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Tight-minimal dichotomies in Banach spaces

by

Alejandra C. Cáceres-Rigo and Valentin Ferenczi

Abstract. We extend the methods used by V. Ferenczi and Ch. Rosendal to obtain
the “third dichotomy” in the program of classification of Banach spaces up to subspaces,
in order to prove that a Banach space E with an admissible system of blocks (DE ,AE)
contains an infinite-dimensional subspace with a basis which is either AE-tight or AE-
minimal. In this setting we obtain, in particular, dichotomies regarding subsequences of
a basis, and as a corollary, we show that every normalized basic sequence (en)n has
a subsequence which satisfies a tightness property or is spreading. Other dichotomies
between notions of minimality and tightness are demonstrated, and the Ferenczi–Godefroy
interpretation of tightness in terms of Baire category is extended to this new context.
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1. Introduction. In this paper, when we refer to a Banach space, we
mean a separable infinite-dimensional Banach space. Subspaces of Banach
spaces are assumed to be infinite-dimensional and closed, unless stated oth-
erwise. In [12] W. T. Gowers began the Classification Program of Banach
spaces up to subspaces. The program aims to classify Banach spaces into “in-
evitable” classes, using dichotomies between two opposite inevitable classes
of Banach spaces. Conditions for a class to be considered of interest for the
program were given by Gowers: the classes must be inevitable, that is, every
Banach space must belong to a class. A class must be hereditary for closed
subspaces or, if the property that determines the class is defined for basic
sequences, then the class must be hereditary for block subspaces. Two dif-
ferent classes must be disjoint. The property that determines the class must
give additional information about the space of operators defined over the
space or over its subspaces.

A Banach space X is decomposable if it can be written as the direct
sum of two closed infinite-dimensional subspaces, otherwise X is said inde-
composable. A Banach is said hereditarily indecomposable (or HI) if all its
infinite-dimensional subspaces are indecomposable. Gowers showed a first
dichotomy (see [11]) giving the first two examples of inevitable classes: every
Banach space has a separable subspace that is either hereditarily indecom-
posable, or has an unconditional basis. In [12] a second dichotomy was proved:
Any Banach space contains a subspace with a basis such that no pair of dis-
jointly supported block subspaces are isomorphic, or any two block subspaces
have isomorphic subspaces. In résumé, in [12], four inevitable classes were
presented.

Later V. Ferenczi and Ch. Rosendal [10] proved three new dichotomies.
They refined the list of inevitable classes into six main classes and 19 sec-
ondary classes. The main result in [10] is a third dichotomy, which contrasts
the dual notions of minimality and tightness and is central for the present
work:

Theorem 1.1 (Third dichotomy, [10]). If E is a Banach space, then E
contains a subspace with a basis which is either tight or minimal.

It is well known that a Banach space is minimal if it can be isomorphically
embedded in any of its subspaces. Suppose that E is a Banach space with
a Schauder basis (en)n. A Banach space Y is tight in E (see [10] for the
definition and an extensive study of this notion) if there is a sequence (In)n
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of successive finite subsets of N such that for every infinite subset A of N,
Y cannot be isomorphically embedded in [en : n /∈

⋃
i∈A Ii]. A basis (en)n is

tight for E if any Banach space Y is tight in E, and E is tight if it has a
tight basis.

A useful characterization of tightness was given in [7] using Baire cat-
egory: Y is tight in E = [en]n if and only if the set of indices A ⊆ N for
which Y can be embedded in [en : n ∈ A] is meager in P(N) (after the
natural identification of P(N) with the Cantor space 2ω, via characteristic
functions).

Tightness is an opposite notion to minimality: it is clear that a tight
space cannot be minimal, nor can a minimal space have a tight subspace.
In both definitions, of tight and minimal spaces, the underlying embedding
is an isomorphic embedding. We say that Y = [yn]n isomorphically embeds
in E = [en]n if (yn)n is equivalent to a (basic) sequence (xn)n in E. After a
standard perturbation argument, one can ask that such a basic sequence is a
sequence of finitely supported vectors of E. One can consider different forms
of embedding of Y into E, depending on the properties of the basic sequence
(xn)n in E. For example, one can require (xn)n to be a block sequence of
the basis (en)n of E or a sequence of disjointly supported vectors in E.

The authors of [10] also stated that after a variation of the notion of
embedding in the definition of tight basis, and consequently modifying the
methods involved in the proof of the third dichotomy, the following result
can be obtained:

Theorem ([10, Theorem 3.16]). Every Banach space with a basis con-
tains a block subspace E = [en]n satisfying one of the following properties:

(1) For any [yn]n ≤ E, there is a sequence (In)n of successive intervals in N
such that for any A ∈ [N]∞, [yn]n does not embed into [en : n /∈

⋃
i∈A Ii]

as a sequence of disjointly supported vectors or as a block sequence.
(2) For any [yn]n ≤ E, (en)n is equivalent to a sequence of disjointly sup-

ported vectors of [yn]n, or to a block sequence of [yn]n.

Therefore, modifying the embedding we obtain a corresponding type of
minimality and the associated dual type of tightness. In this work we define
and study different types of minimality and the respective dual notions of
tightness, in order to obtain new dichotomies between them. An additional
attractive aspect of this point of view is to allow extending the techniques
to the study of subsequences of a given basis, instead of subspaces of a given
space.

Those ways of interpreting the embedding are coded in what we call an
admissible system of blocks, which is a pair (DE ,AE) associated to a Banach
space E with a fixed normalized basis (en)n. Basically, a set DE of blocks
(see Definition 3.2) for E is a set “containing” the possible bases of the block
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subspaces one admits to consider. Meanwhile, an admissible set (see Defini-
tion 3.6) AE for E is the set of infinite sequences of vectors which are the
images of the embeddings one wants to consider. Using this coding in the
case of “being equivalent to a subsequence of (en)n”, for example, DE would
be the set whose elements are the vectors of the basis and AE is the set of all
subsequences of E. The properties of sets of blocks and admissible families
will be studied in Section 3.

This coding for embedding through admissible sets AE of vectors natu-
rally leads us to define the notions of AE-minimality and A-tightness, which
depend on the pair (DE ,AE), as follows: given a set of blocks DE and an
admissible set AE for E, we say that E is AE-minimal if for every block
sequence (xn)n ∈ (DE)

ω, there is a sequence (yn)n ∈ AE ∩ Xω equivalent
to (en)n. We say that (en)n is an AE-tight basis for E if for every Banach
space Y there is an sequence (Ii)i of successive intervals such that for every
infinite subset A of N,

(1) Y
A
X↪→

[
en : n /∈

⋃
i∈A

Ii

]
.

The study of AE-embeddings and AE-minimality is taken up in Sec-
tions 4, 5 and summarized in Section 6. Basic properties of AE-tight bases
are studied in Section 7.

In this work, we generalize the methods of [10] to use admissible systems
and we prove the main theorem of this work:

Theorem 1.2. Let E be a Banach space with a normalized basis (en)n
and (DE ,AE) be an admissible system of blocks for E. Then E contains a
DE-block subspace which is either AE-tight or AE-minimal.

The authors of [10] stated that modifying the notion of embedding in the
definition of tight basis, and consequently modifying the methods involved
in the proof of the third dichotomy, one can deduce the following statement:

• Every Banach space with a basis contains a block subspace E = [en]n
such that either for any [yn]n ≤ E, there is a sequence (In)n of successive
intervals in N such that for any A ∈ [N]∞, [yn]n does not embed into [en :
n /∈

⋃
i∈A Ii] as a permutation of a block sequence; or for any [yn]n ≤ E,

(en)n is permutatively equivalent to a block sequence of [yn]n.

But, as we see in Proposition 5.4 below, a basic sequence (yn)n being
embedded in [en]n = E as a permutation of (en)n is not an AE-embbedding
obtained from an admissible set for E, and this is fundamental for the proofs
in this statement to work. We have no evidence that in this case the above
paper is true, but it cannot be obtained just by modifying the embedding
notion in the proof of the third dichotomy, as claimed in [10].
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1.1. A sketch of the proof. The main tool used in [10] in order to prove
the third dichotomy is the notion of generalized asymptotic game which is a
generalization of the notion of infinite asymptotic game (see [17, 14]). A mod-
ification of the infinite asymptotic game was first defined by Ferenczi [6] to
prove that a space saturated with subspaces with a Schauder basis, which
embed into the closed linear span of any subsequence of their basis, must
contain a minimal subspace. The work in [6] generalized the methods and
the result of Pelczar [16]: a Banach space saturated with subsymmetric basic
sequences contains a minimal subspace.

Let X = [xn]n and Y = [yn]n be two block subspaces of a Banach space
E with a Schauder basis (en)n. The generalized asymptotic game HY,X with
constant C is a game with infinite rounds between player I and player II
where in the kth round, player I picks a natural number nk and player II
responds with a natural number mk and a not necessarily normalized finitely
supported vector uk such that supp(uk) ⊆

⋃k
i=0[ni,mi]. The outcome of the

game is a not necessarily block sequence (un)n. Player II wins the game if
(yn)n is C-equivalent to (un)n.

In order to prove Theorem 1.2, we follow the demonstration of the third
dichotomy generalizing the arguments for the context of AE-minimality and
AE-tightness, creating the notion of “admissible systems of blocks”. First,
we shall adapt to DE-block subspaces two technical lemmas (8.1 and 8.2),
whose original versions for block subspaces were proved in [10] and in [15],
respectively. We define an A-version of the generalized asymptotic game
HA

Y,X with constant C, depending on an admissible set AE , requiring that
the outcome (un)n of the game be an element of AE ∩Xω. Again, the game
HA

Y,X with constant C is open for player I and so, by the determinacy of
open Gale–Stewart games, is determined.

In Section 8 we prove technical lemmas by varying the methods of Fer-
enczi and Rosendal: we show that if E is in some way saturated by DE-block
subspaces X and Y such that player I has a winning strategy for the game
HA

Y,X with constant C, then E has an AE-tight subspace.
Before the proof of our main theorem it is necessary to introduce two

games for AE-minimality: the game GA
Y,X with constant C and a version

assuming that finitely many moves have been made in GA
Y,X . This will be

done in Section 9. The main result in that section relates the existence of a
winning strategy for player II in the game HA

Y,X to the existence of a winning
strategy for player II in the game GA

Y,X . Finally, after the proof of Theorem
1.2 in Section 10, some tight-minimal dichotomies are presented.

2. Preliminaries. If E is a Banach space then SE , BE and BE denote
the unit sphere and the open and closed ball of E, respectively. For ε > 0 and
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x ∈ E, BE(x, ε) and BE(x, ε) denote the open and closed ball in E centered
in x with radius ε.

Suppose that (en)n is a basis for E. We define the support of x ∈ E
(written suppE(x)) in the basis (en)n as the set {n ∈ N : e∗n(x) ̸= 0}, where
e∗k are the coordinate functionals defined by x =

∑∞
n=0 λnen 7→ λk for k ∈ N.

The support of the zero vector of E is the empty set.
We say that a Banach space X is isomorphic to a Banach space Y with

constant K (denoted as Y ≃K X) if there exists a one-to-one bounded linear
operator T from X onto Y such that T−1 is bounded and K ≥ ∥T∥ · ∥T−1∥.
We say that X contains a K-isomorphic copy of Y , or Y is K-embeddable
in X (denoted as Y ↪→K X), if Y ≃K Z for some subspace Z of X. Finally, Y
is isomorphically embeddable, or just embeddable, in X (in symbols Y ↪→ X) if
Y ↪→K X for some K ≥ 1. In this case we say that X contains an isomorphic
copy, or just a copy, of Y .

For K ≥ 1, two basic sequences (xn)n and (yn)n are K-equivalent
((xn)n ∼K (yn)n) if for all k ∈ N and every finite sequence (ai)

k
i=0 of scalars

we have
1

K

∥∥∥ k∑
n=0

anxn

∥∥∥ ≤
∥∥∥ k∑
n=0

anyn

∥∥∥ ≤ K
∥∥∥ k∑
n=0

anxn

∥∥∥.
Two basic sequences are equivalent if they are K-equivalent for some K ≥ 1.

We shall use the following well known result:

Proposition 2.1. Let X be a Banach space with a basis (xn)n with basis
constant C and let M ≥ 1. Then there is a constant c ≥ 1, which depends on
C and M , such that if (zn)n and (yn)n are normalized block bases of (xn)n
which differ only in M terms, then (yn)n ∼c (zn)n.

If A is a nonempty set, then |A| denotes the cardinality of A, P(A)
denotes the power set of A, and [A]<∞ and [A]∞ denote the set of finite
subsets of A and the set of infinite subsets of A, respectively. Given A,B ⊂ N
and assuming that maxA and minB exist, we write A < B to mean that
maxA < minB. When we refer to a sequence (In)n of successive finite
subsets of N, we mean that In < In+1 for every n ∈ N. Also, when we refer
to an interval I of natural numbers, we mean that I = [a, b] ∩ N for some
0 ≤ a < b. Let us denote the set of nonempty finite sets of N by FIN, that
is, FIN := [N]<∞ \ {∅}. We denote by FINω the set of infinite sequences of
non-empty finite subsets of N.

We shall consider the Cantor space 2ω = {0, 1}ω with the product topol-
ogy where {0, 1} is endowed with the discrete topology. If s = (si)i ∈ 2ω,
define supp(s) = {i ∈ N : si = 1}. Notice that P(N) can be identified
with 2ω using characteristic functions: if A ∈ P(N), then the characteristic
function χA belongs to 2ω and A = supp(χA). Thus, families of subsets of
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N will sometimes be viewed as families of sequences in N. Therefore, any
F ⊆ P(N) can be seen as a topological subspace of 2ω. A basic open subset
of 2ω determined by s ∈ 2ω and J ∈ [N]<∞ is given by

Ns,J := {u = (un)n ∈ 2ω : ∀n ∈ J (un = sn)}.

2.1. A law and Ramsey-like theorems. A Polish space is a separable
completely metrizable topological space. In this subsection we shall recall
some classical theorems. The next theorem is known as the first topological
0-1 law :

Theorem 2.2 ([13, (8.46)]). Let X be a Polish space, and G be a group of
homeomorphisms of X with the following property: for any non-empty open
subsets U and V of X, there is g ∈ G such that g(U)∩V ̸= ∅. If A ⊆ X has
the Baire property and is G-invariant (i.e. g(A) = A for every g ∈ G), then
A is meager or comeager in X.

