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and therefore is not reducible to an orbit relation induced by 
the action of a Polish group.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

In this paper we are interested in defining a topological setting to compute the com-
plexity of certain natural equivalence relations appearing in the theory of positions 
and/or complex structures. Our objective is to provide examples towards the idea that 
these relations are not “well classifiable”, or in other words, to obtain high lower bounds 
of complexity for natural instance of these relations. Our starting points are the previous 
results in which a continuum of equivalence classes were already obtained, without infor-
mation on the complexity of the associated equivalence relation: examples of spaces with 
a continuum of mutually non-isomorphic complex structures [1], or examples of classical 
spaces with continuum many different positions inside another, see [6] and [18].

In this introduction we recall some basics of the theories of positions of Banach spaces, 
of complex structures, as well as of classification of analytic equivalence relations on 
Polish spaces. In section 2, after defining the appropriate topological setting, we obtain 
lower bounds for the complexity of position of a space inside another, in different cases. 
We prove that if X is not uniformly finitely extensible, then there exists a space Y for 
which the relation of position of Y inside X reduces the relation E0 and therefore is not 
smooth (Theorem 2.7). Through a result about complexity of positions inside �p-sums 
of non-uniformly extensible spaces (Proposition 2.10), we extend this and prove that 
the relation of position of �p inside �p, or inside Lp, p �= 2, reduces the relation E1 and 
therefore is not reducible to an orbit relation induced by the action of a Polish group, 
Theorem 2.12. Then through the study of complemented positions we use the main result 
of [10] to show that the complexity of positions may be Emax, the maximum complexity 
of analytic equivalence relations, Proposition 2.15. We end the section by providing the 
appropriate topological setting to study complex structures. In section 3, we describe an 
example to prove that there exists a subspace of Lp, 1 ≤ p < 2, on which isomorphism 
between complex structures reduces E1 and therefore is not reducible to an orbit relation 
induced by the action of a Polish group.

1.1. Positions of Banach spaces

The notion of relative positions of Banach spaces arose in [5] where the definition of 
automorphic space was first introduced in connection with a classical result of Linden-
strauss and Rosenthal [15]: c0 has the property that every isomorphism between two of its 
infinite codimensional subspaces can be extended to an automorphism of the whole space. 
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A separable space with such a property is said to be automorphic, or in other words, all 
its subspaces are in the same “position”. The following problem remains open.

Question 1.1. Are c0 and �2 the only separable Banach spaces with that property?

The papers [5,18,6,4] were devoted to the study of different aspects of the automorphic 
problem. In [18,6] in particular, it is provided a general theory of positions for subspaces 
of a Banach space, by defining equivalent embeddings. Namely, given two infinite codi-
mensional embeddings T, U : Y → X between separable Banach spaces, we let ∼ be 
the equivalence relation: T ∼ U if and only if there exists an automorphism A of X
such that T = AU . A position of Y in X is an ∼-equivalence class on the set of infinite 
codimensional embeddings from Y to X.

The notion of automorphy index a(Y, X) was introduced in [18] and it measures how 
many different positions a space Y admits in another Banach space X. The automorphy 
index of X is defined as a(X) = supY a(Y, X) and, of course, a Banach space is said to 
be automorphic if a(X) = 1. In [6] it is estimated the automorphy indices a(Y, X) for 
classical Banach spaces. The authors obtain, among other results: a(c0, X) = {0, 1, 2, ℵ0}
for every separable Banach space X; a(Y, �p) = c for all subspaces of �p, p �= 2, and 
a(Y, Lp) = c for all subspaces of Lp, p > 2 not isomorphic to �2; while a(�2, Lp) = 1; 
for 1 < p < 2 one has a(Y, Lp) = c for all nonstrongly embedded subspaces of Lp; 
a(Y, L1) = c for all nonreflexive subspaces of L1, while a(�2, L1) = c; a(Y, C[0, 1]) ∈ {1, c}
for every separable Banach space Y .

So once we have defined a topological setting for embeddings of a space Y into another 
space X and for the relation of being in the same position, we shall prove that the 
complexity of this relation is high for some of the above examples. Here, this can be 
interpreted as measuring the difficulty, once two embeddings T , U of Y into X are given, 
of determining whether there exists an automorphism A proving that these embeddings 
correspond to the same position.

We shall need the notion of uniformly finitely extensible space considered in [6]. 
A space is uniformly finitely extensible (or UFO) if there exists λ ≥ 1 such that for 
every finite dimensional subspace E ⊂ X, each linear operator t : E → X may be ex-
tended to a linear operator T : X → X with ‖T‖ ≤ λ‖t‖. In [4] it was proved that the 
UFO property is equivalent to being compactly extensible, meaning that every compact 
operator from a subspace Y of X into X may be extended to the whole space. Note that 
L∞-spaces satisfy this property.

According to [6] every automorphic space is UFO, and conversely, any UFO space is 
either an L∞-space or a weak type 2 near-Hilbert space with the Maurey projection prop-
erty. It remains open whether the UFO property is equivalent to being either L∞-space 
or Hilbert.

