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On the Ext
2-problem for Hilbert spaces

Félix Cabello Sánchez, Jesús M.F. Castillo, Willian H. G. Corrêa,
Valentin Ferenczi, and Ricardo Garćıa

Abstract. We show that Ext2(ℓ2, ℓ2) 6= 0 in the category of Banach spaces. This solves
a sharpened version of Palamodov’s problem and provides a solution to the second order
version of Palais problem. We also show that Ext2(ℓ1,K) 6= 0 in the category of quasi
Banach spaces which solves the four-space problem for local convexity.

1. Introduction

This paper is devoted to solving the main problem left open in [5] and [8]: Is
Ext2(ℓ2, ℓ2) = 0? To answer the question means to decide whether every four-term exact
sequence of Banach spaces and operators

0 −−−→ ℓ2 −−−→ E −−−→ F −−−→ ℓ2 −−−→ 0

is trivial, that is, equivalent to zero in Ext2(ℓ2, ℓ2). The difficulties to do this are of two
kinds:

(a) How to construct such an object.
(b) How to decide if it is trivial or not.

What makes (a) so difficult is the perfect homogeneity of Hilbert space. General methods
provide examples of Banach spaces X, Y so that Ext2(X, Y ) 6= 0 usually appealing to some
incomparability property between projective and injective presentations, or between X
and Y , or their (complemented) subspaces or quotients. In the case of ℓ2 nothing works:
the space is self-similar in any way, as well as its subspaces, quotients or dual. Moreover,
attempts to use the standard reduction of degree technique fail because very few things
are known either about K1(ℓ2), the kernel of a quotient map ℓ1 −→ ℓ2 or its dual space
ℓ∞/ℓ2. In particular, no known technique allows one to obtain a nontrivial elements in
either Ext(K1(ℓ2), ℓ2) or Ext(ℓ2, ℓ∞/ℓ2). In turn, what makes (b) difficult is that, when
n ≥ 2, the equivalence relation in Extn is not easy to handle, to say the least.
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In spite of all this we will show that Ext2(ℓ2, ℓ2) 6= 0 by means of a counterexample
which is optimal in every sense: First, because it does have the simplest possible form

(1) 0 // ℓ2 // Z̃2
//

&&▲▲
▲▲

▲▲
Z2

// ℓ2 // 0

ℓ2

88rrrrrr

of two twisted Hilbert sequences spliced. Second, because the short exact sequence on
the right 0 −→ ℓ2 −→ Z2 −→ ℓ2 −→ 0 is Kalton-Peck’s celebrated example [20], while

the one on the left 0 −→ ℓ2 −→ Z̃2 −→ ℓ2 −→ 0 is a certain vector-valued form of the
Kalton-Peck sequence. And third, because the construction preserves unconditionality in
the sense that Diagram 1 naturally belongs to the category of Banach modules over ℓ∞,
which considerably expands its range of applications.

After all this propaganda, let us explain the organization of the paper and highlight
the main results. Section 2 is preliminary. It contains the necessary background about
Ext = Ext1, quasilinear maps and centralizers, as well as some ancillary material on Ext2.
Nonlinear maps find their way here to allow the construction and study of the short exact
sequences later spliced to get the required four-term sequence. The basic idea is that
each exact sequence 0 −→ Y −→ Z −→ X −→ 0 corresponds to a quasilinear map
Φ : X −→ Y , out from which the middle space Z can be reconstructed. The price we pay
for this simplification is that our default setting has to be the category of quasi Banach
spaces, even if we are mostly interested in Banach spaces.

Section 3 contains the main criteria for the (non) triviality of sequences in Ext2. The
equivalence relation of Extn is quite elusive when n ≥ 2. However, a small symmetry
miracle occurs at n = 2 which provides a criterion, both visual from the diagrammatic
point of view and operative from the quasilinear point of view. We then develop some
ad-hoc estimates which not only render the basic criterion manageable, but even suggest
the right form of the counterexamples.

Armed with these tools we tackle in Section 4 the task of proving the nontriviality of
(1). This is achieved by means of a selective elimination of the symmetries of Z2 and a
combinatorial argument involving partitions.

Section 5 contains a number of applications, ranging from operator theory to the (non)
vanishing of Ext2 both in Banach modules and quasi Banach spaces, including:

• That Ext2(X, Y ) 6= 0 for all Banach spaces X and Y containing ℓn2 uniformly
complemented.
• A proof that every four-term exact sequence obtained by splicing two copies of
the same centralizer on ℓp is trivial in Ext2(ℓp, ℓp); and that the same occurs with
the Enflo-Lindenstrauss-Pisier quasilinear map [10], the first quasilinear map
appearing in Banach space theory, who is not a centralizer.
• Some remarks on the Yoneda product Ext(ℓp, ℓp) × Ext(ℓp, ℓp) −→ Ext2(ℓp, ℓp)
for module extensions.
• A proof that Ext2(ℓp, ℓp) is not zero in the category of quasi Banach modules
over ℓp.
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• A proof that Ext2(ℓ1,K) is not zero in in the category of quasi Banach spaces.
Precisely, a nontrivial exact sequence of quasi Banach spaces 0 −→ K −→ R −→
B −→ ℓ1 −→ 0 where K is the ground field and R is Ribe’ space [25].

The problem addressed in this paper can be regarded as a sharpened version of Palam-
odov [24, Problem 6]: is Ext2(·, E) = 0 for any Fréchet space? Counterexamples were
provided by Wengenroth [27, pp. 177–178], and then in [8]. In the first case the example
has the form

0 // U∗ // L∞
//

ı∗ ''◆◆
◆◆

◆◆
L1

// U // 0

ℓ2
ı

88qqqqqq

where ı is an isomorphic embedding, while in the second case the example is

0 // ℓ2 // X //

&&▼▼
▼▼

▼▼
L1

// U // 0

ℓ2
ı

88qqqqqq

where 0 −→ ℓ2 −→ X −→ ℓ2 −→ 0 is a nontrivial twisted Hilbert space. In both cases an
uncontrolled space U = L1/ı[ℓ2] appears that cannot be reduced to anything reasonable,
let alone to a Hilbert space. Thus, the question of the vanishing of Ext2(ℓ2, ℓ2) remained
untractable by general methods.

The introduction of homological methods in Banach space theory was fueled by the
attempt to solve what is known as Palais problem: does there exist a twisted Hilbert
space that is not (isomorphic to) a Hilbert space? The existence of such object was
first proved by Enflo, Lindenstrauss and Pisier [10], but the construction which is of
paramount importance to our purposes is that of the Kalton-Peck space Z2 appeared
soon later in [20]. Thus, our proof that Ext2(ℓ2, ℓ2) 6= 0 can be viewed as a solution
to the “second order” Palais problem. The closely related fact that Ext2(ℓ1,K) 6= 0,
within the category of quasi Banach spaces, can be viewed as an optimal solution of the
“four-spaces problem” for local convexity. The classical “three-space problem” for local
convexity was solved independently and almost simultaneously by Roberts [26], Ribe [25]
and Kalton [14] in the late seventies.

2. Preliminaries

Although most of the time we deal with Banach spaces which are in fact quite similar
to Hilbert spaces, the natural setting for our study is the category of quasi Banach spaces
and linear bounded operators, that we denote by Q when necessary. The subcategory of
Banach spaces is denoted by B. Our main examples share a certain unconditional structure
that makes them into quasi Banach modules over the Banach algebra ℓ∞ in a natural way
and so it will also be convenient to consider the category of quasi Banach ℓ∞-modules
and linear bounded homomorphisms as well. We are aware that this approach may annoy
some readers, but we hope they will feel more comfortable as the paper progresses. By
the way of compensation we have made a great effort to present all our results avoiding
interpolation theory (compare, when it corresponds, with [5]).

A presentation of the basic elements of (quasi) Banach space theory, including quasi-
linear maps and twisted sums, very akin to the approach of this paper, can be found
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in [17]. The article [19] explains the connections between centralizers and interpolation
theory and many other things.

2.1. Quasi Banach spaces and modules. A quasinorm on a linear space X is a
function ‖ · ‖ : X −→ [0,∞) satisfying the following conditions:

• ‖λx‖ = |λ|‖x‖ for every x ∈ X and every scalar λ; ‖x‖ = 0 if and only if x = 0.
• There is a constant C such that ‖x+ y‖ ≤ C

(
‖x‖+ ‖y‖

)
for every x, y ∈ X .

A quasinormed space is a linear space X equipped with a quasinorm. Such a space carries
a linear topology for which the unit ball {x : ‖x‖ ≤ 1} is a neighbourhood of zero. If
the resulting topological vector space is complete we call it a quasi Banach space. A
quasinormed module over a Banach algebra A is a quasinormed space X together with
a jointly continuous outer product A × X −→ X satisfying the traditional algebraic
requirements. A quasi Banach module is a complete quasinormed module.

If X and Y are quasinormed modules over A, an homomorphism f : X −→ Y is an
operator such that f(ax) = a(f(x)) for every x ∈ X and a ∈ A.

The only Banach algebra that we need in this paper is the algebra ℓ∞ of bounded
functions a : N −→ K endowed with the sup norm.

2.2. Homology. We assume from the reader some acquaintance with the basic el-
ements of homology as expounded in the classic books [13, 22] or in the functional
analysis-oriented notes [11].

Let us however fix the notation by recalling a few definitions. A (finite or infinite)
sequence of quasi Banach spaces and operators

· · · // En−1

un−1 // En
un // En+1

// · · ·
is exact when the kernel of each operator agrees with the image of the preceding one:
un−1[En−1] = ker un for every n under consideration.