The next theorem is known as Galvin–Prikry’s Theorem:

Theorem 2.3 ([13, (19.11)]). Let [N]∞ = P0 ∪ · · · ∪Pk−1, where each Pi

is Borel and k ∈ N. Then there are H ∈ [N]∞ and i < k with [H]∞ ⊆ Pi.

According to Ramsey theory’s nomenclature, a subset C of [N]∞ is Ram-
sey if there is some H ∈ [N]∞ such that [H]∞ ⊆ C or [H]∞ ⊆ [N]∞ \ C. So,
Galvin–Prikry’s Theorem can be enunciated as follows: Borel sets of [N]∞ are
Ramsey. The next theorem, Silver’s Theorem, says that analytic subsets of
[N]∞ are completely Ramsey, which implies that analytic subsets of [N]∞ are
Ramsey (since all completely Ramsey subsets are Ramsey). We recommend
[13] for more information about these definitions and proofs.

Theorem 2.4 ([13, (29.8)]). Analytic subsets of [N]∞ are completely
Ramsey.

3. Admissible sets and families. Along this section suppose E is a
Banach space with a Schauder basis (en)n. Set BE := {en : n ∈ N} and
B±
E := {en : n ∈ N} ∪ {−en : n ∈ N}. Let FE be a countable subfield of R

containing the rationals such that for all
∑n

i=0 λiei with n ∈ N and (λi)
n
i=0 ∈

(FE)
n+1, the norm ∥

∑n
i=0 λiei∥ is in FE . We denote by DE the countable set

of nonzero not necessarily normalized finite FE-linear combinations of (en)n.

3.1. Definitions and notations

Definition 3.1. Let (xn)n be a sequence of successive finitely supported
vectors of E. For X = [xn]n, define ∗X : (DE ∩ X)ω × (DE)

ω → (DE)
ω as

follows: if v = (vn)n ∈ (DE)
ω and u = (un)n ∈ (DE ∩X)ω are such that for

each n ∈ N,
un =

∑
i∈suppX(un)

λn
i xi,
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then u ∗X v is the sequence (wn)n where for each n ∈ N,

wn =
∑

i∈suppX(un)

λn
i vi.

Notice that the set DE ∩ X could be empty. In our work we shall take
subspaces generated by vectors in DE , so this will not occur.

Definition 3.2. We define a set of blocks for the space E to be a set
DE satisfying the following conditions:

(a) DE ⊆ DE .
(b) {en : n ∈ N} ⊆ DE .
(c) If u ∈ DE , then u/∥u∥ ∈ DE .
(d) For all (un)n, (vn)n ∈ (DE)

ω, we have (un)n ∗E (vn)n ∈ (DE)
ω.

(e) Let (xi)
n
i=0 ∈ (DE)

n+1 with xi < xi+1 for every 0 ≤ i < n, and X =
[xi]i≤n. If u ∈ DE is such that

u =

n∑
i=0

λixi,

then

v =

n∑
i=0

λiei ∈ DE .

We say that a vector u is a DE-block if u ∈ DE .

Example 3.3. BE , B±
E and DE are sets of blocks for E.

Definition 3.4. Let D ⊆ DE be an infinite subset such that Dω contains
a block basis of (en)n.

(i) We say that (yn)n ∈ Eω is a D-block sequence if (yn)n is a block basis
of (en)n and for each n ∈ N we have yn ∈ D.

(ii) A subspace Y is a D-block subspace if it is the closed subspace spanned
by a D-block sequence (yn)n.

Without loss of generality we shall suppose that a D-block subspace is always
generated by a normalized D-block sequence.

Definition 3.5. Let DE be a set of blocks for E. Let X be a DE-block
subspace.

(i) We define DX := DE ∩X.
(ii) We denote DX := DE ∩X.
(iii) We denote by bbD(E) the set of normalized DE-block sequences of E,

i.e.

bbD(E) := {(xn)n ∈ (DE)
ω : (xn)n is a DE-block sequence of E

&∀n ∈ N (∥xn∥ = 1)}.
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(iv) We denote by bbD(X) the set of normalized DX -block sequences of E,
i.e.

bbD(X) := {(yn)n ∈ (DX)ω : (yn)n is a DX -block sequence of E
&∀n ∈ N (∥xn∥ = 1)}.

If DE is a set of blocks for E and X is a DE-block subspace, then we
sometimes identify an element (yn)n of bbD(X) with the DE-block subspace
it generates.

We endow (DE)
ω with the product topology obtained by considering

DE with the discrete topology; then (DE)
ω is a Polish space. Also, the set

(N×N×DE)
ω with its natural product topology is Polish. The set bbD(E)

is a nonempty closed subspace of (DE)
ω, so it is Polish.

Definition 3.6. Let DE be a set of blocks for E. We say that a set AE

is admissible for E if it satisfies the following conditions:

(a) AE is a closed subset of (DE)
ω.

(b) AE contains all the DE-block sequences.
(c) For every (yn)n ∈ AE and every DE-block subspace X = [xn]n, if

(un)n ∈ (DX)ω, then

(un)n ∈ AE ⇐⇒ (un)n ∗X (yn)n ∈ AE .

(d) Let (yn)n be a DE-block sequence and Y = [yn]n. For every (un)n ∈ AE

and k ∈ N, there is (vn)n ∈ Y ω such that (u0, . . . , uk, v0, v1, . . .) ∈ AE .

Definition 3.7. Let DE be a set of blocks for E, AE an admissible set
for E, and X be a DE-block subspace.

(i) Set AX := AE ∩Xω.
(ii) We denote by [AX ] the set of initial parts of AX , that is,

[AX ] :=⋃
n∈N

{(u0, u1, . . . , un) ∈ (DX)n+1 : ∃(wi)i ∈ AX (wi = ui for 0 ≤ i ≤ n)}.

Remark 3.8. (i) Notice that an admissible set depends on the set of
blocks that has been chosen for E.

(ii) Since (DE)
i is a discrete topological space, the set [AE ] ∩ (DE)

i is a
clopen subset of (DE)

i for every i ≥ 1.
(iii) If X and Y are DE-block subspaces such that Y ⊆ X, then

AY ⊆ AX .

Definition 3.9. Let DE be a set of blocks for E and AE be an admissible
set for E. We say that (DE ,AE) is an admissible system of blocks for E if for
every DE-block subspace X of E, for every sequence (δn)n with 0 < δn < 1,
and K ≥ 1, there is a collection (An)n of nonempty subsets of DX with the
following properties:
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(a) For each n and each d ∈ [N]<∞ such that there is w ∈ DX with
suppX(w) = d, there are finitely many vectors u∈An with suppX(u) = d.

(b) For every sequence (wi)i ∈ AX satisfying 1/K ≤ ∥wi∥ ≤ K, for every i,
there is (ui)i ∈ AX such that for each n we have

(b.1) un ∈ An,
(b.2) suppX(un) ⊆ suppX(wn),
(b.3) ∥wn − un∥ < δn.

3.2. Properties of admissible sets

Proposition 3.10. Let DE be a set of blocks and AE be an admissible
set for E. Then the following are equivalent:

(i) For every (yn)n ∈ AE and every DE-block subspace X = [xn]n, if
(un)n ∈ (DX)ω then

(un)n ∈ AE ⇐⇒ (un)n ∗X (yn)n ∈ AE .

(ii) For all (yn)n, (zn)n ∈ AE, if (wn)n ∈ (DE)
ω then

(wn)n ∗E (yn)n ∈ AE ⇐⇒ (wn)n ∗E (zn)n ∈ AE .

(iii) For all (yn)n, (zn)n ∈ AE and every DE-block subspace X = [xn]n, if
(un)n ∈ (DX)ω then

(un)n ∗X (yn)n ∈ AE ⇐⇒ (un)n ∗X (zn)n ∈ AE .

Proof. This follows directly from Definitions 3.2 and 3.6.

We can easily prove that a set of blocks has the following heredity prop-
erties:

Proposition 3.11. Let DE be a set of blocks and AE be an admissible
set for E. If X = [xn]n is a DE-block subspace, then the following hold:

(i) DX ⊆ DX .
(ii) {xn : n ∈ N} ⊆ DX .
(iii) If u ∈ DX , then u/∥u∥ ∈ DX .
(iv) For every (un)n ∈ (DX)ω and (vn)n ∈ (DE)

ω, we have (un)n ∗X (vn)n ∈
(DE)

ω. In particular, if (vn)n ∈ (DX)ω, then (un)n ∗X (vn)n ∈ (DX)ω.
(v) Let (yi)

n
i=0 ∈ (DX)n+1 with yi < yi+1 for every 0 ≤ i < n, and Y =

[yi]i≤n. If u ∈ DX is such that

u =

n∑
i=0

λiyi,

then

v =
n∑

i=0

λixi ∈ DX .
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Proof. This follows directly from the definition of a set of blocks.

The last heredity property is also valid for an admissible set:

Proposition 3.12. Let DE be a set of blocks and AE be an admissible set
for E. Let X = [xn]n be a DE-block subspace. The set AX has the following
properties:

(i) AX is a closed subset of (DX)ω.
(ii) Any block basis (yn)n in (DX)ω belongs to AX .
(iii) For every (vn)n ∈ AX and every DX-block subspace Y = [yn]n, if

(un)n ∈ (DY )
ω, then

(un)n ∈ AX ⇐⇒ (un)n ∗Y (vn)n ∈ AX .

(iv) Let Y = [yn]n be a DX-block subspace. For every (un)n ∈ AX and
k ∈ N, there is (vn)n ∈ Y ω such that (u0, . . . , uk, v0, v1, . . .) ∈ AX .

Proof. This follows directly from Definition 3.6.

Notice that if X is a DE-block subspace, then using Proposition 3.12(ii)
we conclude that [AX ] is infinite. If (DE ,AE) is an admissible system of
blocks for E and X is a DE-block subspace, then as a consequence of Propo-
sitions 3.11 and 3.12, the pair (DX ,AX) can be thought of as an “admissible
subsystem of blocks” relative to X. The “relativization” of the condition given
in Definition 3.9 to X is clearly true: For every DX -block subspace Y of X,
for every sequence (δn)n with 0 < δn < 1, and K ≥ 1, there is a collection
(An)n of nonempty subsets of DY with the following properties:

(a) For each n and each d ∈ [N]<∞ such that there is w ∈ DY with
suppY (w) = d, there are finitely many vectors u∈Anwith suppY (u) = d.

(b) For every sequence (wi)i ∈ AY satisfying 1/K ≤ mini ∥wi∥ ≤ supi ∥wi∥
≤ K, there is (ui)i ∈ AY such that for each n,

(b.1) un ∈ An,
(b.2) suppY (un) ⊆ suppY (wn),
(b.3) ∥wn − un∥ < δn.

Proposition 3.13. Let DE be a set of blocks for E, and AE be an ad-
missible set for E.

(i) Let X be a DE-block subspace. If (ui)i ∈ (DX)ω is such that for every
n ∈ N the finite sequence (ui)

n
i=0 is in [AE ], then (ui)i ∈ AX .

(ii) If X = [xn]n and Y = [yn]n are DE-block subspaces such that (xn)n ∼
(yn)n, and T : X → Y is the linear map such that ∀n ∈ N (T (xn) = yn),
then T (AX) = AY .

(iii) If X is a DE-block subspace, then

[AX ] = [AE ] ∩
⋃
i≥1

Xi.
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Proof. (i) Let X and u = (ui)i ∈ (DX)ω be as in the hypothesis. For
each n ∈ N let vn = (vni )i ∈ AE be such that ui = vni for every 0 ≤ i ≤ n.
Without loss of generality, we can suppose each vn is in AX (using Definition
3.6(d)) we can find a sequence in AX which coincides with vn in the first
n coordinates). Thus, vnj = uj for every n ≥ j. This means that for each
j ∈ N we have (vnj ) → uj in DX as n → ∞. Therefore, vn → u in (DX)ω.
Proposition 3.12(i) yields u ∈ AX .

(ii) Let X = [xn]n and Y = [yn]n be DE-block subspaces of E, and
let T : X → Y be as in the hypothesis. Notice that by Definition 3.6(b),
(xn)n, (yn)n, (en)n ∈ AE .

Let (un)n ∈ AX with

un =
∑

i∈suppX(un)

λn
i xi

for each n ∈ N. We want to show that (T (un))n ∈ AY . Indeed, (T (un))n =
(un)n ∗X (yn)n, so by Definition 3.6(c), (T (un))n ∈ AE ∩ Y ω = AY .

On the other hand, let (vn)n ∈ AY with

vn =
∑

i∈suppY (vn)

αn
i yi

for every n ∈ N. For each n ∈ N set

un =
∑

i∈suppY (vn)

αn
i xi.

Clearly, T (un) = vn for every n and (un)n = (vn)n ∗Y (xn)n. By Definition
3.6(c), (un)n ∈ AE ∩Xω = AX .

(iii) Let X = [xn]n be a DE-block subspace. Since AE ∩ Xω = AX , it
follows that

[AX ] ⊆ [AE ] ∩
⋃
i≥1

Xi.

Suppose that (ui)
n
i=0 ∈ [AE ] ∩Xn+1 for some n ∈ N. By Definition 3.6(d),

there is (ui)
∞
i=n+1 ∈ Xω such that u = (u0, . . . , un, un+1, . . .) ∈ AX . Then

(ui)
n
i=0 ∈ [AX ].

3.3. Admissible families

Definition 3.14. We define ⊛ : P(ω)ω × P(ω)ω → P(ω)ω as follows:
given U = (Ui)i and V = (Vi)i in P(ω)ω, we define U ⊛ V = (Wi)i by
Wi =

⋃
j∈Ui

Vj for every i ∈ N.
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Definition 3.15.

(i) We denote by bb the set of sequences of successive nonempty finite sub-
sets of N, that is,

bb := {(Ui)i ∈ FINω : ∀i ∈ N (Ui < Ui+1)}.
(ii) We denote by db the set of sequences of nonempty finite subsets of N

whose elements are mutually disjoint:

db(N) := {(Ui)i ∈ FINω : ∀i ̸= j (Ui ∩ Uj = ∅)}.
Remark 3.16. (i) The operation ⊛ is internal on each of FINω, bb and db.
(ii) If U = (Ui)i and V = (Vi)i in P(ω)ω and U ⊛ V = (Wi)i, then⋃

i∈N
Wi ⊆

⋃
i∈N

Vi.

(iii) e := ({i})i is a neutral element for ⊛, that is, if U ∈ P(ω)ω, then
U ⊛ e = e⊛ U = U .