1.2. Complex structures

A second theory that we shall revisit from the point of view of “definable” equivalence 
relations is the one of complex structures on real Banach spaces. A real Banach space 
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(X, ‖ · ‖) admits a complex structure if there exists a multiplication of the elements of X
by complex scalars which is compatible with the norm:

‖λx‖ = |λ|‖x‖, ∀x ∈ X, ∀λ ∈ C,

or compatible with an equivalent norm to ‖ · ‖.
The complex structures on a real Banach space (X, ‖ · ‖) correspond (in a one-to-one 

manner) to the R-linear isomorphisms T on X satisfying T 2 = −Id: if there is a complex 
structure we can take Tx = ix; conversely, we can define (a + ib)x = ax + bTx which is 
compatible with the norm

|‖x|‖ = sup
θ∈[0,2π]

‖(cos θ)x + (sin θ)Tx‖.

The isomorphic theory of complex structure addresses questions of existence, unique-
ness, or the possible structure of the set of complex structures up to isomorphism.

By employing probabilistic methods, S. Szarek constructed in [21] the first example 
of an infinite dimensional real Banach space which does not admit a complex structure. 
Using similar methods, J. Bourgain [3] exhibited an example of an infinite dimensional 
complex Banach space X not isomorphic to its complex conjugate X: X has the same 
elements and norm as X, the same addition of vectors, while the multiplication by scalars 
is given by λ �x = λx, for λ ∈ C, x ∈ X. Since it is clear that X and X are identical as 
real Banach spaces, Bourgain’s construction provides an example of a real Banach space 
with at least two non-isomorphic complex structures.

The work of V. Ferenczi [9] shows that it is possible to construct, for all positive 
integers n ≥ 1, explicit examples of infinite dimensional real Banach spaces which ad-
mit precisely n complex structures, up to isomorphism. W. Cuellar Carrera [7] gave an 
example of a separable real Banach space with exactly infinite countably many com-
plex structures, up to isomorphism, while R. Anisca [1] constructed subspaces of Lp, for 
1 ≤ p < 2, with a continuum of complex structures, up to isomorphism.

1.3. Theory of complexity of equivalence relations

We recall the theory of classification of analytic equivalence relations on Polish spaces 
by Borel reducibility. This area of research originated from the works of H. Friedman 
and L. Stanley [11] and independently from the works of L.A. Harrington, A.S. Kechris 
and A. Louveau [12]. It may be thought of as an extension of the notion of cardinality 
in terms of complexity, when one counts equivalence classes.

A topological space is Polish if it is separable and its topology may be generated 
by a complete metric. Its Borel subsets are those belonging to the smallest σ-algebra 
containing the open sets. An analytic subset is the continuous image of a Polish space, 
or equivalently, of a Borel subset of a Polish space. If R (respectively S) is an equivalence 
relation on a Polish space E (respectively F ), then it is said that (E, R) is Borel reducible
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to (F, S), (E, R) ≤B (F, S), if there exists a Borel map f : E → F such that ∀x, y ∈ E, 
xRy ⇔ f(x)Ff(y). They are Borel bireducible, (E, R) ∼B (F, S), if both (E, R) ≤B

(F, S) and (F, S) ≤B (E, R) hold. The aim is then to compare analytic equivalence 
relations modulo ∼B .

One may note that such a map f : E → F induces an injection of E/R into 
F/S and therefore there are at least as many S-classes in F as R-classes in E when 
(E, R) ≤B (F, S). However the requirement that f is Borel will induce much finer topo-
logical regularities; actually the theory of ≤B-classification is really interesting when 
both relations have 2ω classes, and there is a huge variety of such relations which are 
not bireducible to each other.

We now list a few important equivalence relations on the ≤B-scale. After the relations 
with finitely or countably many classes, the simplest Borel equivalence relation is (R, =), 
equality between real numbers. Actually by a result of Silver [20], any Borel equivalence 
relation admits at most countably many classes, or there is a Borel reduction of (R, =)
to it. The analytic equivalence relations which are Borel reducible to (R, =) are called 
smooth; these are the relations which admit the real numbers as complete invariants.

An important equivalence relation is the relation E0 of eventual agreement between 
sequences of 0 and 1’s: on 2ω,

αE0β ⇔ ∃m ∈ N : ∀n ≥ m,α(n) = β(n).

The relation E0 is a Borel equivalence relation with continuum many classes and which, 
furthermore, is non-smooth. So (R, =) <B E0. In fact E0 is the ≤B minimum non-smooth 
Borel equivalence relation [12]. Therefore, the most natural criterium to prove that an 
analytic relation is non-smooth is to reduce E0 to it.

Quite natural are the orbit equivalence relations induced by the continuous action of 
a Polish group H on a Polish space X: the relation EH is defined on X by

xEHy ⇔ ∃h ∈ H : y = hx,

and is easily seen to be analytic. The relation E0 is one of them. For any Polish group H, 
it is possible to prove that there is a relation which is maximum among all orbit relations 
induced by actions of H. There is also a maximum EG for orbit relations associated to 
the action of Polish groups; in particular E0 <B EG.

In 1997, Kechris and Louveau [14] discover that there are analytic equivalence relations 
which are not reducible to any orbit equivalence relation, or in other words, to EG. There 
is actually a minimal equivalence relation, called E1, among those which are not Borel 
reducible to an orbit equivalence relation. It is defined as the eventual agreement between 
sequences of real numbers: for x, y ∈ RN,

xE1y ⇔ ∃n∀m ≥ n xm = ym.
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The relation E1 is, up to now, the only known obstruction to reducibility to an orbit 
equivalence relation: E1 �B EG.

Finally, the complete analytic equivalence relation Emax is the most complex of all 
analytic equivalence relations, and is strictly above E1 and EG. It may be defined formally 
as the ≤B-maximum equivalence relation, and the proof of its existence uses certain 
universality properties of analytic sets. There also exist explicit realizations of Emax, the 
most important in our setting being the relation of linear isomorphism between separable 
Banach spaces [10].