Let us first consider short exact sequences, that is, exact sequences of the form

(2) 0 // Y
ı // E

π // X // 0

The reason behind this notation is that one treats the end spaces X and Y as “fixed”
while the middle space E is considered “variable”. In this setting the sequence

0 // Y // F // X // 0 is equivalent to (2) if there is an operator u making
the following diagram commutative:

0 // Y // E //

u
��

X // 0

0 // Y // F // X // 0

This is really an equivalence relation since a fortunate combination of algebra (the five-
lemma, see [13, Lemma 1.1] or [11, Corollary 3.23]) and topology (the open mapping the-
orem) guarantees that u is a linear homeomorphism. Then Ext(X, Y ) is defined as the set
of short exact sequences of the form (2) modulo equivalence. This set can be given a nat-
ural (= functorial) linear structure via pull-back and push-out constructions, called Baer’
sum, that the reader can see in [13, Chapter IV, § 9] or [11, Chapter 6]. The zero element

of Ext(X, Y ) is the (class of the) trivial sequence 0 // Y // Y ⊕X // X // 0
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with the obvious operators. It turns out that (2) is trivial if and only if it splits, in the
sense that there is an operator P : E −→ Y such that P ı = IY or, equivalently, there is
an operator J : X −→ E such that π J = IX .

The definition of Ext2(X, Y ) starts the same. Given two exact sequences 0 −→ Y −→
E1 −→ E2 −→ X −→ 0 and 0 −→ Y −→ F1 −→ F2 −→ X −→ 0, denoted by E and F ,
respectively, we write E → F or F ← E if there is a commutative diagram

0 // Y // E1
//

u1

��

E2
//

u2

��

X // 0

0 // Y // F1
// F2

// X // 0

The maps u1 and u2 are not longer isomorphisms and we obtain just a partial order for
four-term sequences. Nevertheless, this partial order generates an equivalence relation by
declaring E and F equivalent (written E ∼ F ) if there is a finite chain (Ci)1≤i≤n so that

(3) E → C1 ← C2 → · · · ← Cn → F .

Although it will not be used in this paper, it can be remarked that, as can be seen in
[11, Corollary 6.40], two links are enough. The space Ext2(X, Y ) is the set of equivalence
classes of four-term exact sequences 0 −→ Y −→ E1 −→ E2 −→ X −→ 0. It carries a
linear structure whose zero element is the class of the trivial sequence

0 −−−→ Y
I−−−→ Y

0−−−→ X
I−−−→ X −−−→ 0

Regarding the subcategories of Banach spaces and quasi-Banach ℓ∞-modules, one can
formalize the corresponding definitions of

ExtB(X, Y ), Ext2
B
(X, Y ), Extℓ∞(X, Y ), Ext2ℓ∞(X, Y )

in the obvious way. Observe that if a given exact sequence of Banach spaces is zero in
Ext2

B
(X, Y ), then so is in Ext2(X, Y ), and the same happens for quasi Banach modules.

The converse seems to be unknown for Banach spaces and known to be false for modules,
even for short exact sequences. The reason is that some of the links (spaces or arrows) in
(3) might not be in the corresponding subcategory.

2.3. Quasilinear maps. The study of short exact sequences of (quasi) Banach spaces
is greatly simplified by the use of quasilinear maps. A map Φ : X −→ Y acting between
quasinormed spaces is quasilinear if it is homogeneous (Φ(λx) = λΦ(x) for every x ∈ X
and λ ∈ K) and satisfies an estimate

‖Φ(x+ y)− Φ(x)− Φ(y)‖ ≤ Q
(
‖x‖+ ‖y‖

)

for some constant Q ≥ 0 and all x, y ∈ X . When necessary, we denote by Q(Φ) the least
possible constant for which the preceding inequality holds.

These maps make their way into the homology of (quasi) Banach spaces because of the
following construction. Assume X and Y are quasi Banach spaces and that Φ : X0 −→ Y
is quasilinear, where X0 is a dense subspace of X . Then the functional

‖(y, x)‖Φ = ‖y − Φ(x)‖ + ‖x‖
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is a quasinorm on the product space Y × X0. If we denote by Y ⊕Φ X0 the resulting
quasinormed space, then we have an exact sequence

0 // Y
ı // Y ⊕Φ X0

π // X0
// 0,

where ı(y) = (y, 0) and π(y, x) = x. It is clear that both ı preserves the quasinorms, while
π maps the unit ball of Y ⊕Φ X0 onto that of X0. Thus, if Z(Φ) denotes the completion
of Y ⊕Φ X0, then π extends to a quotient map Z(Φ) −→ X that we call again π which
yields the exact sequence of quasi Banach spaces

0 // Y
ı // Z(Φ)

π // X // 0,

called, for good reason, the sequence induced by Φ. All short exact sequences of quasi
Banach spaces arise in this way, up to equivalence, although we will not use this fact.
We say that two quasilinear maps Φ,Ψ : X0 −→ Y are strongly equivalent if they induce
equivalent quasinorms on Y ×X0, equivalently, if there is a constant K such that ‖Ψ(x)−
Φ(x)‖ ≤ K‖x‖ for all x ∈ X0.

This applies, in particular, when X and Y are Banach spaces. One however must be
aware that there are short exact sequences 0 // Y // Z // X // 0 in which X
and Y are Banach spaces but Z is just a quasi Banach space. This cannot occur when
the quotient space is B-convex, something that all the spaces ℓp are for 1 < p < ∞, and
we have Ext(X, Y ) = ExtB(X, Y ). These technical points will play a secondary role later.

2.4. Centralizers. These are a very special type of quasilinear maps that have to do
with module structures. Centralizers have their own philosophy which does not fit exactly
into the general framework of quasilinear maps as expounded in the preceding Section;
see [19, Section 8]. As the only algebra that plays a role in our exposition is ℓ∞, we can
provide the reader with the minimal background one needs to understand the paper right
now.

By a (quasinormed) sequence space we understand a linear space X of functions
x : N −→ K equipped with a quasinorm ‖ · ‖ such that:

• The finitely supported functions are dense in X .
• If |y| ≤ |x| and x ∈ X , then y ∈ Y and ‖y‖ ≤ ‖x‖.

If ei is the function that takes the value 1 at i and vanishes elsewhere we may also require
that ‖ei‖ = 1 for every i ∈ N. IfX is complete we call it a quasi Banach sequence space and
we call it a Banach sequence space when the quasinorm is a norm. The easiest examples
are the spaces ℓp for 0 < p < ∞. These are Banach spaces when p ≥ 1. According to
this, ℓ∞ itself is not a sequence space, but c0 is. A sequence space is an ℓ∞-module under
the pointwise product: if x ∈ X and a ∈ ℓ∞, then ax ∈ X and ‖ax‖ ≤ ‖a‖∞‖x‖. From
now on module structures refer to ℓ∞ unless otherwise stated and we denote by X0 the
subspace of finitely supported sequences of X .

Definition 2.1. A centralizer is a homogeneous mapping Φ : X −→ Y acting between
quasinormed modules that obeys an estimate of the form

‖Φ(ax)− aΦ(x)‖ ≤ C‖a‖∞‖x‖,
for some constant C and all a ∈ ℓ∞, x ∈ X .
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Our interest in centralizers stems from the fact that if X and Y are quasi Banach
modules, X0 is a dense submodule of X and Φ : X0 −→ Y is a quasilinear centralizer,
then the product a(y, x) = (ay, ax) makes Y ⊕Φ X0 into a quasinormed module (and so
Z(Φ) is a quasi Banach module) and the induced sequence lives in the category of quasi
Banach modules. As a partial converse, if X is a quasi Banach sequence space, then each
short exact sequence of quasi Banach modules 0 −→ Y −→ Z −→ X −→ 0 arises, up to
equivalence, from a quasilinear centralizer Φ : X0 −→ Y . We have the following remark
about “automatic quasilinearity” of centralizers.

Lemma 2.2. Every centralizer defined on a quasinormed sequence space is quasilinear.

2.5. Kalton-Peck maps and their chunked versions. The most famous quasi-
linear maps were introduced by Kalton-Peck in [20] and they are actually centralizers.
Let ϕ : R+ −→ K be a Lipschitz function such that ϕ(0) = 0. Then, for 0 < p < ∞, the
map Ωϕ

p : ℓ0p −→ ℓp defined by

(4) Ωϕ
p = xϕ

(
p

2
log
‖x‖
|x|

)

is a (quasilinear) centralizer whose constants C
(
Ωϕ

p

)
and Q

(
Ωϕ

p

)
depend only on p and the

Lipschitz constant of ϕ. We now introduce the second (type of) centralizer that we need
to carry out the proof of the main result. As all centralizers do, it stems from complex
interpolation theory (see [9, Theorem 3.2]), but we will consider a direct approach which
does not require any previous knowledge on interpolation.

Let (Ai) be a partition of N that we consider fixed in all what follows. Fix 0 < p <∞.
Each x ∈ ℓp can be written as x =

∑
i xi, where the i-th summand is xi = x1Ai

, with

‖x‖p =
(∑

i ‖xi‖pp
)1/p

. Using this notation, one has:

Lemma 2.3. The map Ω̃ϕ
p : ℓ0p −→ ℓp defined by

(5) Ω̃ϕ
p (x) =

∑

i

xiϕ

(
p

2
log
‖x‖
‖xi‖

)

is a centralizer.