We shall consider FINω as a topological subspace of (2ω)ω, where (2ω)ω is
endowed with the product topology which results from considering 2ω as the
Cantor space with its topology. The following proposition follows directly
from the definition of the operations ∗X and ⊛.

Proposition 3.17. Let DE be a set of blocks for E. Let X be a DE-block
subspace of E. Suppose (un)n ∈ (DX)ω and (vn)n ∈ (DE)

ω. If (wn)n =
(un)n ∗X (vn)n, then

(2) (suppE(wn))n = (suppX(un))n ⊛ (suppE(vn))n.

Also, if (vn)n is a basic sequence, then for each n,

(3) supp[vi]i(wn) = suppX(un).

Definition 3.18. We say that a nonempty subset B ⊆ FINω is an
admissible family if the following conditions are satisfied:

(a) B is a closed subset of FINω.
(b) bb ⊆ B.
(c) For every (Ui)i, (Vi)i ∈ B and every (Wi)i ∈ FINω, we have

(4) (Wi)i ⊛ (Ui)i ∈ B ⇐⇒ (Wi)i ⊛ (Vi)i ∈ B.

(d) For every (Ui)i, (Vi)i ∈ B and n ∈ N, there is a subsequence ({ti})i of e
such that

(U0, U1, . . . , Un,W0,W1, . . .) ∈ B,

where (Wi)i = (ti)i ⊛ (Vi)i.

Remark 3.19. (i) If B is an admissible set, condition (b) implies that
the neutral element e belongs to B.
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(ii) It is easy to see that condition (c) in Definition 3.18 is equivalent to
the following: for every (Vi)i ∈ B and every (Wi)i ∈ FINω,

(5) (Wi)i ∈ B ⇐⇒ (Wi)i ⊛ (Vi)i ∈ B.

Proposition 3.20. The sets FINω, bb and db are admissible families.

Proof. It is clear that FINω is an admissible set. Both bb and db(N) sat-
isfy condition (a) of Definition 3.18 as a consequence of the topology we are
considering on FINω. Conditions (b)–(d) in Definition 3.18 are consequences
of the properties of ⊛ and the fact that sequences of the type ({m+ i})i are
in bb, and therefore in db(N).

Proposition 3.21. The set

per := {(Ui)i ∈ FINω : ∃π a permutation of N, ∀i ∈ N (Uπ(i) < Uπ(i+1))}
is not an admissible family.

Proof. Consider

U := ({0, 1}, {2}, {3}, . . .) and V := ({0}, {2}, {1}, {3}, {4}, . . .),
both in per(N). Notice that U = U ⊛ e and V belong to per(N), but

U ⊛ V = ({0, 2}, {1}, {3}, {4}, . . .)
does not. Thus, per(N) fails to satisfy condition (c) in Definition 3.18.

The next definition establishes that an admissible family determines an
admissible set for E.

Proposition 3.22. Let B be an admissible family. Let DE be a set of
blocks for E. Define

(6) B(DE) = {(ui)i ∈ (DE)
ω : (suppE(ui))i ∈ B}.

Then B(DE) is an admissible set for E.

Proof. Set A := B(DE). Let us check each condition of Definition 3.6.
(a) Suppose v := (vi)i ∈ A ⊆ (DE)

ω and let (ui)i ∈ Aω converge to v. If
for each i, ui = (uij)j , then uij → vj in (DE)

ω as i → ∞, for every j ∈ N.
Thus, for each j ∈ N there is Nj > 0 such that uij = vj (in particular
suppE(u

i
j) = suppE(vj)) for every i > Nj . This means that for each j ∈ N,

(7) suppE(u
i
j) −−−−→

i→∞
suppE(vj) in FIN.

For each i ∈ N, ui ∈ A ⇒ Ui := (suppE(u
i
j))j ∈ B. Note that (7) shows that

(Ui)i converges to (suppE(vj))j ∈ FINω. Since B is closed in FINω, we have
(suppE(vj))j ∈ B. By the definition of A, this means that v ∈ A.

(b) Let (yn)n be a sequence of successive blocks, that is, we have
∀n ∈ N (yn ∈ D & yn < yn+1). Then (suppE(yi))i ∈ bb(N). By Definition
3.18(b), bb(N) ⊆ B, so (yn)n ∈ A.
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(c) Let (yn)n ∈ A and X = [xn]n be a DE-block subspace. Suppose
(un)n ∈ (DX)ω, where for each n ∈ N,

un =
∑

i∈suppX(un)

λn
i xi.

We want to see that

(8) (un)n ∈ A ⇐⇒ (vn)n := (un)n ∗X (yn)n ∈ A.

Observe that (un)n ∈ (DX)ω and, due to Proposition 3.11(iv), we know that
(un)n ∗X (yn)n ∈ (DE)

ω.
By Proposition 3.17,

(9) (suppE(vn))n = (suppX(un))n ⊛ (suppE(yn))n.

As a consequence of this equality, the definition of A and Definition 3.18(c),
we obtain

(un)n ∈ A ⇐⇒ (suppE(un))n ∈ B

⇐⇒ (suppX(un))n ⊛ (suppE(xn))n ∈ B

⇐⇒ (suppX(un))n ⊛ (suppE(yn))n ∈ B

⇐⇒ (suppE(vn))n ∈ B

⇐⇒ (vn)n ∈ A.

(d) Let (yn)n a DE-block sequence and Y = [yn]n. By using item (b), we
have (suppE(yn))n ∈ B. Let (ui)i ∈ A, so (suppE(ui))i ∈ B. By Definition
3.18(d) there is ({ai})i ∈ bb(N) such that

(10) (suppE(u0), suppE(u1), . . . , suppE(un), B0, B1, . . .) ∈ B,

where (Bi)i = ({ai})i ⊛ (suppE(yi))i. For each i ∈ N, let zi = yai . It is clear
that (zi)i ∈ (DY )

ω and suppE(zi) = Bi for every i ∈ N. Then, by (10),

(u0, . . . , un, z0, z1, . . .) ∈ A.

Under the hypothesis of Proposition 3.22, we shall refer to the resulting
set B(DE) as the admissible set for E determined by the admissible family B.

Proposition 3.23. Let B be an admissible family. Let DE be a set of
blocks for E. Let X be a DE-block subspace of E. If AE = B(DE), then
AX = B(DX).

Proof. This follows from the facts that AX = AE ∩Xω, DX = DE ∩X,
and for every (un)n ∈ (DX)ω,

(11) (suppE(un))n ∈ B ⇐⇒ (suppX(un))n ∈ B.

And this last fact follows from Proposition 3.17.

From Proposition 3.22 we obtain immediately:



16 A. C. Cáceres-Rigo and V. Ferenczi

Proposition 3.24. Let DE be a set of blocks for E. The following sets
are admissible for E:

(i) The set (DE)
ω of infinite sequences of DE-blocks.

(ii) The set bb(DE) of DE-block sequences of E.
(iii) The set db(DE) of infinite sequences of pairwise disjointly supported

DE-blocks.

4. Embeddings and minimality. In this section we shall use the pre-
vious sets of blocks and admissible sets to code different kinds of embeddings.
Doing this we shall be able to associate to each embedding a notion of tight-
ness and of minimality, which in some cases coincide with notions studied
previously, for example in [9]. To simplify the notations we shall fix a Banach
space E with a normalized basis (en)n.

Definition 4.1. Let DE be a set of blocks for E and AE an admissible
set for E. Suppose that X is a DE-block subspace. Let Y be a Banach space
with a normalized basis (yn)n and suppose K ≥ 1.

(i) We shall say that Y AX -embeds in X with constant K (in symbols

Y
A
↪→K X) if there is some sequence (un)n ∈ AX of blocks such that

(un)n ∼K (yn)n.

(ii) We say that Y AX -embeds in X (in symbols Y
A
↪→ X) if Y

A
↪→K X for

some constant K ≥ 1.

A number of natural properties follow directly from Definition 4.1. For
example, the definition guarantees that if Y is a DX -block subspace of X

and Z
A
↪→ Y , then Z

A
↪→ X as well.

Definition 4.2. Let E be a Banach space with a normalized basis (en)n.
Let DE be a set of blocks for E, and AE an admissible set for E. Suppose
that X is a DE-block subspace. We say that X is AE-minimal if X

A
↪→ Y

for every DX -block subspace Y .

The following proposition establishes that the property of being AE-
minimal is hereditary under taking DE-subspaces.

Proposition 4.3. Let E be a Banach space with a normalized basis
(en)n. Let DE be a set of blocks for E, and AE be an admissible set for E.
Suppose that X is a DE-block subspace which is AE-minimal. If Y is a DX-
block subspace of X, then Y is AE-minimal.

Proof. Let Y = [yn]n be a DX -block subspace of X. Let Z = [zn]n be
a DY -block subspace of Y (so it is also a DX -block subspace of (xn)n). We

want to see that Y
A
↪→ Z.



Tight-minimal dichotomies in Banach spaces 17

By the AE-minimality of X, we have X
A
↪→ Z, thus there is (un)n ∈

AZ ⊆ AX such that (xn)n ∼ (un)n. By Proposition 3.12(iii) we have

(yn)n ∈ AX =⇒ (wn)n := (yn)n ∗X (un)n ∈ AX ∩ Z = AZ .

Thus, (wn)n is a block basis of the basic sequence (un)n of DZ-blocks (it
is not necessarily a block sequence of X because (un)n need not be a block
sequence). Since (un)n ∼ (xn)n and each wn has the same scalars in its
expansion as yn, we have (yn)n ∼ (wn)n. So, Y

A
↪→ Z.

Remark 4.4. In the context of Proposition 3.24, for a fixed set DE of
blocks, we have

bb(DE)-minimality =⇒ db(DE)-minimality =⇒ (DE)
ω-minimality.

5. Interpretations for the set of blocks. Depending on the set of
blocks DE ⊆ DE we have chosen for the Banach space E, it is possible
to give different interpretations for the admissible set considered. In this
subsection we shall explore various sets of blocks and analyze the admissible
sets obtained in Proposition 3.24 in each context.

5.1. Blocks as nonzero F-linear combinations. We start with the
biggest set of blocks possible. Consider the set of blocks DE , that is, the set
of all nonzero finitely supported FE-linear combinations of the basis (en)n.
This set of blocks coincides with the blocks used by A. Pelczar [16] and also
by V. Ferenczi and Ch. Rosendal [10].

In this context, a DE-block sequence is a block basis whose elements are
nonzero finitely supported FE-linear combinations and

bbD(E) = {(xn)n ∈ (DE)
ω : ∀n ∈ N (xn < xn+1 & ∥xn∥ = 1)}.

Remark 5.1. Any normalized finitely supported basic sequence (yn)n in
E = [en]n is equivalent to (zn)n ∈ (DE)

ω with suppE(zn) = suppE(yn) for
every n. This is a consequence of the density of DE in E and the principle
of small perturbations.

The proof of the following proposition is an adaptation of the beginning
of the proof of [10, Lemma 3.7].

Proposition 5.2. Suppose that we are considering DE the set of blocks
for E and that AE is the admissible set for E determined by an admissible
family B, i.e., AE = B(DE). Then (DE ,AE) is an admissible system of
blocks for E.

Proof. Let X = [xn]n be a DE-block subspace, and (δn)n with 0 < δn < 1
and K ≥ 1. We are going to construct for each n ∈ N sets Dn of not
necessarily normalized DX -blocks with the following properties:
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(1) For each d ∈ [N]<∞, there are a finite number of vectors u ∈ Dn such
that suppX(u) = d.

(2) If w is a DX -block vector with norm in [1/K,K], then there is some
u ∈ Dn with the same support in X as w such that ∥w − u∥ < δn.

Before the proof of the existence of such sets Dn, let us show why this
is sufficient: Let (vi)i ∈ AX satisfy 1/K ≤ ∥vi∥ ≤ K for every i ∈ N. Since
(vi)i ∈ AX and AE is the admissible set for E determined by an admissible
family B, it follows that

(12) (suppX(vi))i ∈ B.

Using (2), for each i there is wi ∈ Di with ∥wi − vi∥ < δi and suppX(wi) =
suppX(vi), so by (12) (suppX(wi))i ∈ B, which means that (wi)i ∈ AX .
Therefore, (DE ,AE) is an admissible system of blocks for E.

Let us prove that such sets Dn exist. Set n ∈ N. We proceed by induction.
If d ∈ [N]1, then since the closed K-ball of [xi]i∈d is totally bounded and
DE is dense in E, it is possible to find a finite Ud = {ud1, . . . , udm(d)} ⊂
BK([xi]i∈d) ∩ DE such that if w ∈ [xi]i∈d and 1/K ≤ ∥w∥ ≤ K, then there
is some j ≤ m(d) with ∥w − udj∥ < δn.

Suppose we have found for every d ∈ [N]<m such vectors Ud = {ud1, . . . ,
udm(d)} ⊂ BK([xi]i∈d)∩DE with the desired property. Let d ∈ [N]m. Then as
the closed K-ball in

[xi]i∈d \
⋃
d′⊂d

[xi]i∈d′

is again totally bounded and DE is dense in E, there is Ud = {ud1, . . . , udm(d)}
⊂ B([xi]i∈d)∩DE such that if w ∈ [xi]i∈d, 1/K ≤ ∥w∥ ≤ K and supp(w) = d,
then there is some j ≤ m(d) such that ∥w − udj∥ < δn. Finally, set

Dn =
⋃

d∈[N]<∞

Ud.

As an immediate consequence of Propositions 3.24 and 5.2, we deduce:

Corollary 5.3. The pairs (DE ,Dω
E), (DE , db(DE) and (DE , bb(DE) are

admissible systems of blocks for E.

Notice that it is a fact frequently used, for example in [16, 10], that
after a perturbation argument, a (DE)

ω-embedding is “equivalent” to the
usual isomorphic embedding, i.e. if X = [xn]n is a DE-block subspace, then
Y

A
↪→ X ⇔ Y ↪→ X, when AE = (DE)

ω. Furthermore, if Y ↪→K X for some
K ≥ 1, then for any ε > 0 we have Y

A
↪→K+ε X.

As proved in Proposition 3.21, the family per is not admissible for FINω.
So, Proposition 3.22 cannot be used to determine whether the set of se-
quences of blocks that are a permutation of a block basis is an admissible
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set for the Banach space E. In the next proposition we actually prove that
such a set is not admissible for E.

Proposition 5.4. The set

per(DE) := {(xn)n ∈ (DE)
ω : (suppE(xn))n ∈ per}

is not admissible for E.