2. Classification of subspaces, positions and complex structures

In what follows, the notation � will be used for equivalence relations associated to 
linear isomorphism of Banach spaces, while ∼ will be used for relations of equivalence of 
positions of a space inside another. The letters T , U will usually stand for embeddings, 
A, B for automorphisms, P , Q for projections, J , K for complex structures.

Since the definition of the order ≤B relies on the Borel property of the function 
realizing the reduction from a relation to another, the topologies of the Polish spaces 
considered only play a role through the Borel sets they generate. In the following we shall 
therefore prefer to talk about standard Borel spaces than Polish spaces: a standard Borel 
space is a set equipped with a σ-algebra which is the σ-algebra of Borel sets induced by 
some Polish topology on the set.

Let X be a separable infinite dimensional Banach space. There is a natural way to 
equip the set of infinite dimensional subspaces of X with a Borel structure (see, e.g., 
[13]), and the relation we are more interested in, of linear isomorphism, is analytic in 
this setting [2]. If we choose X to be a universal space such as C(2ω), then we obtain a 
description of the standard Borel space SB of all separable Banach spaces. What is proved 
in [10] is that linear isomorphism � between elements of SB is an analytic relation which 
is Borel bireducible to Emax, or in other terms, has the maximum complexity among all 
analytic equivalence relations on Polish spaces. We may also restrict the relation � to 
SB(X), the standard Borel space of infinite dimensional subspaces of X.

In [10] some other relations are proved to have maximum complexity Emax: Lipschitz 
isomorphism or (complemented) biembeddability on SB, uniform homeomorphism of 
complete separable metric spaces, for example. According to [16], isometric biembed-
dability also has complexity Emax. On the other hand, linear isometry on SB [17] and 
homeomorphism of compact metric spaces [22], for example, are of complexity EG.

Given Y , X separable Banach spaces, we shall also need to study analytic equivalence 
relations on B(Y, X), the set of bounded linear operators from Y into X, or on some 
of its subsets. To do this we note that endowed with the strong operator topology, the 
space B(Y, X)≤1 of linear operators with norm less than or equal to 1 is Polish, while 
B(Y, X) is a standard Borel space with respect to the Borel structure generated by the 
strong operator topology (as a countable union of standard Borel spaces). This result 
may be found in [13] p. 80.
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It will be useful to note that since multiplication of operators is continuous in the 
strong operator topology when restricted to B × B(X) −→ B(X), where B is a norm 
bounded subset of B(X), the multiplication of operators B(X) ×B(X) −→ B(X) is Borel.

2.1. Complemented subspaces

In this part we aim to define a Borel standard space of complemented infinite dimen-
sional subspaces of a given separable Banach space X. This is done as follows: since the 
multiplication of operators B(X) ×B(X) −→ B(X) is Borel, the set of projections on X
is a Borel subset of B(X). Combined with the easy fact that the set of compact operators 
on X is Borel as well, we deduce that the set of projections of infinite range is Borel in 
B(X) for the SOT topology.

Definition 2.1. Let X be a separable infinite dimensional Banach space. We denote by 
P(X) the Borel standard space of projections of infinite range in B(X), equipped with 
the SOT topology.

Definition 2.2. Let X be a separable infinite dimensional Banach space. The relation �
defined on P(X) by

P � Q ⇔ PX � QX

is called the relation of linear isomorphism between complemented subspaces of X.

We may relate (P(X), �) to (SB(X), �) as follows:

Proposition 2.3. Let X be a separable infinite dimensional Banach space. Then the map 
from P(X) into SB(X) defined by P �→ PX is Borel. In particular the relation � is 
analytic on P(X) and

(P(X),�) ≤B (SB(X),�).

Proof. Let OU be a typical Borel set generating the Effros Borel structure of SB(X), 
i.e. OU = {Y ⊂ X : Y ∩ U �= ∅}, where U �= ∅ is open. Then given (xn)n a dense family 
in X, we note that

PX ∈ OU ⇔ PX ∩ U �= ∅ ⇔ ∃n ∈ NPxn ∈ U.

This last condition is Borel in P(X). �
This means that the complexity of isomorphism between complemented subspaces of 

X will be ≤B below the complexity of isomorphism between subspaces of X, via the 
set {PX, P ∈ P(X)}. The result of [10] about maximum complexity of isomorphism 
between subspaces may be extended to complemented subspaces as follows:
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Proposition 2.4. The complexity of linear isomorphism between complemented subspaces 
of U is Emax, where U is Pełczyński universal unconditional space.

Proof. It is proved in [10] that Emax is Borel reducible to isomorphism between subspaces 
generated by subsequences of the unconditional basis of a certain space, which therefore 
we may assume to be U [19]. Noting that every subsequence of the basis (un)n∈A of U
is complemented by the natural projection PA, it is enough to prove that the map

NN �→ P(U)

taking an infinite set A to PA is Borel. This is clear since

PA ∈ OP,x1,...,xn,ε ⇔ ∀i = 1, . . . , n, ‖Pxi − PAxi‖ < ε

which is an open condition in NN. �
2.2. Complexity of positions

Given infinite dimensional separable Banach spaces Y , X, we shall use the notation 
Emb(Y, X) for the set of linear operators which are infinite codimensional embeddings 
of Y into X (i.e. onto infinite codimensional subspaces of X). We also denote by GL(X)
the group of automorphisms on X. We let ∼ be the equivalence relation on Emb(Y, X)
defined by

T ∼ U ⇔ ∃A ∈ GL(X) : T = AU.