Proof. Pick x ∈ ℓ0p and a ∈ ℓ∞ and set ai = a1Ai
. Then

Ω̃ϕ
p (ax) =

∑

i

aixiϕ

(
p

2
log
‖ax‖
‖aixi‖

)
, aΩ̃ϕ

p (x) =
∑

i

aixiϕ

(
p

2
log
‖x‖
‖xi‖

)
.

Now,

‖Ω̃ϕ
p (ax)− aΩ̃ϕ

p (x)‖p =
(
∑

i

‖aixi‖p
∣∣∣∣ϕ
(p
2
log
‖ax‖
‖aixi‖

)
− ϕ

(p
2
log
‖x‖
‖xi‖

)∣∣∣∣
p
)1/p

≤
(
∑

i

‖ai‖p∞‖xi‖pp
∣∣∣∣ϕ
(p
2
log
‖ax‖
‖aixi‖

)
− ϕ

(p
2
log
‖x‖
‖xi‖

)∣∣∣∣
p
)1/p

≤ C(Ωϕ
p )‖a‖∞‖x‖p,
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where the last inequality is just the centralizer estimate of the Kalton-Peck map Ωϕ
p

applied to the sequences (‖ai‖∞)i and (‖xi‖p)i. �

The choice of the function ϕ(t) = t in (4) and (5) is especially rewarding and we

simply write Ωp and Ω̃p for these maps. When p = 2 we will even omit the subscript. We

also write Zp(ϕ) = Z(Ωϕ
p ) and Z̃p(ϕ) = Z(Ω̃ϕ

p ). If ϕ is the identity on R+ we just write

Zp and Z̃p.

2.6. Mirrored centralizers. One of the core ideas in the widely ignored memory
[15] is that centralizers never walk alone. To give shape to this affirmation, let us recall
a result from the even more ignored [1, Lemma 5(a) and Corollary 3]:

Lemma 2.4. Let 0 < q < p <∞. If Φp is a centralizer on ℓp, then the map defined by

Φq(f) = u|f |q/rΦ
(
|f |q/p

)

for q−1 = r−1 + p−1 is a centralizer on ℓq. All centralizers on ℓq arise in this way, up to

strong equivalence.

We will thus say that Φq is the reflection of Φp in ℓq. As the reader may guess, there
is a reason behind the slightly eccentric presentation of the centralizers of the preceding
Section: parameters have been assigned in such a way that if q < p, then Ωϕ

q is the
reflection of Ωϕ

p in ℓq, and the same occurs to their chunked versions. This will be used
in Sections 5.3 and 5.6.

3. Splitting criteria

Suppose we are given two quasi Banach spaces X and Y and that we want to con-

struct a four-term exact sequence 0 // Y // E1
// E2

// X // 0 . The sim-

plest (and unique) way to achieve this is to pick another space E, then construct two
short exact sequences

0 // Y
ı // E1

π // E // 0 (E1)

0 // E
 // E2

̟ // X // 0 (E2)

and splice them through E to get

0 // Y // E1
 π //

&&▼▼
▼▼

▼▼
E2

// X // 0 (E )

A

88qqqqqq

Our first task is to decide when the resulting sequence is trivial in Ext2(X, Y ). We have
the following criterion which is both visual from the diagrammatic side and transparent
from the quasilinear point of view.

Lemma 3.1. Let (E1) and (E2) be two short exact sequences of quasi Banach spaces.

The following statements are equivalent:

(a) The spliced sequence (E ) is trivial in Ext2(X, Y ).
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(b) The sequence (E ) splits, that is, there exists a quasi Banach space � and a commu-

tative diagram

(6)

0 0y
y

Y Yy
y

0 −−−→ E1 −−−→ � −−−→ X −−−→ 0y
y

∥∥∥

0 −−−→ E −−−→ E2 −−−→ X −−−→ 0y
y

0 0

with exact rows and columns.

Moreover, if the sequence (E1) is induced by the quasilinear map Φ : E −→ Y , then these

are equivalent to:

(c) The map Φ : E −→ Y has a quasilinear extension to E2.

If the sequence (E2) is induced by the quasilinear map Ψ : X −→ E, then (a) and (b) are
equivalent to:

(d) The map Ψ : X −→ E has a quasilinear lifting to E1.

Proof. We begin with the implication (b) =⇒ (a). Observe that if there is a
diagram as in (b) then there is a commutative diagram

0 // Y // Y ⊕ E1
//

��

((❘❘
❘❘

❘❘
�

��

// X // 0

E1

77♣♣♣♣♣♣

��
0 // Y // E1

//

))❘❘❘
❘❘

❘❘
❘❘ E2

// X // 0

E

77♦♦♦♦♦♦

It follows that the lower sequence is trivial since it is equivalent to the upper one and the
following diagram is commutative:

0 // Y // Y ⊕ E1
//

��

�

��

// X // 0

0 // Y Y
0 // X X // 0

We now stablish the implication (a) =⇒ (b). As the zero sequence has the property
required in (b) with � = Y ⊕ X , it is all a matter of showing that that property is
preserved in the successive steps that define the equivalence of Ext2(X, Y ).
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So, assume we have a commutative diagram

0 // Y // E1
//

��

''◆◆
◆◆

◆◆
E2

//

��

X // 0

E

77♣♣♣♣♣♣

��
0 // Y // F1

//

''◆◆
◆◆

◆◆
F2

// X // 0

F

77♣♣♣♣♣♣

and that the sequence of E’s fits in a diagram as (6). Then one can form the commutative
diagram

(7) Y
PP

PP
PP

P

PP
PP

PP
P

��

Y
PP

PP
PP

P

PP
PP

PP
P

��

Y

��

Y

��
E1

��

''◆◆
◆◆

◆◆
// �

��

//

''❖❖
❖❖

❖❖
X

▼▼
▼▼

▼▼

▼▼
▼▼

▼▼

F1
//

��

PO //

��

X

E

''◆◆
◆◆

◆◆
◆

// E2
//

''❖❖
❖❖

❖❖
X

▼▼
▼▼

▼▼

▼▼
▼▼

▼▼

F // F2
// X

where the push-out refers to the inner horizontal square

E1 −−−→ �y
y

F1 −−−→ PO

and the arrows beginning at PO are defined by the universal property of the push-out
contruction.

By categorical duality, that is, by “reversing the arrows” and taking pull-back instead
of push-out when necessary, one sees that as long as one has a commutative diagram of
exact sequences

0 // Y // E1
//

''◆◆
◆◆

◆◆
E2

// X // 0

E

77♣♣♣♣♣♣

0 // Y // F1
//

OO

''◆◆
◆◆

◆◆
F2

//

OO

X // 0

F

77♣♣♣♣♣♣

OO

and the E’s satisfy condition (b), then so the F ’s do.

(b) =⇒ (c) This is immediate ... if one is acquainted with the connection between
quasilinear maps and short exact sequences. Assume E1 = Y ⊕Φ E, where Φ : E −→ Y
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is quasilinear and let us draw the hypothesized commutative diagram

(8) Y

ı
��

Y

I
��

Y ⊕Φ E
J //

π

��

� //

Q
��

X

E
 // E2

// X

in which the 0’s have been omitted. Consider the map e ∈ E 7−→ (0, e) ∈ Y ⊕Φ E. This
is a linear (probably unbounded) section of the quotient map π. Since all exact sequences
of linear spaces are trivial in the purely algebraical sense this map can be “extended” to
a linear section of Q. Precisely, there is a linear map L : E2 −→ � such that

• L((e)) = J(0, e) for every e ∈ E.
• P ◦ L is the identity on E2.

In a similar vein, consider the mapping e ∈ E 7−→ (Φ(e), e) ∈ Y ⊕Φ E, which is a
(homogeneous) bounded section of π and “extend” it to a (homogeneous) bounded section
of Q, that is, a homogeneous bounded B : E2 −→ � such that

• B((e)) = J(Φ(e), e) for every e ∈ E.
• B ◦ L is the identity on E2.

It is clear that the difference B −L maps E2 to kerQ = I[Y ] and so Γ = I−1 ◦ (B −L) is
a quasilinear extension of Φ.

The implication (c) =⇒ (b) is obvious: if Γ : E2 −→ Y is a quasilinear map extending
Φ, set � = Y ⊕Γ E2, put the obvious maps and check.

(b) =⇒ (d) Assume E2 = E ⊕Ψ X , where Ψ : X −→ E is quasilinear. The relevant
diagram is now

(9) Y

ı
��

Y

I
��

E1
J //

π

��

� //

Q
��

X

E
 // E ⊕Ψ X // X

Let B : X −→ � be a homogeneous bounded map such that Q(B(x)) = (Ψ(x), x) for all
x ∈ X and L : X −→ � be a linear map such that Q(L(x)) = (0, x) for all x ∈ X . Then
Λ = J−1 ◦ (B − L) is the required lifting of Ψ, that is, π ◦ Λ = Ψ. �

One disavantage of working with quasilinear maps is that, as a rule, they cannot be
explicitly defined on the whole space which is aimed to be the quotient of the resulting
short exact sequence, but only on a dense subspace, and so we need to adapt our criteria
to this setting.
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Let X, Y, E be quasi Banach spaces and let Ψ : X0 −→ E and Ψ : E0 −→ Y be
quasilinear maps, where X0 and E0 are dense subspaces of X and E, respectively. Let

0 // Y
ı // E1

π // E // 0 , and 0 // E
 // E2

̟ // X // 0

be the induced sequences, so that E1 = Z(Φ) and E2 = Z(Ψ) are the completions of
Y ⊕Φ E0 and E ⊕Ψ X0, respectively, as explained in Section 2.3.

