
spaces and let 0 ≤ θ0 < θ1 ≤ 1. Suppose that supθ0<t<θ1 ∥Ωt : Xt → Xt∥ < ∞. Then X0 = X1,
up to an equivalent renorming.

Proof. Fix x ∈ ∆0 = ∪n∈NEn. For θ0 < s < θ1 one has∣∣∣∣d∥x∥tdt

∣∣∣∣
t=s+

≤ ∥Ωs(x)∥s ≤M∥x∥s.

If we set g(s) = eMs∥x∥s then(
dg

dt

)
t=s+

= eMs

(
M∥x∥s +

(
d∥x∥t
dt

)
t=s+

)
≥ 0.

Since g is continuous, it is nondecreasing on (θ0, θ1). Therefore, whenever [θ− ε, θ+ ε] ⊂ (θ0, θ1)
one has g(θ + ε) ≥ g(θ − ε) which implies

∥x∥θ+ε ≥ e−M(θ+ε)eM(θ−ε)∥x∥θ−ε = e−2Mε∥x∥θ−ε.

Working with e−Ms∥x∥s instead we obtain ∥x∥θ+ε ≤ e2Mε∥x∥θ−ε.
By density we get Xθ+ε = Xθ−ε, thus Xs = Xθ with equivalence of norms for |θ − s| ≤ ε, and

a result of Stafney [35, Theorem 1.7] implies that X0 = X1 with equivalence of norms. �
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5.2. Isometric rigidity of linear derivations for optimal interpolation pairs. As we
remarked in the Introduction, [14, Theorem 5.2] proves the estimate

d

dθ
∥x∥θ,1 ∼ ∥x∥θ,1 + ∥Ωθ(x)∥θ,1.

for the real (θ, 1)-method of interpolation. From this fact, an analogue of Theorem 5.6 is derived
[14, Theorem 5.16]: If the maps Ωθ are uniformly bounded for all |θ − θ0| < ε then X0 = X1.
Moreover, [14, Theorem 5.17] shows that the (θ, q)-method has a stronger stability property: if
Ωθ is bounded for some 0 < θ < 1 then X0 = X1. A similar result for the complex interpolation
method is still unknown in general, but we will give here some partial positive results.
From now on, we sometimes denote Bθ(x)(z) = fx,θ(z) (z ∈ S) for convenience.

Definition 5.7. An interpolation pair (X0, X1) will be called optimal if, for every 0 < θ < 1
and each x ∈ Xθ, there exists a unique 1-extremal fx,θ.

Daher [16, Proposition 3] showed that a regular interpolation pair of reflexive spaces is optimal
when one of the spaces is strictly convex. He also essentially observed the following result:

Lemma 5.8. Let (X0, X1) be an optimal interpolation pair with X0 reflexive. For all x ∈ ∆ and
t, z ∈ S we have

(1) ∥Bt(x)(z)∥z = ∥x∥t,
(2) Bt(x) = Bz (Bt(x)(z)),
(3) Bt(x)

′(z) = Ωz (Bt(x)(z)).

Proof. (1) was proved in Lemma 5.4, (2) follows from the uniqueness of the extremals, since both
functions have the same norm and take the value Bt(x)(z) at z, and (3) follows from (2) and
Bt(x)

′(z) = Ωz(x). �

Lemma 5.9. Let (X0, X1) be an optimal interpolation pair. For all 0 < θ < 1 and t ∈ R one
has Ωθ+it = Ωθ.

Proof. Observe that Bθ(x)(z − it) = Bθ+it(x)(z) since both are extremals for x at z = θ + it.
Hence Ωθ+it(x) = Bθ+it(x)

′(θ + it) = Bθ(x)
′(z) = Ωθ(x). �

We are ready to obtain some stability results when Ωθ is linear and bounded. We start with
the simplest case Ωθ = 0. Note that the following result is new even for Köthe function spaces.

Proposition 5.10. Let (X0, X1) be an optimal interpolation pair with X0 reflexive. Then Ωθ = 0
for some 0 < θ < 1 if and only if X0 = X1 isometrically.

Proof. The if part is well-known and it easily follows from Bθ(x)(z) = x for x ∈ ∆. As for the
converse, consider the function F : R → Σ defined by F (t) = Bθ(x)(θ + it).
This function is constant since F ′(t) = Ωθ+it (Bθ(x)(θ + it)) = 0. Thus the analytic function

Bθ(x) is constant on the vertical line through θ, hence constant on S. In particular ∥x∥θ =
∥Bθ(x)(θ)∥θ = ∥Bθ(x)(z)∥z = ∥x∥z for each z. �
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Recall that an operator T acting on a Banach space X is said to be hermitian when eitT is an
isometry on X for all t ∈ R (see [23]).