Definition 2.5. Let X, Y be infinite dimensional and separable. A position of Y in X is 
an ∼-equivalence class on Emb(Y, X).

By the complexity of the positions of Y in X, we mean the complexity of the equiva-
lence relation ∼ on Emb(Y, X) along the ≤B-scale. For this to make sense, we just need 
to note the following:

Proposition 2.6. The space Emb(Y, X) is a Borel standard space and ∼ is an analytic 
relation on it.

Proof. It is an easy exercise to check that the space Emb(Y, X) is a Borel subset of 
B(Y, X) (recalling that these sets are equipped with the SOT), and therefore a Borel 
standard space in its own right. Fix (yn)n and (xn)n dense in Y and X respectively. We 
let B ⊂ Xω × Emb(Y, X)2 be defined by

((zn)n, T, U) ∈ B ⇔
the map xn �→ zn extends to an isomorphism A on X satisfying T = AU.
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We claim that B is Borel, and therefore ∼ is analytic by

T ∼ U ⇔ ∃(zn)n ∈ Xω ((zn)n, T, U) ∈ B.

That B is Borel follows from

((zn)n, T, U) ∈ B ⇔ ∀n ∈ N,∀ε ∈ Q+∗, ∃m ∈ N ‖xn − zm‖ ≤ ε

∧ ∃K ∈ N
(
∀(λi)i ∈ c00(Q),K−1‖

∑
i

λixi‖ ≤ ‖
∑
i

λizi‖

≤ K‖
∑
i

λixi‖

∧ ∀m,n ∈ N,∀ε ∈ Q+∗, ‖Uym − xn‖ ≤ ε ⇒ ‖Tym − zn‖ ≤ Kε
)
. �

We now turn to the notion of uniformly finitely extensible (or UFO) space recalled 
in the introduction. Since every automorphic space has this property, non-UFO spaces 
admit subspaces in at least two positions. We shall now extend this to prove that the 
relation of position is not even smooth in these instances. Recall that UFO spaces are 
either L∞-spaces or near Hilbert, meaning that non-UFO spaces include most of the 
classical spaces.

Given n ∈ N, we write for α, β ∈ 2ω, αEn
0 β to mean that αi = βi for all i ≥ n. 

We also define for two embeddings of Y into X, U ∼n V to mean that there exists an 
automorphism T of X with TU = V , such that max{‖T‖, ‖T−1‖} ≤ n.

Theorem 2.7. If X is a separable, infinite dimensional, non-uniformly finitely extensible 
space, then there is some subspace Y of X such that the relation E0 is Borel reducible to 
(Emb(Y, X), ∼). In particular the positions of Y in X are not smooth.

Proof. Since X is not UFO there exists (see [18]) a subspace Y ⊂ X admitting a fi-
nite dimensional decomposition Y =

∑
Yn and a sequence of norm-one operators Tn :

Yn → X such that every extension of Tn to X has norm not less than 22n. Let α ∈ 2ω, 
we define an operator Tα : Y → X, Tα(

∑
yn) =

∑
n 2−nT

α(n)
n yn, where

Tα(n)(yn) =
{
Tnyn if α(n) = 1
yn if α(n) = 0.

The operator Tα is obviously compact, ‖Tα‖ ≤ 1 and does not admit any extension to 
an operator X → X. Take now 0 < ε < 1 and consider the (1 +ε)-isometry Aα : Y → X, 
Aα = Id + εTα; this map does not admit any extension to X as neither Tα does it. Let 
Yα = Aα(Y ), we define the following map

(2ω, E0)
f−→ (Emb(Y,X),�) , f(α) = Aα.

The map f is well defined, uniformly bounded, and Borel (actually continuous).
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Let us see that αE0β if and only if Yα and Yβ are in the same position. Assume first 
that αE0β and let m be such that αEm

0 β, then it follows that Tα|∑
n≥m Yn

= Tβ |∑
n≥m Yn

, 
and we can write

Yα = Aα(
∑
n<m

Yn) ⊕B and Yβ = Aβ(
∑
n<m

Yn) ⊕B,

where B = Aα(
∑

n≥m Yn) = Aβ(
∑

n≥m Yn). The (canonical) projections Pα : Yα → Yα

and Pβ : Yβ → Yβ , with ranges Pα(Yα) = Aα(
∑

n<m Yn) and Pβ(Yβ) = Aβ(
∑

n<m Yn)
of finite dimension, admit extensions P̂α : X → Aα(

∑
n<m Yn) and P̂β : X →

Aβ(
∑

n<m Yn), respectively, which are also projections. Let us write Xα = (1X− P̂α)(X)
and Xβ = (1X − P̂β)(X), hence B ⊂ Xα ∩Xβ , and since X = Aα(

∑
n<m Yn) ⊕Xα =

Aβ(
∑

n<m Yn) ⊕Xβ we can easily define an automorphism τ of X such that τAα = Aβ

since the finite dimensional pieces have the same dimension and so Xα and Xβ are iso-
morphic (as all hyperplanes in a Banach space are). Let us note for future use that, 
by the well-known fact that all subspaces of codimension k in a Banach space are 
c(k)-isomorphic, for some c(k), we may deduce that Xα and Xβ are cm-isomorphic, 
where cm only depends on m. So we can actually control the norms of τ and τ−1 by 
some constant c′m depending only on m, i.e. Yα ∼c′m Yβ once αEm

0 β.
On the other direction, we shall prove that if α and β are not Em

0 -related and n ≥ m

is such that αn = 0 and βn = 1, then any map τ : X → X such that τAα = Aβ has norm 
at least 1

2 (ε2m − 1). This implies that if α and β are not E0-related (and without loss 
of generality, αn = 0 and βn = 1 for infinitely many n) then there is no automorphism 
τ : X → X such that τAα = Aβ .