Proof. Let

(zn)n = (e0, e2, e1, e3, e4, . . .) and (wn)n = (e0 + e1, e2, e3, e4, . . .)

Both (zn)n and (wn)n are permutations of DE-block sequences but (wn)n ∗E
(zn)n = (e0 + e2, e1, e3, . . .) is not. So, condition (c) in Definition 3.6 is not
satisfied.

5.2. Blocks as vectors of the basis. The smallest set of blocks we
can consider is the set for which the blocks are exclusively the vectors of
the basis BE . Notice that in this case all blocks are normalized. In this
context a BE-block sequence is a subsequence of the basis, and a sequence
of disjointly supported blocks is a sequence of different elements of the basis
(not necessarily in increasing order).

Proposition 5.5. Let B be an admissible family. Then (BE ,B(BE)) is
an admissible system of blocks for E.

Proof. This follows directly from the fact that for each n ∈ N only one
BE-block has support {n}. In this case, the conditions asked in Definition 3.9
are trivial. What we are saying is that for the case of embedding, minimality
or tightness by sequences, it is not necessary to perturb the vectors along
the proofs.

As a corollary, using the admissible families bb and db (Proposition 3.24),
we obtain:

Corollary 5.6. The pairs (BE , bb(BE)) and (BE , bb(BE)) are admis-
sible system of blocks for E, corresponding to the admissible sets of subse-
quences of (en)n and of pairwise distinct elements of (en)n, respectively.

Remark 5.7. Let DE be a set of blocks for the Banach space E, and
AE be an admissible set determined by an admissible family. Notice that
Proposition 5.5 is true in the case where for each d ∈ [N]<∞ such that there
is w ∈ DE with suppE(w) = d, the set {u ∈ DE : d = suppE(u)} is finite.
Under this hypothesis a pair (DE ,AE) is an admissible system of blocks
for E.

Definition 5.8. Let Y be a Banach space with a normalized basis (yn)n.
We write (yn)n

s
↪→ (en)n to denote that (yn)n is equivalent to a subsequence

of (en)n.
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Note that (yn)n
s
↪→ (en)n if and only if Y

A
↪→ E where the set of blocks is

BE and AE = bb(BE) is the admissible set for E. Therefore this definition
fits into the general context of our paper.

5.3. Blocks as signed elements of the basis. Additionally, we shall
study the case of the set of blocks B±

E for E, where we recall that x ∈ B±
E if

and only if x = εek for some k ∈ N and some sign ε ∈ {−1, 1}.
Since for each n ∈ N only two vectors en and −en in BE have {n} as

support, from Remark 5.7 we have immediately:

Proposition 5.9. Let B be an admissible family. Then (B±
E ,B(B±

E)) is
an admissible system of blocks for E.

Definition 5.10. We say that (xn)n is a signed subsequence of (en)n if

(xn)n ∈ bb(B±
E) :=

{
(εieni)i : (ni)i ∈ Nω is increasing & (εi)i ∈ {−1, 1}ω

}
.

The sequence (xn)n is a signed permutation of a subsequence of (en)n if

(xn)n ∈ db(B±
E) :=

{
(εieni)i : (ni)i ∈ Nω are mutually distinct

& (εi)i ∈ {−1, 1}ω
}
.

From Propositions 3.22 and 5.9, we have:

Corollary 5.11. The pairs (B±
E , bb(B

±
E)) and (B±

E , db(B
±
E)) are admis-

sible systems of blocks for E, associated to the admissible sets of signed sub-
sequences of (en)n and signed permutations of subsequences of (en)n, respec-
tively.

6. Summary of types of minimality. We can summarize the inter-
pretation of each embedding as follows: Let Y be a Banach space with nor-
malized basis (yn)n. Suppose that we are considering the set of blocks DE

to be BE , B±
E or DE , and AE the admissible set determined by any of the

admissible families FINω, bb or db. To say that Y
A
↪→ E means in each case

that the basis (yn)n is equivalent to a sequence (xn)n in Eω which satisfies
the respective condition we have represented in Table 1.

Notice that since (yn)n is a basic sequence, in the trivial cases when
the admissible family is FINω, (xn)n must also be basic, so in particular
xn ̸= xm for n ̸= m. For that reason, the first and third rows of the BE and
B±
E columns are the same.

We can summarize the notions of AE-minimality which follow from each
non-trivial AE-embedding notion given in Table 1. For this we first give a
few simple definitions.

In [8] a basis (en)n for a Banach space E was defined to be block equiva-
lence minimal if any block sequence has a further block sequence equivalent
to (en)n.
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Table 1. A-embeddings for an admissible set determined by an admissible family B

B

DE BE B±
E DE

FINω (xn)n is a permutation of a
subsequence of (en)n

(xn)n is a permuta-
tion of a signed sub-
sequence

(xn)n is a sequence
of finitely supported
vectors of DE

bb
(xn)n is a subsequence of
(en)n

(xn)n is a signed sub-
sequence of (en)n

(xn)n is a DE-block
sequence

db
(xn)n is a permutation of a
subsequence of (en)n

(xn)n is a permuta-
tion of a signed sub-
sequence

(xn)n is a sequence
of disjointly finitely
supported vectors of
DE

Recall that two basic sequences (xn)n and (yn)n are said to be permuta-
tively equivalent if (xn)n ∼ (yσ(n))n for some permutation σ of the integers.
Similarly:

Definition 6.1. Let (xn)n and (yn)n be two basic sequences. We say
that (xn)n is signed equivalent to (yn)n if there is some (ϵn)n ∈ {−1, 1}ω such
that (xn)n ∼ (ϵnyn)n. We say that (xn)n is signed permutatively equivalent to
(yn)n if it is permutatively equivalent to (ϵnyn)n for some (ϵn)n ∈ {−1, 1}ω.

Recall that a basic sequence is spreading when it is equivalent to all its
subsequences. Similarly:

Definition 6.2. We say that the basic sequence (en)n is signed (resp.
permutatively, signed permutatively) spreading if (en)n is signed equivalent
(resp. permutatively equivalent, signed permutatively equivalent) to all its
subsequences.

In [8] it was proved that, as a consequence of the Galvin–Prikry Theo-
rem, if a basis (en)n has the property that every subsequence has a further
subsequence equivalent to (en)n, then (en)n is spreading. Adapting the proof
of this fact, we shall use Silver’s Theorem to prove the natural form of min-
imalities in the specific case of subsequences. All notions of minimality are
summarized in the next proposition.

Proposition 6.3. Let E be a Banach space with a normalized basis
(en)n.

• Consider the set of blocks BE for E, and X = [xn]n where (xn)n is a
subsequence of (en)n. We have:

(i) X is bb(BE)-minimal if and only if (xn)n is spreading.
(ii) X is db(BE)-minimal if and only if (xn)n is permutatively spreading.

• Consider the set of blocks B±
E for E, and X = [xn]n where is (xn)n is a

signed subsequence of (en)n. We have:
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(iii) X is bb(B±
E)-minimal if and only if (xn)n is signed spreading.

(iv) X is db(B±
E)-minimal if and only if (xn)n is signed permutatively

spreading.

• Consider the set of blocks DE for E, and X = [xn]n a DE-block subspace
of E. We have:

(v) X is bb(DE)-minimal if and only if (xn)n is block equivalence mini-
mal.

(vi) X is db(DE)-minimal if and only if for every DX-block sequence (yn)n
of (xn)n there is a sequence (zn)n of disjointly supported blocks of
Y = [yn]n such that (zn)n ∼ (xn)n.

(vii) X is (DE)
ω-minimal if and only if X is minimal.

Proof. (i) First, suppose that the set of blocks for E is BE , and X =
[xn]n is a BE-block subspace of E, i.e. (xn)n is a subsequence of (en)n. By
Definition 4.2, X is bbB(E)-minimal if and only if for every subsequence
(yn)n of (xn)n, there is a further subsequence (ynk

)k equivalent to (xn)n,
which implies that the sequence (xn)n is spreading (see [9]).

Now, consider the set of blocks DE for E, and suppose that X = [xn]n is
a DE-block subspace of E.

(vii) As noticed in Section 5.1, Y
A
↪→ X ⇔ Y ↪→ X when AE = (DE)

ω.
So, the conclusion is clear.

(v) X is bb(DE)-minimal if and only if for every D(X)-block sequence
there is a further D(X)-block sequence equivalent to (xn)n. Therefore, (xn)n
is a block equivalence minimal basis.

(vi) simply follows from Definition 4.2.
It remains to prove (ii)–(iv), which are consequences of the facts that if

every subsequence of a basis (en)n admits a subsequence which is (ii) permuta-
tively equivalent, or (iii) signed equivalent, or (iv) signed permutatively equiv-
alent to (en)n, then (en) must be respectively (ii) permutatively equivalent,
(iii) signed equivalent, or (iv) signed permutatively equivalent to all its subse-
quences. We shall only prove (iv), leaving the very similar and easier proofs of
(ii) and (iii) as exercises. We follow the proof of a similar lemma from [8], with
the difference that we shall use the fact that analytic sets in [N]∞ are Ramsey.

Let C ⊆ [N]∞ be such that

{nk : k ∈ N} ∈ C ⇐⇒ (enk
)k is signed permutatively equivalent to (ek)k.

Consider the Polish space [N]∞ × {−1, 1}ω × Bij(ω), where {−1, 1}ω is
equipped with the usual topology, and the Polish topology on the set Bij(ω)
of bijections of ω is induced by its inclusion in ωω. Then C can be expressed
as follows:
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C =
{
{nk : k ∈ N} ∈ [N]∞ : ∃(δk)k ∈ {−1, 1}ω, ∃σ ∈ Bij(ω)

((δkenk
)k ∼ (eσ(k))k)

}
=

{
{nk : k ∈ N} ∈ [N]∞ : ∃(δk)k ∈ {−1, 1}ω, ∃σ ∈ Bij(ω)

({nk : k ∈ N}, (δk)k, σ) ∈ B
}

= proj[N]∞(B),
where

B =
⋃
C≥1

⋂
k≥0

{
({ni : i ∈ N}, (δi)i, σ) ∈ [N]∞ × {−1, 1}ω × Bij(ω)

((δieni)
k
i=0 ∼C (eσ(i))

k
i=0)

}
.

Since B a countable union of countable intersections of open sets in [N]∞ ×
{−1, 1}ω×Bij(ω), it is a Borel subset of [N]∞×{−1, 1}ω×Bij(ω). Therefore,
C is analytic in [N]∞. By Silver’s Theorem, there is some H ∈ [N]∞ such that
either [H]∞ ⊆ C or [H]∞ ⊆ [N]∞ \ C.

If [H]∞ ⊆ [N]∞ \ C then the sequence (en)n∈H has the property that
none of its subsequences is signed permutatively equivalent to (en)n, which
is a contradiction. On the contrary, if [H]∞ ⊆ C, then (en)n∈H is signed
permutatively equivalent to all its subsequences, and so is (en)n because it
is signed permutatively equivalent to (en)n∈H .

Let us end this section with a few obvious implications:

(en)n is spreading =⇒ (en)n is signed spreadingw� w�
(en)n is permutatively spreading =⇒ (en)n is signed permutatively spreading

and also
(en)n is block equivalence minimal =⇒ (en)n is db(DE)-minimal =⇒ E is minimal.

The canonical basis of c0 and ℓp, with 1 ≤ p < ∞, is, in each case, block
equivalence minimal. In [1] it was proved that the canonical basis of the
Schlumprecht space S is block equivalence minimal. In [6] it was observed
that T∗ has no “block minimal” block subspaces, and so in particular does
not have block equivalence minimal block subspaces. It may actually be seen
that T∗ contains no block subspace with (vi). Here is a sketch of proof: T∗

is “strongly asymptotically ℓ∞” (see [4, 5]), which means that n normalized
disjointly supported vectors supported far enough on the basis are equivalent
to the natural basis of ℓn∞; on the other hand, a standard diagonalization
argument (see e.g. Lemma 8.1) shows that a block subspace with (vi) must
have a further block subspace (xn)n with the uniform version of (vi), i.e. in
any block sequence (yn)n, the existence of disjointly supported blocks K-
equivalent to (xn) for some fixed K; the conjunction of the two implies that
(xn)n must be K-equivalent to the unit basis of c0, contradicting the fact that



24 A. C. Cáceres-Rigo and V. Ferenczi

T∗ does not contain a copy of c0. In conclusion, T∗ satisfies (vii) and does
not satisfy the minimality conditions of (v) (or (vi)) in Proposition 6.3.We do
not know of spaces satisfying the condition of (vi) but not of (v).

7. Results on A-tightness

7.1. Notions of tightness

Definition 7.1. Let E be a Banach space with a normalized basis (en)n.
Let DE be a set of blocks for E and AE an admissible set for E. Suppose
that X = [xn]n is a DE-block subspace. We say that a Banach space Y with
Schauder basis is AE-tight in the basis (xn)n if there is a sequence (Ii)i of
successive intervals such that for every A ∈ [N]∞,

(13) Y
A
X↪→

[
xn : n /∈

⋃
i∈A

Ii

]
.

Definition 7.2. Let E be a Banach space with a normalized basis (en)n.
Let DE be a set of blocks for E, and AE an admissible set for E. Suppose
that X = [xn]n is a DE-block subspace. The basis (xn)n is AE-tight if every
DX -block subspace Y of X is AE-tight in the basis (xn)n. The DE-block
subspace X is AE-tight if the basis (xn)n is AE-tight.

Remark 7.3. Let E, DE and AE be as in Definition 7.2. Then E is
AE-tight if and only if every DE-block subspace X is AE-tight in (en)n.

The following result extends Proposition 3.1 of Ferenczi–Godefroy [7] for
the original notion of tightness. To prove it we use [7, Corollary 2.4] where
the following characterization of meager and comeager subsets of the Cantor
space is given. Let B be a subset of 2ω closed under supersets.

(i) B is meager if and only if there exists a sequence (Ii)i of successive
intervals in N such that

u ∈ B =⇒ {n ∈ ω : supp(u) ∩ In = ∅} is finite.

(ii) B is comeager if and only if there exists a sequence (Ii)i of successive
intervals in N such that

{n ∈ ω : In ⊆ supp(u)} is infinite =⇒ u ∈ B.