In this setting, we say that the concatenation ΦΨ is trivial in Ext2(X, Y ), and we
write ΦΨ ∼ 0 for short, if the associated four-term sequence

0 // Y
ı // E1

//

π ''◆◆
◆◆

◆◆
E2

̟ // X // 0

E


77♣♣♣♣♣♣

is trivial in Ext2(X, Y ). We have the following operative version of Lemma 3.1. The proof
is a simple adaptation that we leave to the patient reader.

Lemma 3.2. Let X,E, Y be quasi Banach spaces and Ψ : X0 −→ E and Φ : E0 −→ Y
quasilinear maps such that Ψ[X0] ⊂ E0, where X0 and E0 are dense subspaces of X and

A, respectively. The following are equivalent:

(a) ΦΨ ∼ 0 in Ext2(X, Y ).

(b) Φ has a quasilinear extension to E0 ⊕Ψ X0.

(c) Ψ has a quasilinear lifting to Y ⊕Ψ E0. �

Our next task is to render these criteria manageable; with the same notation of the
preceding Lemma, one has

Lemma 3.3. The following are equivalent:

(a) ΦΨ ∼ 0 in Ext2(X, Y ).

(b) There is a homogeneous map H : X0 −→ Y and a constant K such that

‖H(x+ x′)−H(x)−H(x′)− Φ(Ψ(x+ x′)−Ψ(x)−Ψ(x′))‖ ≤ K
(
‖x‖+ ‖x′‖

)

for every x, x′ ∈ X0.

Proof. (a) =⇒ (b) Let Γ : E0 ⊕Ψ X0 −→ Y be any quasilinear extension of Φ, so
that Γ(e, 0) = Φ(e) for every e ∈ E0. Define H(x) = Γ(Ψ(x), x) and check.

(b) =⇒ (a) Define Γ : E0 ⊕Ψ X0 −→ Y as Γ(e, x) = H(x) + Φ(e − Ψ(x)) and check
that it is quasilinear. Obviously Γ(e, 0) = Φ(e) for every e ∈ E0. �

The function H will sometimes be called a witness that ΨΦ ∼ 0.

Locally convex twisted sums and K-spaces. The criteria provided by Lemma 3.1
and its relatives characterizes the triviality of spliced sequences in the category of quasi
Banach spaces. The equivalence between (a) and (b) is true replacing quasi Banach
spaces by Banach spaces and Ext2(X, Y ) by Ext2

B
(X, Y ), and the same is true for quasi

Banach modules. Parts (c) and (d) are more delicate since a quasilinear map acting
between Banach spaces can well lead to a quasi Banach space which is not even isomorphic
to a Banach space; see [25, 14]. One can isolate those quasilinear maps that, acting
between Banach spaces, produce Banach spaces. This approach was pursued in [3]. Those
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subtleties are however unnecessary in our current circumstances. Let us explain why. A
minimal extension of a quasi Banach space X is a short exact sequence of the form
0 −→ K −→ Z −→ X −→ 0. If all minimal extensions of X are trivial, that is, if
Ext(X,K) = 0, then X is called a K-space. The spaces ℓp are K-spaces for all values of
0 < p ≤ ∞ with the only exception of p = 1. Moreover, if X is a Banach K-space and
one has an exact sequence 0 −→ Y −→ Z −→ X −→ 0 in which Y is a Banach space,
then Z is isomorphic to a Banach space and so Ext(X, Y ) = ExtB(X, Y ). The point of
this discussion is to remark that when the spaces X and E are Banach K-spaces and Y
is any Banach space, the space � appearing in (b) is also necessarily a Banach space:
just look at the left descending sequence and then at the middle horizontal one. In this
way, all the results of this Section remain true in the category of Banach spaces under
the additional assumption that X and E are K-spaces.

4. The counterexample

Let X and Y be ℓ∞-modules and let A be any subset of ℓ∞. We say that a function
f : X −→ Y commutes with A if f(ax) = af(x) for every x ∈ X and every a ∈ A. We
are mostly interested in the following choices of A:

• The unitary group U = {u : N −→ K such that |u| = 1}.
• The real unitary group UR = {u : N −→ R such that |u| = 1}.

Of course U = UR when the ground field is R. Note that if f : X −→ Y is a mapping
acting between sequence spaces that commutes with UR, then f preserves supports in
the sense that supp(f(x)) ⊂ supp(x). Every centralizer defined on a sequence space is
strongly equivalent to one that commutes with U .

Lemma 4.1. Let X and Z be quasi Banach sequence spaces and Y a Banach sequence

space. If Ψ : X0 −→ Z and Φ : Z0 −→ Y are centralizers which commute with UR and

ΦΨ ∼ 0 in Ext2(X, Y ) then one can choose a witness function H that commutes with UR.

Proof. If H : X0 −→ Y is as in Lemma 3.3(b), then for every unitary u, and in
particular for u ∈ UR one has

‖u−1
(
H(u(x+ x′))−H(ux)−H(ux′)

)
−Φ(Ψ(x+ x′)−Ψ(x)−Ψ(x′))‖ ≤ K

(
‖x‖+ ‖x′‖

)
.

If we identify the group UR with the “Cantor group” {1,−1}N, it is clear that the product
topology of the later corresponds to the relative weak* topology of UR when ℓ∞ is regarded
as the dual of ℓ1. In particular UR is a compact group for the weak* topology. Let du
denote the Haar measure on UR. Observe that for finitely supported x, the “orbit”
UR x = {ux : u ∈ UR} is finite and so, the mapping u ∈ UR 7−→ u−1H(ux) ∈ Y is weak*

to norm continuous. Define a new mapping H̃ : X0 −→ Y by the Bochner integral

H̃(x) =

∫

UR

u−1H(ux) du

and check. Note that H̃(x) agrees with the average of u−1H(ux) over those real unitaries
u such that u = 1 off supp(x). �

We now specialize to X = Z = Y = ℓ2 and make a careful using of the symmetries of
the Kalton-Peck centralizer Ω.
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Corollary 4.2. Let Φ : ℓ02 −→ ℓ2 be centralizer commuting with UR. If ΦΩ ∼ 0,
then there exist a homogeneous, support preserving H : ℓ02 −→ ℓ2 and a constant K such

that, whenever x, y ∈ ℓ02 are disjoint and of equal norms,

‖H(x+ y)−H(x)−H(y)− Φ(x+ y)‖2 ≤ K‖x‖2.
Proof. If x, y are disjointly supported and of equal norm in ℓ2, then

Ω(x+ y)− Ω(x)− Ω(y) =
log 2

2
(x+ y).

The result follows using the homogeneity of Φ and H . �

In order to exploit the estimate provided by the preceding result we need to select
pairs of disjoint sums of vectors from the unit basis of ℓ02 in a judicious way. This is
achieved through certain partitions, defined below. The idea is quite simple:

• Fix k ∈ N and start with the set 2k (that is, a set of cardinality 2k).
• Split it into two halves with the same number of elements. Then split the resulting
sets into two halves and continue until reaching the singletons.
• Don’t forget to keep track of the whole process labelling all the sets.

We can formalize this procedure by using a dyadic tree of finite height. Let Tk be the
dyadic tree of height k whose elements are words of length at most k written with 0s and
1s, including the “empty word”, which has length 0. Given α = α1α2 · · ·αn in Tk, with
n < k, we put α0 = α1α2 · · ·αn0 and α1 = α1α2 · · ·αn1.

Definition 4.3. An adequate partition of 2k is a set-valued function I : Tk −→P(2k)
such that:

• I(∅) = 2k, I(α) is nonempty for every α ∈ Tk.
• If α has length less than k, then I(α) is the disjoint union of I(α0) and I(α1).

The sets I(α) for α of fixed length 0 ≤ n ≤ k form a partition on 2k into 2n many subsets of
cardinality 2k−n. It takes only a moment’s reflection to realize that an adequate partition
is essentially a linear order on 2k. Indeed for every adequate partition there exist a unique
order 4 such that x 4 y whenever x ∈ I(α0) and y ∈ I(α1). This correspondence will be
used later.

Each adequate partition on 2k gives rise to a family of vectors of ℓ2(2
k), parametrized

by α ∈ Tk just taking

xα = 1I(α) =
∑

i∈I(α)

ei.

Lemma 4.4. Let Φ : ℓ02 −→ ℓ2 be centralizer commuting with UR. If ΦΩ ∼ 0 then

there is a constant K = K(Φ) such that if S is a subset of N with |S| = 2k and I, J :
Tk −→P(S) are adequate partitions, then

(10)
∥∥∥
∑

α∈Tk

(
Φ(xα)− Φ(yα)

)∥∥∥
2
≤ 2Kk

√
2k−1,

where xα and yα are the vectors associated to I and J , respectively, that is, xα =
∑

i∈I(α) ei
and yα =

∑
i∈J(α) ei for α ∈ Tk.
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Proof. Let H and K be as in Corollary 4.2. Since x0 and x1 have the same norm
and x0 + x1 = x∅ = 1S we have

‖H(x∅)−H(x0)−H(x1)− Φ(x∅)‖2 ≤ K
√
2k−1.

The same estimate holds using y0 and y1. Since y∅ = x∅ we get

(11) ‖H(x0) +H(x1)−H(y0)−H(y1)‖2 ≤ 2K
√
2k−1.

We claim that, for every 0 < j ≤ k,

(12)
∥∥∥
∑

|α|=j

(
H(xα)−H(yα)

)
+
∑

|α|<j

(
Φ(xα)− Φ(yα)

)∥∥∥
2
≤ 2Kj

√
2k−1,

where |α| denotes the length of α. Indeed, when j = 1 this reduces to (11). Now assume
that (12) holds for j = i− 1 and let us check it for j = i.