So let n ≥ m be such that αn = 0 and βn = 1, and τ : X → X be such that τAα = Aβ . 
In particular, τ|Yα

= AβA
−1
α , which means that τ : X → X extends Aβ

α = AβA
−1
α : Yα →

Yβ . Since

τ(y) = Aβ(y) − ετTα(y),

take y = yn ∈ Yn.

τ(yn) = Aβ(yn) − ετTα(yn)

= yn + ε2−nTn(yn) − ε2−nτ(yn)

whence

(1 + ε2−n)τ(yn) − yn = ε2−nTn(yn)

then

2n (
(1 + ε2−n)τ(yn) − yn

)
= Tn(yn),
ε
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so

2n

ε

(
(1 + ε2−n)τ − id

)
extends Tn. Therefore

22n ≤ ‖2n

ε

(
(1 + ε2−n)τ − id

)
‖ ≤ 2n

ε
(2‖τ‖ + 1)

and ‖τ‖ ≥ 1
2 (ε2n − 1) ≥ 1

2 (ε2m − 1). �
Beyond the automorphic space problem, it would be interesting to investigate for 

which X the relation of position of Y in X is smooth, for all choices of Y . The above 
shows that X would have to be uniformly finitely extensible, leading to the question:

Question 2.8. Find a non-automorphic, uniformly finitely extensible space X, such that 
the position of Y inside X is smooth for all subspaces Y of X.

We recall that it is an open conjecture (see [4] and [6]) whether the UFO property 
is equivalent to being either L∞ or isomorphic to the Hilbert space. Among L∞ (and 
therefore UFO) spaces which are not automorphic, it remains fairly open when E0 can 
be reduced to positions of subspaces. For example, remembering that in [6] it is shown 
that a(Y, C(0, 1)) = c for many choices of Y (such as Y = �p, p �= 1, or Y = C(0, 1)
itself):

Question 2.9. Find a space Y such that E0 is reducible to the positions of Y inside 
C(0, 1).

Note that the relation of equivalence of positions of Y inside X is the orbit relation of 
the action (A, T ) �→ AT of the group GL(X) on the standard Borel space Emb(Y, X). So 
although GL(X) is not a Polish group, one may be led to look for uniformity arguments 
to prove that equivalence of positions of space Y inside X is reducible to an orbit relation 
induced by action of some Polish group, and in particular is not maximum among analytic 
equivalence relations. One of our main results, however, is that this is not so. To prove 
this we turn to reductions of the relation E1 in the case of the classical spaces �p and Lp.

Proposition 2.10. Let 1 ≤ p < ∞. Let Y , X be separable. Assume there is a Borel 
reduction r of (2ω, E0) to (Emb(Y, X), ∼) with the following properties:

(a) r(α) is bounded uniformly on α ∈ 2ω;
(b) there exists a sequence (ck)k of integers such that

αEk
0β ⇒ r(α) ∼ck r(β);



3856 R. Anisca et al. / Journal of Functional Analysis 272 (2017) 3845–3868
(c) there exists a sequence (dk)k of integers tending to infinity such that if α and β are 
not Ek

0 -related and we assume α(i) = 0 and β(i) = 1 for some i ≥ k, then there is 
no map T on X of norm less than dk such that Tr(α) = r(β).

Then the relation E1 is Borel reducible to (Emb(�p(Y ), �p(X)), ∼) and to

(Emb(c0(Y ), c0(X)),∼).

Proof. To each α = (αn)n ∈ (2ω)ω, where for each n ∈ ω, αn = (αn(k))k∈ω, associate

R(α) = (r((αn(1))n∈ω), r((αn(2))n∈ω), . . . , r((αn(k))n∈ω), . . .).

Because r is bounded by (a), this defines an embedding of �p(Y ) into �p(X) (of c0(Y ) into 
c0(X)), and R is Borel. We denote by Yk and Xk the k-th copies of Y and X respectively.

Note that if αE1β then there is m ∈ N such that for k ≥ m, αk = βk, which implies 
that for each k, αn(k)n and βn(k)n are E0-related and actually only differ by at most 
the first m-terms. Then by the property (b), we may paste the maps Tk : Xk → Xk

for which Tkr(αn(k)n) = r(βn(k)n) and max{‖Tk‖, ‖T−1
k ‖} ≤ cm, to define a global 

automorphism T witnessing that R(α) and R(β) are in the same position.
On the other hand assume α and β are not E1-related but that there is an automor-

phism T of �p(X) such that R(α) = TR(β); let K be an infinite subset of N such that for 
all k ∈ K, αk �= βk and for each k ∈ K let ik be such that αk(ik) �= βk(ik). Without loss 
of generality assume αk(ik) = 0 and βk(ik) = 1 with K still infinite. Since r(αn(ik)n)
(resp. r(βn(ik)n)) is an embedding of Yik into Xik , we have

r(αn(ik)n) = PkTkr(βn(ik)n),

where Tk : Xik → �p(X) (or Tk : Xik → c0(X)) is the restriction of T to Xik and Pk the 
canonical projection onto Xik . Note that (αn(ik))n and (βn(ik))n are not Ek

0 -related, 
since αk(ik) = 0 �= 1 = βk(ik). Therefore by (c) the map PkTk has norm at least dk. And 
therefore ‖T‖ ≥ dk for all k ∈ K, which is a contradiction. �

We finally prove that E1 is reducible to positions of Y inside X for classical spaces 
such as the �p’s, and therefore this relation is not reducible to the orbit relation induced 
by the action of a Polish group.