Proposition 7.4. Let E be a Banach space with a normalized basis
(en)n. Let DE be a set of blocks for E, and AE an admissible set for E.
Suppose that X = [xn]n is a DE-block subspace and Y is a DX-block subspace
of X. Then Y is AX-tight in the basis (xn)n if and only if the set

(14) EA
Y,X := {u ∈ 2ω : Y

A
↪→ [xn : n ∈ supp(u)]}

is meager in 2ω.
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Proof. If Y is AE-tight in (xn)n, then there are intervals I0 < I1 < · · ·
such that for any A ∈ [N]∞,

(15) Y
A
X↪→

[
xn : n /∈

⋃
i∈A

Ii

]
.

Let u ∈ EA
Y,X (clearly supp(u) ∈ [N]∞) and suppose for contradiction that

Au = {i ∈ N : Ii ∩ supp(u) = ∅} is infinite. We have

supp(u) ⊆ N \
⋃
i∈Au

Ii.

By the observation after Definition 4.1, we obtain

Y
A
↪→ [xn : n ∈ supp(u)] ⇒ Y

A
↪→

[
xn : n /∈

⋃
i∈Au

Ii

]
,

contradicting (15). Therefore Au is finite and, by [7, Corollary 2.4], EA
Y is

meager in 2ω.
For the converse, suppose that EA

Y is meager in 2ω. By [7, Corollary 2.4],
there are subsets I0 < I1 < · · · such that if u ∈ EA

Y , then {i ∈ N : Ii ∩
supp(u) = ∅} is finite. If there is A ∈ [N]∞ such that Y

A
↪→ [xn : n /∈

⋃
i∈A Ii],

then take v = N\
⋃

i∈A Ii. Clearly χv ∈ EA
Y and {i ∈ N : Ii∩v = ∅} is infinite,

which contradicts EA
Y being meager in 2ω.

The following lemma uses the same scheme as in [7] to prove that the set
EY = {u ⊆ ω : Y ↪→ [xn : n ∈ u]} is meager or comeager.

Lemma 7.5. Let E be a Banach space with a normalized basis (en)n. Let
DE be a set of blocks for E, and AE an admissible set for E. Suppose that
X = [xn]n is a DE-block subspace and Y is a DX-block subspace of X. Then
EA

Y,X defined in (14) is either meager or comeager in 2ω.

Proof. As stated in [7, Example 2.2], the relation E′
0 defined on P(ω) by

uE′
0v ⇐⇒ ∃n ≥ 0

(
(u∩[n,∞) = v∩[n,∞)) & (|u∩[0, n−1]| = |v∩[0, n−1]|)

)
is an equivalence relation and its equivalence classes are the orbits of the
group G′

0 of permutations of N with finite support. Once we see P(ω) as the
Cantor space, it is Polish and clearly for any nonempty open subsets U and
V of P(ω), there is g ∈ G′

0 such that g(U) ∩ V ̸= ∅. We want to use the
first topological 0-1 law (Theorem 2.2) to conclude that EA

Y,X is meager or
comeager in 2ω, or more specifically we have to prove:

(i) EA
Y,X has the Baire property.

(ii) EA
Y,X is G′

0-invariant.

To prove (i) we shall see that EA
Y,X is an analytic subset of 2ω (see [13,

Theorem 21.6]). Notice that we can write EA
Y,X as the projection on the first
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coordinate of the set B :=
⋃

k∈ω Bk, where for each k ∈ ω,

Bk :=
{
(u, (wn)n) ∈ 2ω × (DX)ω :

(yn)n ∼k (wn)n & (wn)n ∈ [xi : i ∈ u] & (wn)n ∈ AX

}
.

Each Bk is Borel in 2ω × (DX)ω since the relation of two sequences being
equivalent is closed and AX is a closed subset of (DX)ω.

In order to prove (ii) we shall see that EA
Y,X is E′

0-saturated (this is
sufficient because the orbits of the group G′

0 coincide with the equivalence
classes of the relation E′

0), that is,

EA
Y,X = (EA

Y,X)E
′
0 :=

{
v ⊆ ω : ∃u ∈ EA

Y,X (uE′
0v)

}
.

Clearly, EA
Y,X ⊆ (EA

Y,X)E
′
0 . Take v ∈ EA

Y,X
E′

0 and let u ∈ EA
Y,X be such that

uE′
0v. Notice that there is M such that u and v only differ on M elements

and (xn)n∈u and (xn)n∈u are DX -block sequences. So, by Proposition 2.1,
there is K ≥ 1 such that (xn)n∈u ∼K (xn)n∈v. Let T be a K-isomorphism
from Xu := [xn]n∈u to Xv := [xn]n∈v. From Proposition 3.13(ii) we know
that T [AXu ] = AXv . Therefore,

u ∈ EA
Y,X =⇒ ∃(zn)n ∈ AXu((yn)n ∼ (zn)n)

=⇒ (yn)n ∼ (T (zn))n and (T (zn))n ∈ AXv

=⇒ v ∈ EA
Y,X .

Proposition 7.6. Let E be a Banach space with a normalized basis
(en)n. Let DE be a set of blocks for E, and AE an admissible set for E.
Suppose that X = [xn]n is a DE-block subspace, Y is a DX-block subspace of
X, and Z is a DY -block subspace. If Z is AE-tight in X, then Z is AE-tight
in Y .

Proof. Set

EA
Z,X := {u ⊆ ω : Z

A
↪→ [xn : n∈ u]}, EA

Z,Y := {u ⊆ ω : Z
A
↪→ [yn : n∈ u]}.

By hypothesis, EA
Z,X is meager in P(ω) after identification of P(ω) with 2ω.

Using Lemma 7.5, EA
Z,Y is meager or comeager. If it were meager, by Proposi-

tion 7.4 the demonstration ends. Suppose that EA
Z,Y is comeager in P(ω). By

[7, Corollary 2.4], there are sequences (Ii)i and (Ji)i of successive intervals
such that

u ∈ EA
Z,X =⇒ {n ∈ ω : u ∩ In = ∅} is finite,(16)

{n ∈ ω : Jn ⊆ v} is infinite =⇒ v ∈ EA
Z,Y .(17)

Let A ∈ [N]∞ be such that{
k ∈ N :

(⋃
n∈A

⋃
i∈Jn

suppX(yi)
)
∩ Ik = ∅

}
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is infinite. Such an A exists because each Ii and each Ji is finite and each yi
is finitely supported. Let v =

⋃
n∈A Jn. Then by (17), we have v ∈ EA

Z,Y . If
u =

⋃
k∈v suppX(yk), then

Z
A
↪→ [yn : n ∈ v] =⇒ Z

A
↪→ [xn : n ∈ u].

This implication follows from the observation after Definition 4.1. Therefore,
u ∈ EA

Z,X but it is disjoint from infinitely many intervals Ik, contradict-
ing (16).

Corollary 7.7. Let E be a Banach space with a normalized basis (en)n.
Let DE be a set of blocks for E, and AE an admissible set for E. Suppose that
X = [xn]n is an AE-tight DE-block subspace. Then any DE-block sequence
(yn)n of (xn)n is an A-tight basis.

Proof. Let Z be a DY -block subspace of Y . Since Z is a DX -block sub-
space of X and Z is AE-tight in X, by Proposition 7.6, Z is AE-tight in Y .

Theorem 7.8. Let E be a Banach space with a normalized basis (en)n.
Let DE be a set of blocks for E, and AE an admissible set for E. If X = [xn]n
is an AE-tight DE-block subspace, then it contains no AE-minimal DX-block
subspaces.

Proof. Towards a contradiction, suppose Y = [yn]n is an AE-minimal
DX -block subspace of X. Let Z = [zn]n be a DY -block subspace of Y , so
Z is AE-tight in X. By Proposition 7.6, Z is AE-tight in Y , so

EA
Z,Y = {u ⊆ ω : Z

A
↪→ [yn : n ∈ u]}

must be meager in P(ω).
We shall see that EA

Z,Y coincides with the set of all characteristic func-
tions of infinite subsets of N, which is comeager, leading to a contradiction.
Suppose v ⊆ ω is infinite. Then by the AE-minimality of Y ,

Y
A
↪→ [yn : n ∈ v],

so there is (un)n ∈ AE ∩ [yn : n ∈ v] such that (yn)n ∼ (un)n.
We know that (yn)n, (un)n, (zn)n ∈ AY and by Proposition 3.10(iii) we

have

(zn)n ∗Y (yn)n = (zn)n ∈ AY =⇒ (wn)n := (zn)n ∗Y (un)n ∈ AY .

Thus, (wn)n is a DY -block sequence of the basic sequence (un)n (it is not
necessarily a block sequence of X because (un)n is not necessarily a block
sequence). Also, each wn has the same scalars in its expansion as zn. Since
(un)n ∼ (yn)n, we have (zn)n ∼ (wn)n and also we already know that

(wn)n ∈ AE ∩ [yn : n ∈ v]. So, Z
A
↪→ [yn : n ∈ v], which means that v ∈ EA

Z,Y .
We have just proved that [N]∞ is contained in EA

Z,Y , so they coincide.
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From Definition 7.1 we obtain the following observation.

Proposition 7.9. Let E be a Banach space with a normalized basis
(en)n. Consider DE as the set of blocks for E and set AE = (DE)

ω.
A DE-block basis (xn)n is AX-tight if and only if (xn)n is tight (in the usual
sense).

In particular:

Corollary 7.10 ([10, Proposition 3.3]). If E is a Banach space with a
normalized tight basis (en)n, then E has no minimal subspaces.

As an exercise, the reader may write out the other forms of tightness
associated to the set DE of blocks BE , B±

E or DE respectively, and to the
choices bb(DE), db(DE) and Dω

E . All these forms of tightness will be made
explicit in the final section when we list all dichotomies between minimality
and tightness associated to each case.

8. Games for tightness. In this section the objective is to represent
forms of tightness in terms of certain infinite games, as in [10]. Let (xn)n and
(yn)n be two sequences of successive and finitely supported vectors of E. Let
Y = [yn]n and X = [xn]n. We write Y ≤∗ X if there is some N ≥ 1 such that
yn ∈ X, for every n ≥ N . First we need two preliminary lemmas. Lemma
8.1 is a modification of [10, Lemma 2.2] and Lemma 8.2 is a modification of
[15, Lemma 2.1]. In both original cases the result was proved for usual block
subspaces. We extend those results to DE-block subspaces.

Proposition 8.1. Let E be a Banach space and DE be a set of blocks
for E. Suppose X = [x0n]n is a DE-block subspace and [x1n]n ≥ [x2n]n ≥ · · · is
a decreasing sequence of DX-block subspaces. Then there exists a DX-block
sequence (yn)n such that (yn)n is

√
K-equivalent to a DX-block sequence of

[xKn ]n for every K ≥ 1.

Proof. Let C be the basis constant of (x0n)n. For M > 0, consider the
constant c(M,C) that exists by Proposition 2.1 applied to X.

For each K ≥ 1, let MK be the greatest non-negative integer such that

(18) c(MK , C) ≤
√
K.

Using a diagonal argument, we can find an increasing sequence (li)i of natural
numbers and a DX -block sequence (yn)n with the property that for each K
there is some i ≤ MK such that xKi−1 < yi and (ym)m≥i is a DX -block
sequence of [xKn : n ≥ i]. Therefore, (yn)n differs in i − 1 terms from the
block sequence (xK0 , xK1 , . . . , xKi−1, yi, yi+1, . . .). Therefore, such sequences are
c(MK , C)-equivalent and by (18) they are

√
K-equivalent.
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Lemma 8.2. Let E be a Banach space and DE a set of blocks for E.
Suppose that X is a DE-block subspace. Let N be a countable set and let
µ : bbD(X) → P(N) satisfy one of the following monotonicity conditions:

V ≤∗ W =⇒ µ(V ) ⊆ µ(W )

or
V ≤∗ W =⇒ µ(V ) ⊇ µ(W ).

Then there exists a “stabilizing” DX-block subspace V0 ≤ E, i.e. a DX-block
subspace such that µ(V ) = µ(V0) for all V ≤∗ V0.

Proof. If µ is increasing, suppose for contradiction that for every DX -
block subspace W , there is V ≤∗ W such that µ(V ) ⊊ µ(W ). It is possible
to construct a transfinite sequence (Wγ)γ<ω1 of DX -block subspaces such
that if γ < η < ω1, then Wη ≤∗ Wγ and µ(Wη) ⊊ µ(Wγ).

The sequence (µ(Wη))η<ω1 obtained is an uncountable strongly decreas-
ing chain (with respect to inclusion) of subsets of N , which contradicts N
being countable. If µ is decreasing, the result follows analogously.

We now define asymptotic games in same vein as in [10], with a careful
choice of the sets of blocks in which the players are allowed to choose their
moves.

Definition 8.3. Let E be a Banach space with a normalized basis (en)n,
DE be a set of blocks for E, and AE be an admissible set for E. Let X = [xn]n
be a DE-block subspace, and let Y be a Banach space with a normalized basis
(yn)n. Suppose C ≥ 1. We define the asymptotic game HA

Y,X with constant C
between players I and II taking turns as follows: I plays a natural number ni,
and II plays a natural number mi and a not necessarily normalized DX -block
vector ui ∈ X[n0,m0] + · · ·+X[ni,mi], where X[k,m] := [xn : k ≤ n ≤ m]
∩ DX for k ≤ m natural numbers. Diagramatically,

I n0 n1 . . .
II m0, u0 m1, u1 . . .

The sequence (un)n is the outcome of the game and we say that II wins
the game HA

Y,X with constant C if (un)n ∼C (yn)n and (un)n ∈ AX .

The game HA
Y,X with constant C is determined since it is equivalent to

a Gale–Stewart game, which is open for player I; we shall say that the game
HA

Y,X with constant C is open for player I. Notice that if II has a winning
strategy for the game HA

Y,X with constant C, then for any sequence (Ii)i of

successive intervals we have Y
A
↪→C (X, Ii). Therefore, if II has a winning

strategy for HA
Y,X with constant C then Y is not AE-tight in X.
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The following definition is similar to the one used in [10].

Definition 8.4. Let E be a Banach space with a normalized basis (en)n,
DE be a set of blocks, and AE an admissible set for E. Let X = [xn]n be a
DE-block subspace, Y be a Banach space and (Ii)i be a sequence of successive
nonempty intervals of natural numbers.

(i) Let K be a positive constant. We write

Y
A
↪→K (X, Ii)

if there is A ∈ [N]∞ containing 0 such that Y
A
↪→K [xn : n /∈

⋃
i∈A Ii].

(ii) We write

Y
A
↪→ (X, Ii)

if there is A ∈ [N]∞ such that Y
A
↪→ [xn : n /∈

⋃
i∈A Ii].