By the induction hypothesis this comes from
∥∥∥
∑

|α|=i

(Hxα −Hyα)−
∑

|γ|=i−1

(Hxγ −Hyγ)−
∑

|δ|<i−1

(Φxδ − Φyδ) +
∑

|α|<j

(Φxβ − Φyβ)
∥∥∥
2

≤
∥∥∥
∑

|γ|=i−1

H(xγ0) +H(xγ1)−H(xγ0 + xγ1) + Φ(xγ0 + xγ1)
∥∥∥
2

+
∥∥∥
∑

|γ|=i−1

H(yγ0) +H(yγ1)−H(yγ0 + yγ1) + Φ(yγ0 + yγ1)
∥∥∥
2

which using that H and Φ preserve supports and that

‖H(zα0) +H(zα1)−H(zα0 + zα1) + Φ(zα0 + zα1)‖ ≤ K
√
2k−j,

for z = x, y, gives an upper estimate of

2
√
2j−1K

√
2k−j = 2K

√
2k−1

and proves the claim. When j = k then all xα and yα are single vectors of the basis, the
first summand in (12) is null, and

∥∥∥
∑

α∈Tk

(
Φ(xα)− Φ(yα)

)∥∥∥
2
=
∥∥∥
∑

|α|<k

(
Φ(xα)− Φ(yα)

)∥∥∥
2
≤ 2Kk

√
2k−1.

�

Let us say that centralizer Φ : X −→ Y acting between symmetric sequence spaces is
symmetric if, for every permutation σ : N −→ N, one has Φ(x ◦ σ) = (Φ(x)) ◦ σ. This is
not the traditional definition, but every symmetric centralizer in the traditional sense is
strongly equivalent to one of this form.

Note that if Φ is a symmetric centralizer, then the left-hand side of (10) is 0; indeed
in that case there there are scalars λj for 0 ≤ j ≤ k such that Φ(xα) = λ|α|xα and
Φ(yα) = λ|α|yα for all α ∈ Tk. So, in order to obtain our counter-example we need a
highly nonsymmetric centralizer.

Let us consider the following finite-dimensional versions of the centralizer Ω̃ defined in
Section 2.5. Fix m,n ∈ N and partition the product m× n into m subsets of cardinality
n as follows

Ai = {(i, j) : 1 ≤ j ≤ n} (1 ≤ i ≤ m).
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Then define Ω̃m,n : ℓ2(m× n) −→ ℓ2(m× n) by

Ω̃m,n(x) =
∑

1≤i≤m

xi log
‖x‖
‖xi‖

,

where xi = x1Ai
. By Lemma 2.3 we have C(Ω̃m,n) ≤ C(Ω) for all m,n. Note that if x

has exactly q nonzero chunks and they all have the same norm, then

Ω̃m,n(x) = log(q)x.

Fix now some k and identify 2k with the product 2r × 2s with k = r + s. Let 4 be the
associated lexicographic order, i.e., for (a, b), (c, d) ∈ 2r × 2s,

(a, b) 4 (c, d)⇐⇒ a < c or (a = c and b ≤ d).

Let I : Tk −→ P(2k) be the adequate partition associated to 4. We also consider the
lexicographic order “symmetric” to 4, namely

(a, b) 4′ (c, d)⇐⇒ b < d or (b = d and a ≤ c).

Let J be the partition induced by 4′. Now we follow the notations introduced just after
Definition 4.3, in particular

xα =
∑

i∈I(α)

ei, yα =
∑

j∈J(α)

ej (α ∈ Tk).

Lemma 4.5. Let k = r + s given, I and J as before, with associated vectors (xα) and

(yα), respectively. Let Ω̃ be the centralizer Ω̃2r ,2s : ℓ2(2
r × 2s) −→ ℓ2(2

r × 2s). Then, for

every α ∈ Tk one has

|α| ≥ r =⇒ Ω̃(xα) = 0,

|α| < r =⇒ Ω̃(xα) = (r − |α|) log(2) xα,

|α| ≥ s =⇒ Ω̃(yα) = (k − |α|) log(2)yα,
|α| < s =⇒ Ω̃(yα) = r log(2) yα.

In particular
∥∥∥
∑

α∈Tk

(
Ω̃(xα)− Ω̃(yα)

)∥∥∥
2
= log(2)rs

√
2k.

Proof. We suggest the reader to take a pencil and scribble some trees and rectangles.
It is clear from (5) that if x has a single nonzero chunk, then Ω̃(x) = 0, so certainly Ω̃(xα) =
0 if |α| ≥ k−s = r. On the other hand, if |α| < r, then xα is the sum of 2r−|α| many chunks

of equal norm and so Ω̃(xα) = (r − |α|) log(2)xα. Regarding yα, for |α| ≥ k − r = s, it is

a sum of unit vectors in 2k−|α| disjoint Ai’s, so Ω̃(yα) = (k − |α|) log(2) yα and if |α| < s

it is the sum of equal norm vectors in all the 2r sets Ai’s, so Ω̃(yα) = r log(2)yα.
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Finally we compute
∑

α∈Tk

(
Ω̃(xα)− Ω̃(yα)

)

log 2
=
∑

|α|<r

Ω̃(xα)−
∑

|α|≥s

Ω̃(yα)−
∑

|α|<s

Ω̃(yα)

=
∑

|α|<r

(r − |α|)xα −
∑

|α|≥s

(k − |α|)yα −
∑

|α|<s

ryα,

which, taking into account that for each 0 ≤ n ≤ k
∑

|α|=n

xα =
∑

|α|=n

yα = x∅ = y∅ =
∑

i∈2r×2s

ei,

is equal to (
− r(s− 1)−

∑

n≤r

n+
∑

n<r

n
)
x∅ = −rsx∅

and its norm is rs
√
2k. �

Theorem 4.6. Let (Ai) be a partition of N. Let Ω : ℓ02 −→ ℓ2 be the Kalton-Peck map

and let Ω̃ be the centralizer associated to (Ai), as in Section 2.5. If for every n there exist

n sets in (Ai) whose cardinality is at least n, then Ω̃ Ω ≁ 0. In particular, Ext2(ℓ2, ℓ2) 6= 0.

Proof. For each k we can find a subspace generated by 4k vectors of the basis and

where Ω̃ identifies with the centralizer Ω̃2k ,2k as described in Lemma 4.5 for r = s = k.
Then the two previous Lemma together with the symmetry of Kalton-Peck map yield

that if Ω̃,Ω ∼ 0 and K is the associated constant then one gets the contradiction

log(2)k22k =
∥∥∥
∑

α∈Tk

(
Ω̃(xα)− Ω̃(yα)

)∥∥∥
2
≤ 2
√
2Kk2k.

�

Since the extension induced by Ω̃Ω lives in B and is not trivial in Q one gets

Corollary 4.7. Ext2
B
(ℓ2, ℓ2) 6= 0.

5. Miscellaneous applications

The remainder of the paper is devoted to presenting a number of applications of the
main result. These range from classical operator theory to Banach modules, including
some issues about the difference between Ext2 and Ext2

B
.

5.1. Spinning around Hilbert space. Hilbert space is a central object of Banach
space theory in many respects. The ensuing application exploits this fact in a rather
direct way. A Banach space X contains ℓn2 uniformly complemented if there is a constant
C such that, for every n ∈ N there are operators I : ℓn2 −→ X and P : X −→ ℓn2 such that
PI is the identity on ℓn2 and ‖I‖‖P‖ ≤ C. This property is “self-dual” (X has it exactly
when X∗ does) and weaker than B-convexity (= nontrivial type p > 1).

Corollary 5.1. If X and Y are Banach spaces containing ℓn2 uniformly comple-

mented, then Ext2
B
(X, Y ) 6= 0.
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Proof. We write the proof assuming X and Y separable. The general case does not
present any additional difficulty. Given a (separable) Banach space X we fix an isometric
quotient map Q1 : ℓ1 −→ X and we set K1(X) = kerQ1. Then we fix a quotient
Q2 : ℓ1 −→ K1(X) and set K2(X) = kerQ2. Splicing through K1(X) we obtains the
exact sequence

0 // K2(X) // ℓ1 //

Q2
((◗◗

◗◗
◗◗

◗ ℓ1
Q1 // X // 0

K1(X)

66♠♠♠♠♠♠♠

that allows us to “reduce” the length of extensions. Indeed, for all Banach spaces Y , one
has Ext2

B
(X, Y ) = ExtB(K

1(X), Y ). This follows from the fact that ℓ1 is projective in
the category of Banach spaces. If we specialize to the case where X = H is a separable
Hilbert space, we get Ext2

B
(H, Y ) = ExtB(K

1(H), Y ) for all Y . Now, by the main result
Ext2

B
(H,H) = ExtB(K

1(H), H) is nonzero and a uniform boundedness argument (cf. [4,
Theorem 2]) yields ExtB(K

1(H), Y ) 6= 0. We have thus arrived at:

Claim. If Y contains ℓn2 uniformly complemented, then Ext2
B
(H, Y ) 6= 0. In particu-

lar, Ext2
B
(H,X∗) 6= 0.