Corollary 2.11. Let X be a separable non-UFO space. There exists a subspace Y ⊂ X such 
that E1 is Borel reducible to (Emb(�p(Y ), �p(X)), ∼) and to (Emb(c0(Y ), c0(X)), ∼).

Proof. Simply notice that the Borel map f : (2ω, E0) → (Emb(Y, X), ∼) in Proposi-
tion 2.7 verifies the conditions in Proposition 2.10. �
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Theorem 2.12. For 1 ≤ p < ∞, p �= 2, the relation E1 is Borel reducible to 
(Emb(�p, �p), ∼) and to (Emb(�p, Lp), ∼). Therefore the relation of position of �p in �p
(resp. in Lp) is not Borel reducible to an orbit relation induced by the action of a Polish 
group.

Proof. By Proposition 3.15 in [6], there exists a subspace Y ⊂ �p, admitting a FDD, 
which is isomorphic to �p and for which there is a Borel reduction (2ω, E0) →
(Emb(Y, �p), ∼) which also verifies conditions in Proposition 2.10. The same arguments 
based on [6] Proposition 3.15 work for X = Lp. �
2.3. Complexity of complemented positions

A classical method to compute equivalent positions is to look at embeddings as com-
plemented subspaces and compare the summands. Complemented positions will also be 
more easily related to the relation of isomorphism of complex structures.

This motivates to define, for X, Y be infinite dimensional separable Banach spaces, 
the standard Borel space of complemented embeddings of Y into X as the Borel subspace 
Embc(Y, X) of Emb(Y, X) ×P(X) given by

(T, P ) ∈ Embc(Y,X) ⇔ TY = PX.

We let ∼ be the analytic equivalence relation defined on Embc(Y, X) by

(T, P ) ∼ (U,Q) ⇔ T ∼ U,

and we call the complexity of this relation the complexity of complemented positions of 
Y in X.

Definition 2.13. Let X, Y be infinite dimensional and separable. A complemented position
of Y in X is an ∼-equivalence class on Embc(Y, X).

We note that, as is to be expected:

Proposition 2.14. The map Embc(Y, X) → Emb(Y, X) defined by (T, P ) �→ T is Borel. 
In particular, the complexity of complemented positions of Y in X is a lower bound of 
the complexity of positions of Y in X.

We shall now use Proposition 2.4 to show that the highest complexity Emax among 
analytic equivalence relations, can be achieved for the complexity of (complemented) 
positions of a space inside another. So there will be no upper bound other than Emax
for the complexity of positions of a space inside another.

Proposition 2.15. If U is Pełczyński universal unconditional basis, then the complexity 
of the relation of (complemented) positions of U in itself is Emax.
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Proof. By Proposition 2.4 there is a Borel reduction r of Emax to isomorphism between 
subspaces of U generated by subsequences of the basis (un)n (identified with elements 
A of NN). Since U � �2(U) � U ⊕ �2(U) we may use as basis of U a basis (vn)n which 
is the union of infinitely countably many copies (ui

n)n of (un), i = 0, 1, . . . . We denote 
Ui = [ui

n]n∈N, V0 = ⊕i≥1Ui and see U as U = ⊕n∈NUn. Note that if A ∈ NN, then 
YA = [u0

n]n/∈A ⊕ V0 is a complemented subspace of U which is isomorphic to U by 
classical properties of Pelczynski’s space; therefore embeddings onto subspaces YA and 
YB are in the same position if and only if the quotients U/YA and U/YB are isomorphic, 
i.e., [un]n∈A � [un]n∈B . From this we deduce that there is a Borel reduction of Emax to 
the relation ∼′ on NN defined by

A ∼′ B ⇔ embeddings onto YA and YB have the same position in U.

Let QA be the canonical projection onto YA associated to the unconditional basis 
(vn)n and TA a choice of an embedding of U into U for which TA(U) = YA. Since

A ∼′ B ⇔ TA ∼ TB ⇔ (TA, QA) ∼ (TB , QB),

it only remains to check that the map from NN to Embc(U, U) associating to A the pair 
(TA, QA) may be chosen to be Borel. Since A �→ QA is clearly Borel, let us describe a 
Borel choice of A �→ TA: we extend by linearity the map for which

TA(ui
n) = ui+1

n , ∀n ∈ A,∀i ∈ N

and

TA(ui
n) = ui

n, ∀n /∈ A,∀i ∈ N.

This is a Borel map for which TA is an embedding of U onto YA, for all A. �
2.4. Complex structures

The set of complex structures on a separable real space X will be identified with the 
set

C(X) := {T ∈ B(X) | T 2 = −Id}.

Since the multiplication of operators B(X) ×B(X) −→ B(X) is Borel, it follows that the 
set C(X) is a Borel subset of B(X) and therefore a standard Borel set.

Definition 2.16. Let X be a separable real Banach space. The set

C(X) = {T ∈ B(X) | T 2 = −Id}
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seen as a subspace of B(X) with the strong operator topology, will be called the standard 
Borel space of complex structures on X.