Remark 8.5. Notice that under the hypothesis of Definition 8.4, if there
is some A ∈ [N]∞ such that Y

A
↪→ [xn : n /∈

⋃
i∈A Ii] and 0 /∈ A, then there is

some B ∈ [N]∞ containing 0 such that Y
A
↪→ [xn : n /∈

⋃
i∈B Ii].

In the original paper of Ferenczi–Rosendal, special attention is given to
the (Borel, continuous, . . . ) dependence of the sequence Ij of intervals as-
sociated to a subspace Y in the definition of tightness. This has application
to classification of the isomorphism relations between subspaces and the
so-called “ergodic space” problem [9], as in [10, Theorem 7.3]. In the present
paper we are not considering these aspects, which allows us to simplify
certain parts of the proof – there is no reference to a Borel or continuous
map defining those intervals as in the notion of continuous tightness [10,
p. 165]. On the other hand, although the general scheme of the proof is
the same, special attention has to be given to the roles of the set of blocks
and of the type of embeddings to generalize the tight-minimal dichotomy
from [10]. Approximation properties work similarly, but diagonalization prop-
erties must be ensured, as well as the topological properties (closed, open)
of the outcomes, and this requires a careful definition of the infinite games
at hand.

Lemma 8.6. Let E be a Banach space with a normalized basis (en)n, and
(DE ,AE) be an admissible system of blocks for E. Suppose that X = [xn]n
is a DE-block subspace and that K and ε are positive constants such that for
every DX-block subspace Y of X there is a winning strategy for player I in
the game HA

Y,X with constant K + ε. Then for every DX-block subspace Y

there exists a sequence (Ij)j of successive intervals such that Y
A
X↪→K (X, Ij).
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Proof. We divide the proof into six steps:

Step 1. By hypothesis, for each DX -block subspace Y of X there is a
winning strategy σY for player I in the game HA

Y,X with constant K + ε.

Step 2. Let C ≥ 1 be the basis constant of (xn)n. Let ρ = 1+ ε
K . Now,

let 0 < θ < 1 be such that (1 + θ)(1− θ)−1 = ρ. Take a sequence ∆ = (δn)n
of positive numbers such that 2CK2

∑
n∈N δn = θ.

Let (wn)n be a KC-basic sequence of not necessarily normalized blocks
with 1/K ≤ ∥wi∥ ≤ K for any i ∈ N. If (un)n is such that ∀i ∈ N
(∥wi − ui∥ < δi), then

2KC
∑
n∈N

∥wn − un∥
∥wn∥

= 2CK2
∑
n∈N

δn = θ < 1.

Thus, (un)n ∼ρ (wn)n.

Step 3. We shall obtain some collection {Dn : n ∈ N} of sets of vectors
which will be used in Step 4 to assist in the construction of a strategy for
player I. Since (DE ,AE) is an admissible system of blocks for E, we infer that
for X, the sequence (δn)n and K, there is a collection (Dn)n of nonempty
sets of vectors of DX such that

(C-1) For each n and for each d ∈ [N]<∞ such that there is w ∈ AX with
suppX(w) = d, there are a finite number of vectors u ∈ Dn such that
suppX(u) = d.

(C-2) For every sequence (wi)i∈AX satisfying 1/K ≤mini ∥wi∥≤ supi ∥wi∥
≤ K, for each n there is un ∈ Dn such that

(C-2.1) suppX(un) ⊆ suppX(wn),
(C-2.2) ∥wn − un∥ < δn,
(C-2.3) (ui)i ∈ AX .

Step 4. Suppose now that Y is a DX -block subspace with normalized
DX -block basis (yn)n. Suppose that p = (n0, u0,m0, . . . , ni, ui,mi), with
uj ∈ Dj for j ≤ i is a legal position in the game HA

Y,X in which I has played
according to σY .

I n0 n1 . . . ni

II u0, m0 u1, m1 . . . mi, ui
We write p < k if nj , uj ,mj < k for all j ≤ i. Since II is playing in∏

j≤iDj , using condition (C-1), for every k there are only a finite number of
such legal positions p which satisfy p < k. So, for every k ∈ N the following
maximum exists:

(19) α(k) := max {k,max {σY (p) : p < k}}.
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We set Ik = [k, α(k)]. The intervals in (Ik)k are not necessarily disjoint, but
it is possible to extract a subsequence of successive intervals, with I0 as first
element.

Step 5. To prove that Y
A
X↪→K (X, Ij) we shall show that for every A in

[N]∞ containing 0, Y
A
X↪→K [xn : n /∈

⋃
k∈A Ik].

For contradiction, suppose there is A ∈ [N]∞ containing 0 and a sequence
of blocks (wn)n ∈ AX ∩ [xn : n /∈

⋃
k∈A Ik] such that

(20) (yn)n ∼K (wn)n.

Recall that since (yn)n is normalized, 1/K ≤ ∥wn∥ ≤ K for all n ∈ N.
By Step 3, condition (C-2), we can find for each i a block ui ∈ Di such

that ∥wi − ui∥ < δi, suppX(ui) ⊆ suppX(wi), (un)n ∈ AX , and

(21) (un)n ∼ρ (wn)n.

By (21), (un)n ∼Kρ (yn)n. Considering that ρ = 1 + ε/K, we conclude that
(un)n ∼K+ε (yn)n.

Step 6. Finally, we will construct a play p⃗ in the game HA
Y,X with con-

stant K+ ε, where player I will follow his winning strategy and the outcome
will be the sequence (un)n. This means that player I wins the game, leading
to a contradiction. In order to do that, we define natural numbers ni,mi and
ai ∈ A as follows:

Let a0 = 0 and n0 = σY (∅) = α(0). Then, by definition of Ik, I0 =
[0, α(0)] = [0, n0]. Find a1 ∈ A such that n0, u0, a0 < a1 and set m0 =
a1 − 1. Then p0 = (n0,m0, u0) is a legal position in HA

Y,X in which I has
played according to his winning strategy σY . Since w0 ∈ X[n0,m0] and
suppX(u0) ⊆ suppX(w0), we have u0 ∈ X[n0,m0].

Now, as p0 < a1, by the definition of α, if n1 = σY (n0,m0, u0), we
obtain n1 ≤ α(a1). Therefore, ]m0, n1[ = [m0 + 1, n1 − 1] = [a1, n1 − 1] ⊆
[a1, α(a1)] = Ia1 .

Suppose by induction that n0, . . . , ni, m0, . . . ,mi and a0, . . . , ai ∈ A have
been defined. Since [0, n0[ ⊆ I0 and ]mj , nj +1[⊆ Iaj+1 for all j < i, we have

ui ∈ X[n0,m0] +X[n1,m1] + · · ·+X[ni,∞[.

Find some ai+1 ∈ A greater than n0, . . . , ni, u0, . . . , ui and a0, . . . , ai and let
mi = ai+1 − 1. Then

ui ∈ X[n0,m0] +X[n1,m1] + · · ·+X[ni,mi].

Therefore pi = (n0,m0, u0, . . . , ni,mi, ui) is a legal position of the game HA
Y,X

with constant K + ε in which I has played according to σY . Since pi < ai+1,
we have

ni+1 = σY (n0,m0, u0, . . . , ni,mi, ui) ≤ α(ai+1)
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and

]mi, ni+1[ = [mi + 1, ni+1 − 1] = [ai+1, ni+1 − 1] ⊆ [ai+1, α(ai+1)] = Iai+1 .

Let p⃗ be the legal run such that each pi is a legal position for the game. Such
a p⃗ is the run we were looking for to produce a contradiction.

The following technical lemma gives us a criterion for passing from the
existence of intervals depending on K for which Y is not A-embedded in
(I

(K)
j ) with constant K, to the existence of intervals (Jj)j for which Y is not

embedded for any constant K. It is similar to [10, Lemma 3.8].

Lemma 8.7. Let E be a Banach space with a normalized basis (en)n,
and (DE ,AE) be an admissible system of blocks for E. Suppose that X =
[xn]n is a DE-block subspace and Y is a Banach space with a normalized
basis (yn)n. If for every constant K there are successive intervals (I

(K)
n ) of

natural numbers such that Y
A
X↪→K (X, I

(K)
j ), then there is a sequence (Jj)j

of successive intervals such that Y
A
X↪→ (X, Jj).

Proof. We will construct the intervals (Jj)j inductively. The idea is to
find such a sequence satisfying the following:

(i) For each n ≥ 0, Jn contains one interval of each (I
(n)
i )i.

(ii) For each n ≥ 1, if M = minJn − 1 and K = ⌈n · c(M)⌉ (where c(M) is
the constant guaranteed by Proposition 2.1 for (xn)n), then max Jn >

max I
(K)
0 +M .

This can be done as follows: Take J0 = I
(1)
0 . Now suppose that we have de-

fined J0, . . . , Jn satisfying (i) and (ii). Let a be a natural number greater than
max Jn, put M = a− 1 and K = ⌈(n+ 1) · c(M)⌉. Take b > max I

(K)
0 +M

such that there exists ji ∈ N with I
(i)
j(i) ⊆ [a, b] for all i ∈ {1, . . . , n + 1}

(this can be done because the intervals are finite and we are looking at just
the first n+ 1 sequences). Let Jn+1 := [a, b]. By construction, Jn+1 satisfies
conditions (i) and (ii).

For contradiction, suppose that A ∈ [N]∞ and for some integer N , we
have

Y
A
↪→N

[
xn : n /∈

⋃
i∈A

Ji

]
.

This implies that there is a sequence (wn)n of DX -blocks in AX ∩ [xn : n /∈⋃
i∈A Ji] such that (yn)n ∼N (wn)n. Pick a ∈ A such that a ≥ N and set

M = min Ja − 1 and K = ⌈a · c(M)⌉. Define an isomorphic embedding T
from [

xn : n /∈
⋃
i∈A

Ji

]
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into

[xn : max I
(K)
0 < n ≤ max Ja] +

[
xn : n /∈

⋃
i∈A

Ji & n > max Ja

]
by setting

(22) T (xn) =

{
xn if n > max Ja,

x
max I

(K)
0 +n+1

if n ≤ M.

Notice that T is an isomorphism between those two DX -block subspaces.
So, by Proposition 3.13(ii), we have (T (wn))n ∈ AX .

Since T only changes at most M vectors from (xn)n, it is a C(M)-
embedding. Hence

(yn)n ∼N (wn)n ∼C(M) (T (wn))n,

and because N · c(M) ≤ a · c(M) ≤ K, we obtain

Y
A
↪→K

[
xn : n /∈

⋃
i∈A

Ji & n > max Ja

]
(23)

+ [xn : max I
(K)
0 < n ≤ max Ja].

Now, since for each n ≥ 1, Jn contains one interval of each (I
(n)
i )i, for

any l ∈ A such that l ≥ K there is b(l) ∈ N such that I
(K)
b(l) ⊆ Jl. Let

B = {0} ∪ {b(l) : l ∈ A, l ≥ K}. Then

id :
[
xn : n /∈

⋃
i∈A

Ji & n > max Ja

]
+ [xn : max I

(K)
0 < n ≤ max Ja]

→
[
xn : n /∈

⋃
i∈B

I
(K)
i

]
is an isomorphism onto its image and by Proposition 3.13(ii) and (23) we
have

Y
A
↪→K

[
xn : n /∈

⋃
i∈B

I
(K)
i

]
,

which contradicts our initial hypothesis.

The next lemma uses a “diagonalization” argument to relate the fact
that a space E is saturated with DE-block subspaces X such that for every
Y ≤ X, player I has a winning strategy for the game HA

Y,X for any con-
stant K, with the existence of a AE-tight DE-block subspace X. It is similar
to [10, Lemma 3.9], without the study of the Borel dependence of the inter-
vals in the definition of tightness, and on the other hand, with attention to
the types of blocks in the construction so that the diagonalization property
still holds.
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Lemma 8.8. Let E be a Banach space with a normalized basis (en)n, and
(DE ,AE) be an admissible system of blocks for E. Suppose that for every
DE-block subspace Z and constant K there is a DZ-block subspace X such
that for every DX-block subspace Y , player I has a winning strategy in the
game HA

Y,X with constant K. Then there is a DE-block subspace X which is
AE-tight.

Proof. The idea is to construct inductively a sequence X0 ≥ X1 ≥ · · · of
DE-block subspaces and corresponding sequences (IKj )j of successive inter-

vals such that for all V ≤ XK , V
A
X↪→K2 (XK , IKj ). Once these are constructed,

we will use Proposition 8.1 to obtain the desired DE-block subspace.
Consider X0 = E and let ε > 0. Assuming X0 ≥ X1 ≥ · · · ≥ Xn

have been defined, and applying the hypothesis to Xn, there is a DXn-block
subspace Xn+1 ≤ Xn such that for every D-block subspace Y ≤ Xn+1 and for
all ε > 0, player I has a winning strategy in the game HA

Y,Xn+1
with constant

(n + 1)2 + ε. By Lemma 8.6, for every DXn+1-block subspace V ≤ Xn+1,
there are intervals Ij for which V

A
X↪→(n+1)2 (Xn+1, Ij).

Applying Lemma 8.1 to the sequence

X0 ≥ · · · ≥ XK ≥ · · · ,
we find a DE-block subspace X∞ = [x∞n ]n ≤ X0 = E such that for each
K ≥ 1 there is a DXK

-block sequence (zKn )n with ZK = [zKn ]n ≤ XK such
that

(24) (x∞n )n ∼√
K (zKn )n.

Let Y = [yn]n ≤ X∞ be a DE-block subspace of X∞. For each K ≥ 1
there exists a DZK

-block subspace VK = [vKn ]n (using the form of the iso-
morphism given in (24) and Proposition 3.11(ii)) such that

(25) (yn)n ∼√
K (vKn )n,

and for such VK we may by construction find (IKj )j such that

(26) VK
A
X↪→K2 (XK , IKj ).

Claim. There are successive intervals (JK
j )j such that

(27) VK
A
X↪→K2 (ZK , JK

j ).

Proof of the Claim. Let (nj)j and (mj)j be increasing sequences in N
such that for each j ∈ N,

• nj < mj < nj+1,
• there is kj > 0 with

suppXK
(zKnj

) < IKkj < suppXK
(zKmj

).
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Let JK
j = [nj ,mj ] for each j ∈ N. Such sequences (nj)j and (mj)j

exist because all IKj and suppXK
(zKj ) are finite subsets. Notice that for each

A ∈ [N]∞ we have

(28)
[
zKn : n /∈

⋃
j∈A

JK
j

]
⊆

[
xKn : n /∈

⋃
j∈A

IKkj

]
.