Theorem 5.11. Let (X0, X1) be a coherent and optimal interpolation pair of Banach spaces.
Suppose that Ωθ : Xθ → Σ is linear for some 0 < θ < 1. Then

(1) Ωz(x) = Ωθ(x) for all z ∈ S and all x ∈ ∆0.
(2) For every 0 < s < 1, the map x ∈ ∆0 7→ esΩθx induces an isometry between X0 and Xs

which gives ∥x∥s = ∥e−sΩθx∥0.
(3) Ωz is an hermitian operator on Xz for all z ∈ S.

Proof. (1) Since Bθ(x)
′(θ + it) = Ωθ+it (Bθ(x)(θ + it)) = Ωθ (Bθ(x)(θ + it)) for all t ∈ R, the

function t→ Bθ(x)(θ + it) satisfies the differential equation

(8) f ′(t) = iΩθ(f(t)).

Equivalently, Bθ(x) satisfies the equation f ′(z) = Ωθ(f(z)) for z ∈ Sθ = {z ∈ S : Re(z) = θ}.
Since Bθ(x) : S → Σ is the unique 1-extremal and x ∈ ∆0, it is analytic as a map into ∆. When
Ωθ is linear, Ωθ ◦Bθ(x) : S → Σ is analytic and takes values in ∆ for x ∈ ∆0, and the derivative
Bθ(x)

′ : S → Σ is of course analytic. Since both functions coincide on Sθ, they coincide on S;
thus Bθ(x) solves the equation f ′(z) = Ωθ(f(z)) on S and we get

Ωθ(x) = Ωθ (Bz(x)(z)) = Ωθ (Bθ(Bz(x)(θ))(z))

= Bθ (Bz(x)(θ))
′ (z) = Bz(x)

′(z) = Ωz(x).

To prove (2) we need to make sense of the function G(t) = e−itΩθBθ(x)(θ + it) for x ∈ ∆0.
Pick n ∈ N such that x ∈ En. Since Ωθ(En) ⊂ En, the iterations Ωk

θ are operators on En, so
that G is well defined. Now, since Ωθ : Xθ → Σ is linear and bounded,

G′(t) = e−itΩθiBθ(x)
′(θ + it)− e−itΩθiΩθ (Bθ(x)(θ + it))

= e−itΩθ

(
iΩθ (Bθ(x)(θ + it))− iΩθ (Bθ(x)(θ + it))

)
= 0.

So the function G(t) is constant and equal to G(0) = x; thus Bθ(x)(θ + it) = eitΩθx. This
means that for any z in the vertical line through θ, Bθ(x)(z) = e(z−θ)Ωθx. Since both functions
are analytic on S, it turns out that Bθ(x)(z) = e(z−θ)Ωθx for all z ∈ S and x ∈ ∆0. Since the
functions are equal on S, they have the same radial limits a. e. on the border.
So Bθ(x)(z) = e(z−θ)Ωθx for a. e. z on the border of S. Thus 1 = ∥Bθ(x)(it)∥0 = ∥e(it−θ)Ωθx∥0

for a. e. t ∈ R. By continuity, ∥e(it−θ)Ωθx∥0 = ∥x∥θ for every t ∈ R. Clearly the same reasoning
works for 1 + it instead of it.
Thus ∥x∥θ = ∥Bθ(x)(s)∥s = ∥e(s−θ)Ωθx∥s for each s ∈ [0, 1] and x ∈ ∆0. Taking y = eθΩθx, we

get ∥x∥0 = ∥esΩΩθx∥s for every s ∈ [0, 1] and every x ∈ ∆0, which is dense in both X0 and Xs.
Hence the map x→ e−sΩθx extends to an isometry between Xs and X0, and ∥x∥s = ∥e−sΩθx∥0.
(3) Since ∥x∥z = ∥Bz(x)(z+ it)∥z+it = ∥Bz(x)(z+ it)∥z = ∥eitΩθx∥z and the norm ∥Bθ(x)(z)∥z

is constant and equal to ∥x∥θ for z in the vertical line through θ, we get that {eitΩθ}t∈R is a group
of linear isometries on Xz. �
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We can compare this result to Theorem 4.4, in which the Ωθ trivial implies that X1 is a
weighted version X0 and Ω is the operator acting as multiplication by −log w.
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