Definition 2.17. Given two elements J , K in C(X), we say that J � K if there exists an 
isomorphism A ∈ GL(X) such that AJA−1 = K.

Note that J � K if and only if the associated complex structures are C-linearly 
isomorphic.

Lemma 2.18. The relation � is analytic on the standard Borel space C(X).

Proof. We fix a countable family (xn)n with dense linear span in X, and note that an 
isomorphism A on X may be coded by a family (yn)n ∈ Xω with dense linear span 
and so that the map xn �→ yn extends to an isomorphism onto its image. The relation 
AJA−1 = K is then equivalent to AJxn = Kyn for all n, which we may reformulate, 
using an upper bound M for ‖A‖ and ‖K‖, in terms of approximations of K(

∑
i λixi)

when 
∑

i λixi approximates yn. We deduce the following characterization: J � K if and 
only if there exists (yn)n ∈ Xω such that

(i) ∃k ∈ N, ∀(λn) ∈ c00(Q), k−1‖ 
∑

n λnxn‖ ≤ ‖ 
∑

n λnyn‖ ≤ k‖ 
∑

n λnxn‖,
(ii) ∀n ∈ N, ∀q ∈ Q+∗, ∃(λi) ∈ c00(Q) : ‖xn −

∑
i λiyi‖ < q,

(iii) ∃M ∈ N ∀q ∈ Q+∗, ∀(λi), (μi) ∈ c00(Q), ‖K(
∑

i λixi)‖ ≤ M‖ 
∑

i λixi‖ and ∀n ∈ N, (
(‖ 

∑
i λixi−Jxn‖ ≤ q) ∧(‖yn−

∑
i μixi‖ ≤ q)

)
⇒ ‖ 

∑
i λiyi−K(

∑
i μixi)‖ ≤ 2Mq.

Since the set of ((yn), J, K) satisfying (i)–(ii)–(iii) is a Borel subset of the space 
(X, ‖.‖)ω × C(X)2, it follows that � is analytic on C(X). �

We now relate the Borel standard space C(X) of complex structures to a Borel stan-
dard space of complemented subspaces as follows. Recall that if J is a complex structure 
on a real space X, then the space

XJ = {(x, Jx), x ∈ X}

is a complemented, C-linear subspace of the complexification X ⊕C X of X, which is 
C-linearly isomorphic to the complex structure XJ induced by J . Actually, XJ is the 
image of the C-linear projection PJ defined on X ⊕C X by

PJ(x, y) = 1
2(x− Jy, Jx + y).

It is clear that the map J �→ PJ is a Borel isomorphism between C(X) and the Borel 
subspace {PJ , J ∈ C(X)} of P(X ⊕C X), and by definition,

J � K ⇔ XJ � XK ⇔ PJ � PK .
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In other words our definition of complexity of isomorphism between complex structures 
coincides with the natural one induced by isomorphism of complemented subspaces of 
X⊕CX on the Borel set {PJ , J ∈ C(X)}. Therefore also the complexity of isomorphism of 
complex structures on X will be ≤B-below the complexity of isomorphism on SB(X ⊕C

X) (resp. P(X ⊕C X)), i.e., between (resp. complemented) subspaces of X ⊕C X.
This line of ideas initiated with a result of N.J. Kalton proving that if X ⊕C X is 

primary then X admits unique complex structure, and is further exemplified in [8].
Let us note here that since the complexity of linear isomorphism between separable 

spaces is Emax, it is natural to ask if such maximum complexity may be achieved by 
isomorphism between different complex structures on a given real Banach space X.

On the other hand, the relation of isomorphism between complex structures is the 
orbit relation of the action (U, T ) �→ UTU−1 of the group GL(X) on the standard Borel 
space C(X). So although GL(X) is not a Polish group, one might hope to prove that 
isomorphism between complex structures on X is reducible to an orbit relation induced 
by action of some Polish group. Our final result is that, similarly to what happens for 
positions, this is not so:

Theorem 2.19. There exists a separable real space X such that E1 is Borel reducible to 
linear isomorphism between complex structures on X. In particular, linear isomorphism 
between complex structures on X is not Borel reducible to the orbit equivalence relation 
induced by a Polish group action on a Polish space.

The proof of the theorem is more technical than the previous ones and is given in the 
next section. It is striking that the level of complexity E1 may be obtained for C-linear 
isomorphism between spaces which are all R-linearly isometric. This means that in some 
sense R-linear and C-linear structures may be quite far apart on a Banach space. Let us 
note the following question:

Question 2.20. Find a separable real Banach space such that Emax is Borel reducible to 
linear isomorphism between complex structures of X.

3. A reduction result for complex structures

Inside Lp, with 1 ≤ p < 2, we will construct a (complex) Banach space of the form:

X = (⊕k≥1 Xk)�p with each Xk = (⊕m≥1 Xk,m)�p , for all k ≥ 1.

Given α = (αk)k ∈ (2ω)ω, with αk = (αk(m))m ∈ 2ω, we define for each k

Xk(α) = (⊕m≥1 Yk,m)�p

where
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Yk,m =

⎧⎨⎩Xk,m, when αk(m) = 0

Xk,m, when αk(m) = 1.

Then

X(α) = (⊕k≥1 Xk(α))�p

gives a complex structure on X, treated as a real space.
Let Tα ∈ B(X) be the element of the standard Borel space of complex structures on 

X associated to X(α). We may write Tα as

Tα = (Tk(α))k,

where

Tk(α) = (Tk,m(α))m

with Tk,m(α) is defined on Xk,m by

Tk,m(α)(x) =

⎧⎨⎩ ix, when αk(m) = 0

−ix, when αk(m) = 1.