In view of the duality formula Ext2
B
(E, F ∗) = Ext2

B
(F,E∗), valid for all Banach spaces

E and F , one also has Ext2
B
(X,H∗) 6= 0. But since H∗ is isometric to H this means

that ExtB(K
1(X), H) 6= 0 and applying again [4, Theorem 2] we obtain Ext2

B
(X, Y ) =

ExtB(K
1(X), Y ) 6= 0. �

5.2. Impossibility of extending certain operators. Kalton shows in [18] that
the Kalton-Peck spaces Zp(ϕ) for 1 < p < ∞ have the remarkable property that every
C(K)-operator defined on any subspace of Zp(ϕ) extends to an operator Zp(ϕ) −→ C(K).
Curiously, one has:

Corollary 5.2. Let X be a separable Banach space containing ℓn2 uniformly com-

plemented. There exists an embedding u : X −→ C[0, 1] and an operator v : ℓ2 −→
C[0, 1]/u[X ] that cannot be extended to Z2.

Proof. We will make the proof for X = ℓ2 and leave the reader to derive from that
and the Claim above the general case. Let u : ℓ2 −→ ℓ∞ be an isomorphic embedding.
Since ℓ∞ is an injective Banach space one has a (pull-back) commutative diagram

0 // ℓ2
u // ℓ∞ // ℓ∞/u[ℓ2] // 0

0 // ℓ2 // Z̃2
//

V

OO

ℓ2

v

OO

// 0

where V is an extension of u and v is the factorization of V through the quotient map.

The (self-adjoint, if K = C) subalgebra of ℓ∞ generated by V [Z̃2] is a Banach space
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isomorphic to C[0, 1], which generates a “separable” commutative diagram

0 // ℓ2
u // C[0, 1] // C[0, 1]/u[ℓ2] // 0

0 // ℓ2 // Z̃2
//

V

OO

ℓ2

v

OO

// 0

Let PO be the push-out of v and the inclusion of ℓ2 into Z2, the original Kalton-Peck
space. Since Ω̃ Ω ≁ 0, a look at the commutative diagram

0 // ℓ2
u // C[0, 1] //

))❚❚❚
❚❚

❚❚
PO // ℓ2 // 0

C[0, 1]/u[ℓ2]

55❧❧❧❧❧❧❧❧

0 // ℓ2 // Z̃2
//

OO

))❚❚❚
❚❚

❚❚
❚❚

❚❚
❚❚ Z2

//

OO

ℓ2 // 0

ℓ2

55❧❧❧❧❧❧❧❧❧❧❧❧

v

OO

reveals that the upper-right push-out sequence cannot split, and thus v cannot be extended
to Z2. �

A simple consequence of the previous argument and the standard reduction, which for
separable Banach spaces has the form Ext2

B
(X, Y ) = ExtB(X, ℓ∞/Y ) = ExtB(K

1(X), Y ),
is that the following spaces of extensions are nonzero:

Ext(ℓ2, ℓ∞/ℓ2), Ext(ℓ2, C[0, 1]/ℓ2), ExtB(K
1(ℓ2), ℓ2).

All these results hold replacing everywhere 2 by any 1 < p < ∞. The following one
is however specific of 2: By the main result of [8], we can conclude the existence of a
bounded bilinear form on K1(ℓ2) that cannot be extended to ℓ1.

5.3. Commuting centralizers. This Section is, to a large extent, independent on
the rest of the paper. It contains some remarks about the nature of the “splicing mapping”
(=Yoneda product)

(13) Ext(ℓp, ℓp)× Ext(ℓp, ℓp) −→ Ext2(ℓp, ℓp).

The first thing one must know about this mapping is the following.

Proposition 5.3. If Φ : ℓ0p −→ ℓp is a centralizer, then ΦΦ ∼ 0.

This rather surprising fact was first observed (for centralizers on Köthe spaces with
nontrivial type p > 1) in [5, Section 6.4], a paper that makes heavy use of interpolation
theory. Given our commitment to avoid interpolation, let us sketch a more direct proof
based on the lifting part of Lemma 3.2, Lemma 2.4 and an estimate hidden in [2] which
did not found any application until now.

Proof. In view of Lemma 2.4 we can assume that Φ(f) = u|f |1/2Φ2p

(
|f |1/2

)
for some

centralizer Φ2p : ℓ02p −→ ℓ02p, where f = u|f | is the polar decomposition. It is proven in
[2, Last observation on p. 335] that the map

Λ(f) =
(u
(
Φ2p

(
|f |1/2

))2

2
,Φ(f)

)
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is a centralizer from ℓ0p to ℓp ⊕Φ ℓ0p which obviously lifts Φ. �

Given quasilinear maps Φi : ℓ
0
p −→ ℓp for 1 ≤ i ≤ 4, we write Φ1Φ2 ∼ Φ3 Φ4, if the

exact sequences associated to Φ1 Φ2 and Φ3 Φ4 are equivalent in Ext2(ℓp, ℓp). We say that
Φ and Ψ commute if ΦΨ ∼ ΨΦ. One has:

Corollary 5.4. Let Φ,Ψ : ℓ0p −→ ℓp be centralizers.

(1) ΦΨ ∼ −ΨΦ.
(2) ΦΨ ∼ 0 if and only if ΨΦ ∼ 0 if and only if Φ and Ψ commute

(3) ΦΨ ∼ 0 if and only if (Φ + Ψ)(Φ−Ψ) ∼ 0

Proof. The mapping in (13) is bilinear with respect to the natural linear structures
and the linear structure of Ext corresponds to the pointwise operations of quasilinear
maps. Therefore, with a slight abuse of notation and the obvious meaning, we have, in
view of Proposition 5.3,

0 ∼ (Φ + Ψ)(Φ + Ψ) ∼ ΦΦ + ΦΨ+ΨΦ+ΨΨ ∼ ΦΨ+ΨΦ.

This proves the first item and the rest is straightforward. �

Recalling the extension part of Lemma 3.2 we see that (2) implies that Φ : ℓ0p −→ ℓ0p
has a quasilinear extension to ℓ0p ⊕Ψ ℓ0p if and only if Ψ : ℓ0p −→ ℓ0p has a quasilinear

extension to ℓ0p ⊕Φ ℓ0p. This somewhat inexplicable fact can be explained, at least for
p = 2, as follows. The dual of ℓ2 can be identified with ℓ2 itself through the pairing
〈x, y〉 =

∑
n x(n)y(n). Thus, every centralizer Υ on ℓ2 has a dual centralizer Υ∗ that

corresponds to the dual sequence. It follows from [1, Section 3.3 and Corollary 4] that
one can take Υ∗ = −Υ. In particular, the dual sequence of the four-term sequence
associated to ΦΨ is that associated to ΨΦ. So, ΦΨ ∼ 0 if and only if ΨΦ ∼ 0.

5.4. The Enflo-Lindenstrauss-Pisier map. We do not know if Proposition 5.3 is
true for arbitrary quasilinear maps instead of centralizers. In this regard it is remarkable
that it is so for the first quasilinear map that appeared in Banach space theory, namely the
map constructed by Enflo, Lindenstrauss and Pisier in their solution of the “three-space
problem” (cf. [10, Section 4]).

The seed of that mapping is the function Γ1 : ℓ
3
2 −→ ℓ32 given by

Γ1(x, y, z) =
(
x, y,

x |y|
(|x|2 + |y|2)1/2

)
.

Let P1 be the projection of ℓ32 onto the first two coordinates. Notice that Γ1(x, y, z) =
Γ1(P1(x, y, z)). Now we inductively define Γn, Pn : ℓ3

n

2 −→ ℓ3
n

2 by the formulæ

Γn(x, y, z) =
(
Γn−1(Pn−1(x)),Γn−1(Pn−1(y)),

Pn−1(x)‖Pn−1(y)‖
(‖Pn−1(x)‖2 + ‖Pn−1(y)‖2)

1

2

)

Pn(x, y, z) = (Pn−1(x), Pn−1(y), 0)

Then define Γ : ℓ02 = ℓ02(ℓ
3n

2 ) −→ ℓ2 = ℓ2(ℓ
3n

2 ) by Γ((xn)n) = (Γn(xn))n.

Proposition 5.5. ΓΓ ∼ 0 in Ext2(ℓ2, ℓ2).
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Proof. We claim that Γn(Γn(u+ v)−Γn(u)−Γn(v)) = 0 for every u, v ∈ ℓ3
n

2 and all
n. This implies that condition (b) in Lemma 3.3 is satisfied with H = 0.

We proceed by induction. Write u = (x1, y1, z1), v = (x2, y2, z2). Then, when n = 1
one has

Γ1(x1+x2, y1+y2, z1+z2)−Γ1(x1, y1, z1)−Γ1(x2, y2, z2) =
(
0, 0,

(x1 + x2) |y1 + y2|
(|x1 + x2|2 + |y1 + y2|2)

1

2

)

so it follows that Γ1(Γ1(u+ v)− Γ1(u)− Γ1(v)) = 0.
Assume the claim true for n− 1. Then

Γn(x1 + x2, y1 + y2, z1 + z2)− Γn(x1, y1, z1)− Γn(x2, y2, z2)

≤
(
0, 0,

Pn−1(x1 + x2)‖Pn−1(y1 + y2)‖
(‖Pn−1(x1 + x2)‖2 + ‖Pn−1(y1 + y2)‖2)

1

2

)

and the claim follows as we have Γn(0, 0, z) = 0 for all z. �

5.5. Incomparable centralizers. The study of the “order” structure of Ext(X, Y )
spaces is still incipient. Suppose we are given an exact sequence

(14) 0 // Y // Z // X // 0

We say that 0 −→ Y ′ −→ Z ′ −→ X −→ 0 is a push-out of (14) if one has a commutative
diagram

0 // Y //

u
��

Z //

��

X // 0

0 // Y ′ // Z ′ // X // 0

Dually, we say that 0 −→ Y −→ Z ′′ −→ X ′′ −→ 0 is a pull-back of (14) if one has a
commutative diagram

0 // Y // Z //

��

X // 0

0 // Y // Z ′′ //

OO

X ′′

v

OO

// 0

In [6, Theorem 2.1] it was shown that for every separable Banach space X the space
ExtB(X,C[0, 1]) admits an “initial” element 0 −→ C[0, 1] −→ Z −→ X −→ 0 in the
sense that any other element of ExtB(X,C[0, 1]) arises as a push-out for a suitable endo-
morphism u of C[0, 1]. In [7] it was shown that Ext(ℓ2, ℓ2) contains no initial (or final, via
the obvious pull-back definition) element, thus answering a question in [23]. The results
in this paper show that the “order” structure of Ext(ℓ2, ℓ2) is rather involved. With the
same notations as in the main Theorem:

Corollary 5.6. The short exact sequences induced by Ω̃ and Ω are incomparable,

that is, neither of them is a pull-back or a push-out of the other.