Now, suppose that there is B ∈ [N]∞ such that

VK
A
↪→K2

[
zKn : n /∈

⋃
i∈B

JK
i

]
.

Then there is (wn)n ∈ AE ∩ [zKn : n /∈
⋃

i∈B JK
i ] such that (vKn )n ∼K2 (wn)n.

By (28), (wn)n ∈ AE ∩ [xKn : n /∈
⋃

j∈B IKkj ], so

VK
A
↪→K2 [xKn : n /∈

⋃
j∈A

IKj ],

where A = {kj : j ∈ B}, which contradicts (26).

Now, we will show that Y
A
X↪→K (X∞, JK

j ). Suppose that, on the contrary,

Y
A
↪→K (X∞, JK

j ). Then there is A ∈ [N]∞ with 0 ∈ A and a sequence
(wn)n ∈ AE ∩ [x∞n : n /∈

⋃
i∈A JK

j ] such that

(29) (yn)n ∼K (wn)n.

Recall that Y and each ZK are DE-block subspaces. By the isomorphism
in (24) and using Proposition 3.13(ii), we can find (uKn )n ∈ Zω

K (image of
(wn)n by that isomorphism) such that (uKn )n ∈ AE ∩ [zKn : n /∈

⋃
i∈A JK

j ]
and

(30) (uKn )n ∼√
K (wn)n.

Then, using (25), (29) and (30), we obtain

(31) (vKn )n ∼√
K (yn)n ∼K (wn)n ∼√

K (uKn )n.

Thus, (vKn )n ∼K2 (uKn )n, which means that

[vKn ]n = VK
A
↪→K2

[
zKn : n /∈

⋃
i∈A

JK
j

]
.

This contradicts (27).
We have proved that, for every Y ≤ X∞ and every K ≥ 1, there is

a sequence (JK
j )j of successive intervals such that Y

A
X↪→K (X∞, JK

j ). By
Lemma 8.7 there exists a sequence (LY

i )i of successive intervals such that

Y
A
X↪→ (X∞, LY

j ),

which finishes the proof.



Tight-minimal dichotomies in Banach spaces 37

9. Games for minimality

Definition 9.1. Let E be a Banach space with a normalized basis (en)n,
DE be a set of blocks, and AE an admissible set for E. Suppose L and M
are DE-block subspaces of a Banach space E and C ≥ 1 a constant. We
define the asymptotic game GA

L,M with constant C between players I and II
taking turns as follows. In the (i + 1)th round, player I chooses a subspace
Ei ⊆ L, spanned by a finite DL-block sequence, a not necessarily normalized
DL-block ui ∈ E0 + · · ·+Ei, and a natural number mi. On the other hand,
II plays for the first time an integer n0, and in all successive rounds II plays
a subspace Fi spanned by a finite DM -block sequence, a not necessarily
normalized DM -block vector vi ∈ F0 + · · ·+ Fi and an integer ni+1.

For a move to be legal we demand that ni ≤ Ei, mi ≤ Fi and that for
each play in the game, the chosen vectors ui and vi satisfy (u0, . . . , ui) ∈ [AE ]
and (v0, . . . , vi) ∈ [AE ]. We present the following diagram:

I n0 ≤ E0 ⊆ L n1 ≤ E1 ⊆ L · · ·
u0 ∈ E0, m0 u1 ∈ E0 + E1, m1

(u0, u1) ∈ [AE ]

II n0 m0 ≤ F0 ⊆ M m1 ≤ F1 ⊆ M · · ·
v0 ∈ F0, n1 v1 ∈ F0 + F1, n2

(v0, v1) ∈ [AE ]

The sequences (ui)i and (vi)i are the outcome of the games and we say
that II wins the game GA

L,M with constant C if (ui)i ∼C (vi)i.

In GA
Y,X with constant C, players I and II must choose AE-block sub-

spaces and vectors in [AE ], in contrast to block subspaces and any block
vectors as in the game GY,X with constant C in [10]. Also, in the game GA

Y,X
the outcomes (ui)i and (vi)i belong to AE , since for each n ∈ N, we have
(ui)i≤n, (vi)i≤n ∈ [AE ] and AE is closed in (DE)

ω.
In addition, since the relation of two sequences being equivalent is closed,

we know that if p⃗ is a legal run in the game such that every finite stage of p⃗
is a finite stage of a run where II wins the game GA

Y,X with constant C, then
p⃗ itself is a run where II wins GA

Y,X with constant C. In this sense we say
that the winning condition is closed for player II. The next lemma relates
the games HA

Y,X and GA
Y,X with the same constant.

Lemma 9.2. Let E be a Banach space with a normalized basis (en)n,
DE be a set of blocks, and AE an admissible set for E. If X and Y are
DE-block subspaces of E such that player II has a winning strategy in HA

Y,X

with constant C, then II has a winning strategy in GA
Y,X with constant C.
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Proof. Suppose that X = [xn]n and Y = [yn]n are DE-block subspaces.
We shall exhibit the move of player II after i rounds in the game GA

Y,X
with constant C, and we will prove that such moves determine a winning
strategy for II in the game GA

Y,X with constant C. For each i (even i = 0),
suppose player I has played i times, and we have the following stage in the
game GA

Y,X :

I 0 ≤ E0 ⊆ Y · · · 0 ≤ Ei ⊆ Y

u0 ∈ E0, m0 ui ∈ E0 + · · ·+ Ei, mi

(u0, . . . , ui) ∈ [AE ]

II 0 m0 ≤ F0 ⊆ X · · · mi−1 ≤ Fi−1 ⊆ X

v0 ∈ F0, 0 vi−1 ∈ F0 + · · ·+ Fi−1, 0
(v0, . . . , vi−1) ∈ [AE ]

Notice that without loss of generality we can ask player II to play nj = 0
for all j (which we may do so since then player I has more possibilities to
play and makes the game more difficult for II). Let us write each block vector
uj as

∑kj
k=0 λ

j
kyk for all j ≤ i. We can assume that kj−1 < kj for all j ≤ i.

Consider the following run in the game HA
Y,X :

I m0 · · · m0 · · · mi · · · mi mi mi · · ·
II p0, w0 · · · pk0 , wk0 · · · pki−1+1, wki−1+1 · · · pki , wki q0, w

′
0 q1, w

′
1 · · ·

where player I consecutively plays m0 the first (k0 + 1)-times, then consec-
utively plays mj for (kj − kj−1)-times, for any j ∈ {1, . . . , i}, and then he
plays mi constantly. Meanwhile, II moves according to her winning strategy
for the game HA

Y,X with constant C, which, by using the properties of A,
guarantees that

w′ := (w0, . . . , wki , w
′
0, w

′
1, . . .) ∈ AX = AE ∩Xω.

Since (u0, . . . , ui) ∈ [AE ], by Definition 3.6(d) there is (tn)n ∈ Y ω such
that u′ = (u0, . . . , ui, t0, t1, . . .) ∈ AY = AE ∩ Y ω. Notice that u′ ∗Y (yn)n =
u′ ∈ AE and (yn)n ∈ bbD(E) ⊆ AE , thus, using Definition 3.6(c), we have

v′ := u′ ∗Y w′ ∈ AE ∩Xω = AX .

If v′ = (v′j)j , then it follows from the inductive construction that

• v′j = vj , for j < i,
• v′i =

∑ki
k=0 λ

i
kwk,

• (v′0, . . . , v
′
i) ∈ [AX ].

Set vi := v′i and

Fi = X[mi,max {pki−1+1, . . . , pki}].
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Therefore, (v0, . . . , vi) ∈ [AX ] and vi ∈ F0 + · · · + Fi, with mi ≤ Fi ⊆ X.
This means that (Fi, vi, 0) is a legal position for II to play in the game GA

Y,X
with constant C in the (i+ 1)th round.

Suppose that we have continued with the game, where II has played
by using the previous procedure in every round, and we have obtained the
outcome: (ui)i (played by I) and (vi)i (played by II).

Using the closedness condition (i) in Proposition 3.13, (ui)i and (vi)i are
in AE (each initial part is in [AE ]). Since (ui)i and (vi)i are defined with the
same coefficients over (yi)i and (wi)i, respectively, we have (ui)i ∼C (vi)i.
Hence, we have showed the moves that II can make in each round to win the
game. Consequently, II has a winning strategy in GA

Y,X with constant C.

9.1. An auxiliary minimal game

Definition 9.3. Let E be a Banach space with a normalized basis (en)n,
and DE be a set of blocks for E. We denote by FE the set of subspaces of
E generated by a finite DE-block sequence.

Definition 9.4. Let E be a Banach space with a normalized basis (en)n,
and DE be a set of blocks for E. A state s is a pair (a, b) with a, b ∈
(DE×FE)

<ω such that if a = (a0, A0, . . . , ai, Ai) and b = (b0, B0, . . . , bj , Bj),
then j = i or j = i− 1. Denote by SE the (countable) set of states.

Remark 9.5. Let E be a Banach space with a normalized basis (en)n,
DE be a set of blocks, and AE an admissible set for E. Take two DE-block
subspaces M and L and C ≥ 1. Consider the game GA

L,M with constant C.
If we forget the integers m′

i played by I and ni played by II in such game,
then the set SE contains the set of possible positions after a finite number
of runs.

Definition 9.6. Let E be a Banach space with a normalized basis
(en)n, DE be a set of blocks, and AE an admissible set for E. Let M
and L be two DE-block subspaces and C ≥ 1. We say that the state
s = ((a0, A0, . . . , ai, Ai), (b0, B0, . . . bj , Bj)) ∈ SE is valid for the game GA

L,M

with constant C if the finite sequences (a0, . . . , ai), (b0, . . . , bj) are in [AE ].

Definition 9.7. Let E be a Banach space with a normalized basis (en)n,
DE be a set of blocks, and AE an admissible set for E. Let M and L be
two DE-block subspaces and C ≥ 1. Consider a valid state s ∈ SE for the
game GA

L,M with constant C. We define GA
L,M (s) to be the game GA

L,M with
constant C in which the vectors and finite subspaces in the state s have been
played in the initial rounds. That is, if s = (a, b) with a = (a0, A0, . . . , ai, Ai)
and b = (b0, B0, . . . , bi, Bi) then the game GA

L,M (s) goes as follows:
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I ni+1 ≤ Ei+1 ⊆ L · · ·
ui+1 ∈ A0 + · · ·+Ai + Ei+1, mi+1

((a0, . . . , ai, ui+1) ∈ [AE ])

II ni+1 mi+1 ≤ Fi+1 ⊆ M · · ·
vi+1 ∈ B0 + · · ·+Bi + Fi+1, ni+1

((b0, . . . , bi, vi+1) ∈ [AE ])

The outcome of the game is the pair of infinite sequences (a0, . . . , ai,
ui+1, . . .) and (b0, . . . , bi, vi+1, . . .).

If s = (a, b) with a = (a0, A0, . . . , ai, Ai) and b = (b0, B0, . . . , bi−1, Bi−1)
then the game GA

L,M (s) goes as follows:

I mi ni ≤ Ei+1 ⊆ L · · ·
ui+1 ∈ A0 + · · ·+Ai + Ei+1, mi+1

((a0, . . . , ai, ui+1) ∈ [AE ])

II mi ≤ Fi ⊆ M · · ·
vi ∈ B0 + · · ·+Bi + Fi, ni

((b0, . . . , bi−1, vi) ∈ [AE ])

The outcome of the game is the pair of infinite sequences (a0, . . . , ai,
ui+1, . . .) and (b0, . . . , bi, vi+1, . . .). We say that player II wins the game
GA

L,M (s) with constant C if (a0, . . . , ai, ui+1, . . .) ∼C (b0, . . . , bi, vi+1, . . .).

10. Tight-minimal dichotomies. Now we are ready to prove our main
result, Theorem 1.2.

Proof of Theorem 1.2. We shall prove that if no DE-block subspace is
AE-tight, then there is a DE-block subspace which is AE-minimal.

If E fails to have an AE-tight subspace then by Lemma 8.8 there are
a DE-block subspace Z of E and a constant C ≥ 1 such that for every
DZ-block subspace X of Z there is a further DX -block subspace Y of X
such that I has no winning strategy for the game HA

Y,X with constant C.
If we prove that Z has a AE-minimal DE-block subspace, the proof will be
complete. So, without loss of generality we can suppose that Z = E.

Summing up, we are supposing that for every DE-block subspace X there
is a further DX -block subspace Y ≤ X such that player I has no winning
strategy in the game HA

Y,X with constant C. Since the game HA
Y,X with

constant C is determined, we can conclude that for any DE-block subspace
X, there is a DX -block subspace Y such that II has a winning strategy in
HA

Y,X with constant C.



Tight-minimal dichotomies in Banach spaces 41

Let τ : bbD(E) → P(S) be defined by

s ∈ τ(M) ⇐⇒ ∃L DM -block subspace such that player II has a winning
strategy in GA

L,M (s) with constant C.

First observe that the elements of τ(M) are valid states for GA
L,M and

τ(M) is nonempty for each DE-block subspace M ≤ E: we already saw that
there is a DM -block subspace L ≤ M such that II has a winning strategy
in HA

L,M with constant C, and by Lemma 9.2, II has a winning strategy in
GA

L,M with constant C. Then it is possible to define a valid state s = (a, b),
with b being chosen following the winning strategy for II, such that player II
has a winning strategy in GA

L,M (s) and s ∈ τ(M).
Consider now a DE-block subspace M ′ ≤∗ M and s ∈ τ(M ′). Then there

is a DM ′-block subspace L′ ≤ M ′ such that II has a winning strategy in
GA

L′,M ′(s) with constant C. Since player I can always choose finite subspaces
Ei in L′ inside of M and choose integers ni large enough to force player II
to play in M ′ and inside of M (the game GA

L′,M ′ is asymptotic, in the sense
that it does not depend on the first coordinates), it follows that it is possible
to find a DM -block subspace L ≤ M such that II has a winning strategy
in GA

L,M (s) with constant C. Therefore, s ∈ τ(M), and we conclude that
τ(M ′) ⊆ τ(M).

By Lemma 8.2 there is a DE-block subspace M0 ≤ E which is stabilizing
for τ , i.e. τ(M0) = τ(M ′) for all DM -block subspaces M ′ ≤∗ M .

Define ρ : bbD(M0) → P(S) by setting

s∈ ρ(L) ⇐⇒ player II has a winning strategy in GA
L,M0

(s) with constant C.