Proof. Let Ψ and Φ be centralizers on ℓ2 and let us show that if (the extension
induced by) Ψ is either a push-out or a pull-back of (that induced by) Φ, then ΨΦ ∼ 0.
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Assume that Ψ is a push-out of Φ and write Ψ ∼ u ◦ Φ, where u is an operator on ℓ2,
with the obvious and harmless abuse of notation. Then

ΨΦ ∼ u ◦ (ΦΦ) ∼ u ◦ 0 ∼ 0.

If we assume that Ψ ∼ Φ ◦ u instead, then

ΦΨ ∼ Φ (Φ ◦ u) ∼ (ΦΦ) ◦ u ∼ 0 =⇒ ΨΦ ∼ 0. �

5.6. On Ext2(ℓp, ℓp) for 0 < p < ∞. The purpose of this section is to prove that
the reflections of the centralizers used in Theorem 4.6 provide nontrivial elements of
Ext2(ℓp, ℓp) for each 1 ≤ p <∞ and a nontrivial element of Ext2ℓ∞(ℓp, ℓp) for 0 < p <∞.

Lemma 5.7. Let X, Y,W be sequence spaces, Ψ : X0 −→W and Φ : W 0 −→ Y support

preserving centralizers. Assume further that Y is the dual of some sequence space. Then

ΦΨ ∼ 0 in Ext2(X, Y ) if and only if the spliced sequence

(15) 0 // Y // Z(Φ) //

((PP
PP

PP
Z(Ψ) // X // 0

W

66♥♥♥♥♥♥

is trivial in Ext2ℓ∞(X, Y ).

Proof. This is clearly a manifestation of the amenability of the Banach algebra ℓ∞.
Regrettably, the proof is not so direct as it should be. It suffices to see that if Φ can
be extended to a quasilinear map Γ : W 0 ⊕Ψ X0 −→ Y , then it can be extended to a
quasilinear centralizer as well. We write the proof for complex scalars. The real case then
follows by the usual change of base procedure. The advantage of having complex scalars
is that every a : N −→ C with ‖a‖∞ ≤ 1 can be written as the average of four unitaries:

a =
u1 + u2 + u3 + u4

4
,

and so every quasilinear map commuting with unitaries is a centralizer. We will not insist
on this point. Let us assume that Φ commutes with the unitary group in the sense that
Φ(uw) = uΦ(w) for every finitely supported w ∈ W and every u ∈ U , the unitary group
of ℓ∞. The general case follows immediately.

Let m be an invariant mean for ℓ∞(U). Such an m exists because U is abelian, hence
amenable. If you find this paragraph enigmatic, take a look on any book about invariant
means, for instance, Greenleaf’s [12]. Let, further, Y∗ be the predual of Y . Every bounded
function f : U −→ Y has a weak* integral defined as

〈∫

U

f(u) dm(u), y∗

〉
=

∫

U

〈f(u), y∗〉 dm(u) (y∗ ∈ Y∗).

We define a mapping Λ : W 0 ⊕Ψ X0 −→ Y by the weak* integral

(16) Λ(w, x) =

∫

U

u−1Γ(u(w, x)) dm(u).

The definition is correct because for finitely supported z and x the orbit U(z, x) =
{(uz, uz) : u ∈ U} is confined in some finite dimensional subspace of Z(Ψ) (actually
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of W 0 ⊕Ψ X0), where Γ is bounded. Let us see that Λ is a centralizer extending Φ. First
of all since Γ is an extension of Φ, we have

Λ(w, 0) =

∫

U

u−1Γ(u(w, 0)) dm(u) =

∫

U

u−1Φ(uw) dm(u) =

∫

U

Φ(w) dm(u) = Φ(w),

so Λ extends Φ. Clearly, Λ is homogeneous. To check quasilinearity, let Q be the quasi-
linearity constant of Γ and pick points (w, x) and (w′, x′). We have

‖Λ
(
(w, x) + (w′, x′)

)
− Λ(w, x)− Λ(w′, x′)‖

=

∥∥∥∥
∫

U

u−1
(
Γ(u((w, x) + (w′, x′)))− Γ(u(w, x))− Γ(u(w′, x′))

)
dm(u)

∥∥∥∥

≤
∫

U

∥∥(Γ(u((w, x) + (w′, x′)))− Γ(u(w, x))− Γ(u(w′, x′))
)∥∥ dm(u)

≤
∫

U

Q
(
‖u(w, x)‖+ ‖u(w′, x′)‖

)
dm(u)

≤M
(
‖(w, x)‖+ ‖(w′, x′)‖

)
,

where M depends only on Q and the centralizer constant of Ψ. Finally, Λ is a centralizer
since it commutes with the actions of U (by the invariance of m) and it is quasilinear. �

The requirement that Y is a dual sequence space can be considerably relaxed: the
Lemma is true when X and W are sequence spaces and Y is any Banach ℓ∞-module. The
proof, however, would lead us too far away from our present subject.

Proposition 5.8. Let 0 < q < p < ∞. Let Φp,Ψp : ℓ0p −→ ℓp be support preserving

centralizers and let Φq,Ψq be the corresponding reflections on ℓq. Then:

• Φp Ψp induces a trivial sequence of quasi Banach modules if and only if Φq Ψq

does.

• If q ≥ 1, then Φp Ψp induces a trivial sequence of Banach spaces if and only if

Φq Ψq induces a trivial sequence of quasi-Banach spaces.

Proof. By the preceding Lemma, it suffices to prove the first item. Please note that,
replacing every occurrence of “trivial” by “nontrivial” does not alter the Proposition.
Also, if q > 1, then the word “quasi” can be eliminated everywhere in the Proposition
since Φq Ψq induces a sequence of Banach spaces, after renorming.

We first prove that for p > q, “triviality at p” implies “triviality at q”, exploiting the
lifting part of Lemma 3.2. The hypothesis means that there is a centralizer Γ : ℓ0p −→
ℓ0p⊕Φp

ℓ0p such that that π(Γ(f)) = Ψp(f) for every f ∈ ℓ0p. Let us define Γq : ℓ
0
q −→ ℓ0q⊕Φq

ℓ0q
taking

Γq(f) = u|f |q/rΓ
(
|f |q/p

)
,

where f = u|f | is the polar decomposition. Obviously Γq is a lifting of Ψq since

π(Γq(f)) = π
(
u|f |q/rΓ

(
|f |q/p

))
= u|f |q/rπ

(
Γ
(
|f |q/p

))
= u|f |q/rΨp

(
|f |q/p

)
= Ψq(f).

To check that Γq is a centralizer, pick a ∈ ℓ∞ and f ∈ ℓ0q with polar decompositions
a = v|a| and f = u|f |, respectively. Then

Γq(af) = vu|af |q/rΓ( |af |q/p ), aΓq(f) = au|f |q/rΓ( |f |q/p )
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and the centralizer property of Γq follows from Hölder inequality and the corresponding
estimate of Γ. Quasilinearity now follows from Lemma 2.2.

We finally prove that “triviality at q” implies “triviality at p”. The key point is that if
Φp and Φq are as in Lemma 2.4, then Hom(ℓr, Z(Φq)) = Z(Φp). In our “finitistic” setting,
the preceding identity should be interpreted as follows: Every (g, f) ∈ ℓp ⊕Φp

ℓ0p induces
a homomorphism from ℓr to Z(Φq) by the rule

h ∈ ℓr 7−→ (gh, fh) ∈ Z(Φq)

and the quasinorm of (g, f) in ℓp ⊕Φp
ℓ0p is equivalent to the quasinorm of the operator

defined two lines ago. This defines an operator (actually a homomorphism) ℓp⊕Φp
ℓ0p −→

Hom(ℓr, Z(Φq)) with dense range whose extension to Z(Φp) is the required isomorphism.
Thus, keeping the same notations, we have a commutative diagram

(17) 0 // ℓp // Z(Φp)

��

// ℓp // 0

0 // Hom(ℓr, ℓq) // Hom(ℓr, Z(Φq)) // Hom(ℓr, ℓq) // 0

This can be seen in [1, Corollary 2], where the definition of a centralizer is slightly different
from ours.