Notice that there is a DM0-block subspace L ≤ M0 such that ρ(L) ̸= ∅
(the same justification was used to show that τ(M) ̸= ∅ for every DE-block
subspace M ≤ E), so ρ is a nontrivial function. As before, let L′ ≤∗ L be
a DM0-block subspace and s ∈ ρ(L). If player II has a winning strategy in
GA

L,M0
(s) then, by the asymptoticity of the game (same previous argument

for τ), II has a winning strategy in GA
L′,M0

(s), so s ∈ ρ(L′
0). Thus ρ is

decreasing. We can apply Lemma 8.2 to ρ, to find a stabilizing DM0-block
subspace L0 of M0 for ρ. Additionally, we obtain

(32) ρ(L0) = τ(L0) = τ(M0).

Let us prove (32). Since L0 ≤ M0 and M0 stabilizes τ , we have τ(M0) =
τ(L0). If s ∈ ρ(L0), then player II has a winning strategy in GA

L0,M0
(s), which

means that s ∈ τ(M0), so ρ(L0) ⊆ τ(M0). If s ∈ τ(M0) = τ(L0), then there
is some DL0-block subspace L′ ≤ L0 such that II has a winning strategy in
GA

L′,L0
(s). Since L0 ≤ M0, in particular II has a winning strategy in GA

L′,M0
(s)

with constant C. Thus, s ∈ ρ(L′) = ρ(L0) because L0 is stabilizing for ρ.
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Claim. For every DL0-block subspace M , II has a winning strategy in
the game GA

L0,M
with constant C.

Proof of the claim. Fix a DL0-block subspace M . The idea of the proof
of this claim is to show inductively that for each valid state s from which
player II has a winning strategy in GA

L0,M
(s) with constant C, there is an-

other state s′ which “extends” it such that player II has a winning strategy
in GA

L0,M
(s′). Then one uses the fact that the winning condition is closed for

player II to justify that II has a winning strategy. This method was used by
A. Pelczar [16] and we are using it in the same way that V. Ferenczi and Ch.
Rosendal did in [10].

First, let us prove that (∅, ∅) ∈ τ(L0). We know that there is a DL0-block
subspace Y such that II has a winning strategy in HA

Y,L0
with constant C.

Lemma 9.2 implies that II has a winning strategy in GA
Y,L0

with constant C,
and, by definition of τ , this means that (∅, ∅) ∈ τ(L0). Now, we will show that:

(i) For all valid states for the game GA
L0,M

(s),

s = ((u0, E0, . . . , ui, Ei), (v0, F0, . . . , vi, Fi)) ∈ τ(L0),

there is an n (which player II can play) such that for any subspace
E spanned by a finite DL0-block sequence of L0 with support greater
than n, and any u ∈ E0 + · · ·+ Ei + E such that (u0, . . . , ui, u) ∈ [AE ]
(that is, any move that player I could do in his (i + 1)th round in
GA

L0,M
(s), disregarding the integer mi+1), we have

((u0, E0, . . . , ui, Ei, u, E), (v0, F0, . . . , vi, Fi)) ∈ τ(L0).

(ii) For any ((u0, E0, . . . , ui+1, Ei+1), (v0, F0, . . . , vi, Fi)) ∈ τ(L0), and for
all m, there is a subspace F ≥ m spanned by a finite DM -block sequence
and v ∈ F0 + · · · + Fi + F with (v0, . . . , vi, v) ∈ [AE ] (which is a legal
move that II can play) such that

((u0, E0, . . . , ui+1, Ei+1), (v0, F0, . . . , vi, Fi, v, F )) ∈ τ(L0).

This will be the case if both players have played i+1 rounds and player I
has played in his (i + 1)th-move (Ei+1, ui+1,m), and it corresponds to
player II making a legal move.

Let us prove statement (i). Suppose that

s = ((u0, E0, . . . , ui, Ei), (v0, F0, . . . , vi, Fi)) ∈ τ(L0).

By (32), II has a winning strategy in GA
L0,M0

(s), which means that there is
n such that for every subspace n ≤ E ⊆ L0 spanned by a finite DL0-block
sequence and u ∈ E0+ · · ·+Ei+E, II has a winning strategy in GA

L0,M0
(s′),

where
s′ = ((u0, E0, . . . , ui, Ei, u, E), (v0, F0, . . . , vi, Fi)).

So, s′ ∈ ρ(L0) = τ(L0).
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To prove (ii), suppose

((u0, E0, . . . , ui+1, Ei+1), (v0, F0, . . . , vi, Fi)) ∈ τ(L0)

and m is given. Then, as M ≤ L0 ≤ M0 and τ(M) = τ(L0), II has a winning
strategy in GA

L,M (s) for some DM -block subspace L ≤ M . Thus, there are
F ≤ M with m ≤ F and v ∈ F0 + · · · + Fi + F such that II has a winning
strategy in GA

L,M (s′), where

s′ = ((u0, E0, . . . , ui+1, Ei+1), (v0, F0, . . . , vi, Fi, v, F )).

So, s′ ∈ τ(M) = τ(L0).
Starting with state (∅, ∅) ∈ τ(L0) and following those two steps induc-

tively, we can obtain a sequence (si)i of states such that each si ∈ τ(L0) is
the initial part of si+1 ∈ τ(L0). We can define a strategy for player II as
follows:

Since (∅, ∅) ∈ τ(L0), by (i) there is n0 such that whenever m0, E0 ≤ L0

and u0 ∈ E0 such that n0 ≤ E0 are played by I, we have

((u0, E0), ∅) ∈ τ(L0).

Let σ((∅, ∅)) = (n0). Using (ii), there are F0 ≤ M and v0 ∈ F0 such that

((u0, E0), (v0, F0)) ∈ τ(L0).

Again using (i), there is n1 such that whatever m1, E1 ≤ L0 and u1 ∈
E0 + E1 such that n1 ≤ E1 are played by I, we have

((u0, E0, u1, E1), (v0, F0)) ∈ τ(L0).

Let σ((E0, u0,m0)) = (F0, v0, n1). Following this process inductively, sup-
posing that player I in the (k + 1)th round has played (Ek, uk,mk), using
(ii) there are Fk ≤ M and vk ∈ F0 + · · ·+ Fk such that mk ≤ Fn and

((u0, E0, . . . , uk, Ek), (v0, F0, . . . , vk, Fk)) ∈ τ(L0).

Using (i) there is nk+1 such that whatever mk+1, Ek+1 ≤ L0 and uk+1 ∈
E0 + · · ·+ Ek+1 such that nk+1 ≤ Ek+1 are played by I, we have

((u0, E0, . . . , uk+1, Ek+1), (v0, F0, . . . , vk, Fk)) ∈ τ(L0).

Let σ((E0, u0,m0, . . . , Ek, uk,mk)) = (Fk, vk, nk+1). Then σ is a strategy for
II to play in the game GA

L0,M
with constant C.

Let p⃗ = (n0, E0, u0,m0, F0, v0, n1, . . .) be a legal run of GA
L0,M

where II
follows the strategy σ. So, every finite stage

(n0, E0, u0,m0, F0, v0, n1, . . . , Ei, ui,mi, Fi, vi, ni+1)

of p⃗ determines the state si = ((u0, E0, . . . , ui, Ei), (v0, F0, . . . , vi, Fi)) ∈
τ(L0) = ρ(L0) such that player II has a winning strategy in GA

L0,M0
(si).

By construction of σ, II actually plays in M ≤ L0 ≤ M0, so for every i ∈ N,
II has a winning strategy in GA

L0,M
(si).
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Therefore, for every i ∈ N, pi is a finite stage of a legal run in GA
L0,M

with
constant C where II wins. So, p⃗ is a run in GA

L0,M
with constant C where II

wins. Thus, σ is a winning strategy for II.
Returning to the proof of the theorem: for L0 there is a DL0-block sub-

space Y = [yn]n such that II has a winning strategy in HA
Y,L0

with constant C.
We finish the proof by showing that for every DL0-block subspace M ≤ L0,

Y
A
↪→C2 M .
Since II has a winning strategy for HA

Y,L0
with constant C, player I can

produce in GA
L0,M

a sequence (ui)i ∈ AL0 such that (ui)i ∼C (xi)i. That is,
in each round of GA

L0,M
, player I can choose the pair (0, ui), where each ui is

obtained by the moves of II in HA
Y,L0

. By the Claim, II has a winning strategy
in GA

L0,M
to produce (vi)i ∈ AM such that (ui)i ∼C (vi)i. By transitivity

(xi)i ∼C2 (vi)i, therefore Y
A
↪→C2 M , which ends the proof.

Remark 10.1. It is interesting to note that our theorem always provides
us with a uniform version of A-minimality, namely, there is a constant K
such that Y A-embeds with constant K into any D-block subspace of Y . This
fact was well-known for usual minimality, i.e. every minimal space must be
K-minimal for some K.

10.1. Corollaries from the A-tight-minimal dichotomy. As a coro-
llary of Theorem 1.2 we obtain the third dichotomy of Ferenczi–Rosendal:

Corollary 10.2 (Third dichotomy, [10]). Let E be a Banach space with
a normalized basis (en)n. Then E contains a tight block subspace or a minimal
block subspace.

Proof. In Theorem 1.2 consider the admissible system of blocks
(DE , (DE)

ω). As already observed in Proposition 7.9, and in Proposition
6.3 for this particular admissible set, we obtain exactly our conclusion.

Corollary 10.3. Let E be a Banach space with a normalized basis (en)n.
Then E contains a block subspace X = [xn]n with one of the following prop-
erties:
(1) For any [yn]n ≤ X, there is a sequence (In)n of successive intervals in N

such that for any A ∈ [N]∞, [yn]n does not embed into [xn : n /∈
⋃

i∈A Ii]
as a block sequence.

(2) (xn)n is a block equivalence minimal basis.
Proof. In Theorem 1.2 consider the admissible system of blocks (DE ,

bb(DE)) and apply Proposition 6.3(vi).
V. Ferenczi and Ch. Rosendal [10] also remarked that the case of block

sequences in this theorem implies the main result of A. Pelczar [16] and an
extension of it due to Ferenczi [6].
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Corollary 10.4. Let E be a Banach space with a normalized basis (en)n.
Then E contains a block subspace X = [xn]n satisfying one of the following
properties:

(1) For any block basis [yn]n of X, there is a sequence (In)n of successive
intervals in N such that for any A ∈ [N]∞, [yn]n does not embed into
[xn : n /∈

⋃
i∈A Ii], as a sequence of disjointly supported vectors.

(2) For any block basis [yn]n of X, (xn)n is equivalent to a sequence of dis-
jointly supported vectors of [yn]n.

Proof. In Theorem 1.2 consider the admissible system of blocks (DE ,
ds(DE)) and apply Proposition 6.3(vii).

Notice that properties (1) and (2) in Corollary 10.3 and in Corollary 10.4
are incompatible (see Theorem 7.8). Corollaries 10.3 and 10.4 are stated as
Theorem 3.16 in [10]. In its enunciation is also considered an embedding as a
permutation of a block sequence. Nevertheless, as already seen in the proofs
of this section, such an embedding corresponds to a nonadmissible set (see
Proposition 5.4). So, the proofs we have presented do not work for the case
of the embedding as a permutation of a block sequence, and we see no reason
to think that the corresponding statement is true.

10.2. Corollaries from the A-tight-minimal dichotomy: subse-
quences. We now pass to the case of subsequences, in which we shall see
that Ramsey results allow one to reduce the number of relevant dichotomies.

Corollary 10.5. For any basic sequence (en)n in a Banach space, there
is (xn)n ⪯ (en)n with one of the following properties:

(i) For any (yn)n ⪯ (xn)n there is a sequence (In)n of successive intervals
such that for every A ∈ [N]∞, (yn)n is permutatively equivalent to no
subsequence of (xn)n with indices in N \

⋃
i∈A Ii.

(ii) (xn)n is spreading.

Proof. In Theorem 1.2 consider the admissible system of blocks (BE ,
dbB(E)). The result follows from item Proposition 6.3(ii), with “permuta-
tively spreading” as a result of (ii). Additionally we use the fact that every
permutatively spreading basis admits a spreading subsequence. This follows
either from the techniques of [3], or from a proof similar to (and simpler
than) that of the next corollary (Corollary 10.6).

Corollary 10.6. For any basic sequence (en)n in a Banach space, there
is a subsequence (xn)n of (en)n with one of the following properties:

(i) For any subsequence (yn)n of (xn)n there is a sequence (In)n of successive
intervals such that for every A ∈ [N]∞, (yn)n is permutatively signed
equivalent to no subsequence of (xn)n with indices in N \

⋃
i∈A Ii.

(ii) (xn)n is signed equivalent to a spreading sequence.
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Proof. In Theorem 1.2 consider the admissible system of blocks (B±
E ,

db(B±
E)). The result follows from Proposition 6.3(iv), with “(xn)n signed

permutatively equivalent” as the conclusion of (ii). It remains to check that
such an (xn)n contains a subsequence which is sign equivalent to a spreading
sequence. Let (fn)n be a spreading model of (xn)n (see for example [2]). From
the hypothesis we know that for some constant C, for any n, there is a finite
sequence (εkn) of n signs and a linear order ≤n on the integers such that
(ε1nx1, . . . , ε

n
nxn) ∼C (f1, . . . , fn)≤n , where the notation (fi)≤ means that

span[fi] is equipped with the norm ∥
∑

i λifi∥≤ := ∥
∑

i λigi∥, if g1, . . . , gn
is the ≤-increasing enumeration of f1, . . . , fn.

By compactness we find an infinite sequence (εn)n of signs and a linear
order ≤ on the integers such that (εnxn) ∼C (fn)≤. By Ramsey’s theorem
for sequences of length 2, we may find an infinite subset N of the integers
such that ≤ coincides either with the usual order on N , or with the reverse
order. In the first case, (εnxn)n∈N is C-equivalent to the spreading sequence
(fn)n∈N (or equivalently to (fn)n); in the second case, it is C-equivalent to
the basic sequence (gn) defined by ∥

∑k
i=1 λigi∥ = ∥

∑k
i=1 λk−ifi∥, which is

also spreading. This completes the proof.

This last result is an interesting improvement on combinatorial results
involving subsequences. Indeed, any basic sequence either contains a signed
subsequence which is spreading, or satisfies a very strong form of tightness
(involving changes of signs and permutations). On the other hand, the fol-
lowing seems to remain unknown.

Question 10.7. Let (xn)n be a basic sequence such that all subspaces
generated by subsequences of (xn)n are isomorphic. Must (xn)n contain a
spreading subsequence?
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