That said, assume that Φq Ψq induces a trivial sequence of quasi Banach modules.
Go back to the basic criterion and write down the “splitting” diagram of modules and
homomorphisms

0

��

0

��
ℓq

��

ℓq

��
0 // Z(Φq)

��

// �

��

// ℓq // 0

0 // ℓq //

��

Z(Ψq) //

��

ℓq // 0

0 0

(18)
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Applying Hom(ℓr,−) to the above diagram and using the identifications provided by (17)
we obtain another commutative diagram of quasi Banach modules and homomorphisms

0

��

0

��
ℓp

��

ℓp

��
0 // Z(Φp)

��

// Hom(ℓr,�)

��

// ℓp // 0

0 // ℓp //

��

Z(Ψp) //

��

ℓp // 0

0 0

If we want to use this diagram to conclude that the spliced sequence ΦpΨp is trivial in
Ext2ℓ∞(ℓp, ℓp) we have to show that the two short sequences passing through Hom(ℓr,�) are
exact. This amounts to checking the surjectivity of the two arrows starting at Hom(ℓr,�).

Let us begin with the vertical one. Having a look at Diagram 18 we realize that the
map Hom(ℓr,�) −→ Z(Ψp) = Hom(ℓr, Z(Ψq)) is onto if and only if every homomorphism
u : ℓr −→ Z(Ψq) lifts to �. And this is indeed the case because otherwise the pull-back
diagram

0 // ℓq // � // Z(Ψq) // 0

0 // ℓq // PB

OO

// ℓr //

u

OO

0

would provide a nontrivial element of Extℓ∞(ℓr, ℓq). However, the main result of [1] shows
that Extℓ∞(ℓr, ℓq) = 0 unless r = q. In a similar vein, if the map Hom(ℓr,�) −→ ℓp =
Hom(ℓr, ℓq) fails to be onto, one can produce a nontrivial extension of modules

0 // Z(Φq) // PB // ℓr // 0

using pull-back. Which cannot be since Extℓ∞(ℓr, ℓq) = 0 implies that Extℓ∞(ℓr, Z) = 0
for every quasi Banach module fitting in a short exact sequence of modules 0 −→ ℓq −→
Z −→ ℓq −→ 0, in particular for Z = Z(Φq). �

5.7. Ext2(ℓ1,K) and the role of the ambient category. We close the Section
with an example showing that Ext2 heavily depends on the ambient category. Note that
Ext2

B
(ℓ1, Y ) = 0 and Ext2

B
(X,K) = 0 for all Banach spaces X and Y . Indeed, one even

has ExtB(ℓ1, Y ) = 0 by the lifting property of ℓ1 and ExtB(X,K) = 0 by the Hahn-Banach
theorem. However:

Proposition 5.9. Ext2(ℓ1,K) 6= 0.

The proof is based on the idea that, for most quasi-Banach modules X , minimal
extensions of X (defined at the end of Section 3) are in correspondence with extensions
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of quasi Banach modules 0 −→ ℓ1 −→ Z −→ X −→ 0. We will state and prove this just
for the particular case that we need to carry out the proof of the Proposition.

Suppose that X is an ℓ∞-module. Let us say that x ∈ X is finitely supported if there
is a finite A ⊂ N such that x = 1Ax. The smallest A for which the preceding identity
holds is called the support of x and will be denoted by supp(x). There is no conflict of
interest with the usual meaning of support of a (finitely supported) sequence. A moment’s
reflection suffices to realize that:

• The finitely supported elements of a module X constitute a (not generally closed
and quite often dense) submodule that we denote by X0.
• Any morphism, continuous or not, preserves finitely supported elements.
• If x has finite support, then the “orbit” ℓ∞ x = {ax : a ∈ ℓ∞} is a finite-
dimensional subspace (actually submodule) of X .

Lemma 5.10. Let X be a quasi-Banach module over ℓ∞ and let X0 be the submodule

of finitely supported elements of X. Let φ : X0 −→ K be a quasilinear map. Then there

is a quasilinear centralizer Φ : X0 −→ ℓ1 such that

(19)
∣∣φ(x)− 〈Φ(x), 1N〉

∣∣ ≤ C‖x‖
for some C and all x ∈ X0. Any two centralizers having this property are strongly

equivalent on X0.

Proof of Lemma 5.10. There is no loss of generality in we assume that X is “con-
tractive”: ‖ax‖ ≤ ‖a‖∞‖x‖ for all a ∈ ℓ∞ and x ∈ X and that φ : X0 −→ K has
Q(φ) ≤ 1.

Let us first dispose of the “uniqueness” part. Suppose that, for i = 1, 2, one has
centralizers Φi : X

0 −→ ℓ1 such that
∣∣φ(x)− 〈Φi(x), 1N〉

∣∣ ≤ Ci‖x‖.
Note that

‖Φ1(x)− Φ2(x)‖1 = sup
‖a‖∞≤1

∣∣〈Φ1(x)− Φ2(x), a〉
∣∣.

But

〈Φi(x), a〉 = 〈aΦi(x), 1N〉,∣∣〈aΦi(x), 1N〉 − 〈Φi(ax), 1N〉
∣∣ ≤ ‖Φi(ax)− aΦi(x)‖1 ≤ C(Φi)‖a‖∞‖x‖,∣∣φ(ax)− 〈Φi(ax), 1N〉

∣∣ ≤ Ci‖ax‖ ≤ Ci‖a‖∞‖x‖.
Combining,

‖Φ1(x)− Φ2(x)‖1 ≤
(
C1 + C2 + C(Φ1) + C(Φ2)

)
‖x‖.

We pass to the construction of Φ which involves the fact that c0 is a K-space: there is an
absolute constant C such that, for every quasilinear map ϕ : c0 −→ K there is a linear
map ℓ : c0 −→ K satisfying |ϕ(a)− ℓ(a)| ≤ CQ(φ)‖a‖∞, where Q(ϕ) is the quasilinearity
constant of ϕ. This is a really deep result by Kalton and Roberts [21]. They got C ≤ 200
for K = R. It follows that C ≤ 200

√
2 for K = C.

We consider the two-variable function c0 × X0 −→ K given by (a, x) 7−→ φ(ax).
Clearly, for each fixed x ∈ X0, the function a ∈ c0 7−→ φ(ax) ∈ K is quasilinear, with
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constant at most ‖x‖ and so there is a linear map, depending on x, say ℓx : c0 −→ K such
that

|φ(ax)− ℓx(a)‖ ≤ C‖x‖‖a‖∞, (x ∈ X0, a ∈ c0).

But, for fixed x ∈ X0, the orbit c0x is finite dimensional and so a ∈ c0 7−→ φ(ax) ∈
K is bounded. This implies that ℓx is a bounded functional on c0 and therefore it is
implemented by some fx ∈ ℓ1 in the obvious way.

If we choose such an fx homogeneously, we obtain a homogeneous mapping Φ : X0 −→
ℓ1 such that

(20) |φ(ax)− 〈Φ(x), a〉‖ ≤ C‖x‖‖a‖∞, (x ∈ X0, a ∈ c0).

Let us check that this Φ is the centralizer we are looking for.

• First of all, it is clear that (20) implies (19).

• Φ is quasilinear. Lemma 2.2 does not apply here. Since ‖f‖1 = sup |〈f, a〉|, where a
runs on the unit ball of c0, it suffices to check that if x, y ∈ X0, then

|〈Φ(x+ y)− Φ(x)− Φ, a〉| ≤ Q‖a‖∞
(
‖x‖+ ‖y‖

)

which immediately follows from (20) and the quasilinearity of φ.

• Φ is a centralizer. It suffices to see that Φ obeys an estimate of the form ‖Φ(bx) −
bΦ(x)‖1 ≤ C‖b‖∞‖x‖ for finitely supported b. But for each a ∈ c0 we have

|〈Φ(bx), a〉 − φ(abx)| ≤ C‖bx‖‖a‖∞ ≤ C‖b‖∞‖x‖‖a‖∞.

On the other hand, 〈bΦ(x), a〉 = 〈Φ(x), ab〉, so
|〈bΦ(x), a〉 − φ(abx)| ≤ C‖abx‖ ≤ C‖b‖∞‖x‖‖a‖∞,

which completes the proof. �

Proof of Proposition 5.9. The main result and Proposition 5.8(b) imply that
there are centralizers Φ,Ψ on ℓ1 for which the spliced sequence

(21) 0 // ℓ1 // Z(Φ) //

''❖❖
❖❖

❖❖
Z(Ψ) // ℓ1 // 0

ℓ1

77♦♦♦♦♦♦

is not trivial in Ext2(ℓ1, ℓ1). Let S : ℓ1 −→ K be the sum functional. We will prove that
the push-out sequence

0 // ℓ1 //

S
��

Z(Φ) //

��

Z(Ψ) // ℓ1 // 0

0 // K // PO // Z(Ψ) // ℓ1 // 0

provides a nonzero element of Ext2(ℓ1,K). Note that the push-out space can we repre-
sented as PO = K ⊕φ ℓ1, where φ is a quasilinear extension of the function x ∈ ℓ01 7−→
〈Φ(x), 1N〉 ∈ K, so the lower sequence in the preceding diagram is

0 // K // K⊕φ ℓ1 //

((◗◗
◗◗

◗◗
Z(Ψ) // ℓ1 // 0

ℓ1

77♦♦♦♦♦♦
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Now, it suffices to see that the map φ : ℓ01 −→ K cannot be extended to ℓ01 ⊕Ψ ℓ01 =
(ℓ1 ⊕Ψ ℓ1)

0 keeping quasilinearity.
Assume γ is such an extension and let Γ : ℓ01⊕Ψ ℓ01 −→ ℓ1 be the quasilinear centralizer

provided by Lemma 5.10. Since γ is an extension of φ, the restriction of Γ to ℓ01 is strongly
equivalent to Φ and so the sequence in (21) should be trivial in Ext2(ℓ1, ℓ1), which is not
the case. �
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