It is straightforward that the map α �→ Tα is Borel from (2ω)ω into B(X) and therefore 
into the standard Borel space of complex structures on X.

The claim is that, for a suitable X as above, we have X(α) � X(β) (equivalently 
Tα � Tβ) if and only if αE1β. For such X, E1 is therefore Borel reducible to linear 
isomorphism between complex structures on X. In particular

Theorem 3.1. The equivalence relation E1 is Borel reducible to linear isomorphism be-
tween complex structures on the subspace X of Lp.

Let k ≥ 1, m ≥ 1 be arbitrarily fixed. The ingredient space Xk,m will be constructed 
as a subspace of �p1 ⊕p . . .⊕p �p5 , for some suitable constants 2 > p1 > p2 > . . . > p5 > p

depending on k and m. Furthermore, Xk,m will admit a 1-unconditional decomposi-
tion into 2-dimensional spaces Xk,m = span [Zt]t≥1. More specifically, if we denote by 
{fj,t}t≥1 the natural basis of �pj

(j = 1, . . . , 5), we define the vectors xt and yt spanning 
Zt by

xt = f1,t + γ1f3,t + γ2f4,t + γ3f5,t

yt = f2,t + γ2f4,t + i γ3f5,t

(1)
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for all t ≥ 1. The constants γ1, γ2, γ3 will depend on η := 1/p2 − 1/p1 = 1/p3 − 1/p2 =
1/p4 − 1/p3 = 1/p5 − 1/p4 and on a positive integer N that is chosen according to k
and m. More precisely, γ1 = N−2η, γ2 = N−8η and γ3 = N−24η.

Under these definitions it was proved in [1] (Corollary 2.2) that, in terms of the 
Banach–Mazur distance, we have

d(Xk,m, Xk,m) ≥ 1
100N

η.

This was the consequence of the following fact regarding the behavior of linear oper-
ators acting from Xk,m to Xk,m, which will be also useful to us later in the sequence.

First, let T : W −→ V be a bounded linear operator with W , V Banach spaces 
having finite dimensional decompositions {Wt}t and {Vt}t respectively. We say that T
is block-diagonal with respect to {Wt}t and {Vt}t if for every t there exists a finite set 
Bt ⊂ {1, 2, . . .} such that

⎧⎨⎩maxBs < minBt ∀s, t ∈ {1, 2, . . .} with s < t,

suppTw ⊂ Bt ∀w ∈ Wt, ∀t ∈ {1, 2, . . .}

where suppTw is taken with respect to the decomposition {Vt}t.

Proposition 3.2. [1] Let I ⊂ {1, 2, . . .} be an infinite set and let Y be the subspace of 
Xk,m defined by Y = span[Zt]t∈I . Consider T : Y −→ Xk,m a block-diagonal operator 
(with respect to {Zt}t∈I and {Zt}t≥1) with ‖T‖ ≤ 1. Then

(i) There exists a finite set J ⊂ I such that

max{‖Txt‖, ‖Tyt‖} ≤ 24N−η, for all t ∈ I \ J. (2)

(ii) Let {Il}l≥1 be a family of disjoint subsets of I with the property that |Il| = N , for 
all l ≥ 1. Let x̃l =

∑
t∈Il

al(t)xt, ỹl =
∑

t∈Il
al(t)yt satisfy 

∑
t∈Il

|al(t)|p2 = 1, for 
l = 1, 2, . . . . Then there exists a finite subset J ′ ⊂ {1, 2, ...} such that

max{‖T x̃l‖, ‖T ỹl‖} ≤ 70N−η, for all l ∈ {1, 2, ...} \ J ′. (3)

Notice that x1, y1, x2, y2, . . . form a Schauder basis for both Xk,m and Xk,m. Nor-
malized blocks of this basis satisfy an upper p5-estimate, which in turn implies that 
the basis is shrinking and hence w-null. Given now any bounded linear operator 
T : Y = span[Zt]t∈I −→ Xk,m, with I ⊂ {1, 2, . . .} infinite, it is easy to see that a 
classical gliding-hump argument allows us to approximate T on an infinite dimensional 
subspace Y0 = span[Zt]t∈I0 ⊂ Y by a block-diagonal operator T0 : Y0 −→ Xk,m. We will 
use this fact later in the sequel.
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We are now going into the specific details of choosing the indices p1 = p1(k, m) >
p2 = p2(k, m) > . . . > p5 = p5(k, m) corresponding to each of the ingredient spaces 
Xk,m, for k ≥ 1 and m ≥ 1, as well as the positive numbers N = N(k, m) which are part 
of the definition (1) of the basis of Xk,m. Recall that in (1) we have required

1
p2(k,m) − 1

p1(k,m) = . . . = 1
p5(k,m) − 1

p4(k,m) =: η(k,m). (4)

We start by picking a sequence {q(k, m)}k,m as follows. For a fixed k ≥ 1 we choose 
q(k, m) −→ p as m −→ ∞ such that q(k, m) > q(k, m + 1) for all m ≥ 1. Once q(k, m)
have been chosen for a fixed k ≥ 1 and for all m ≥ 1, the inductive step of picking 
{q(k + 1, m)}m≥1 is done in such a way to satisfy

q(k,m + 1) > q(k + 1,m) > q(1,m + k + 1)

for all m ≥ 1.
It is not hard to see that, once we choose {q(k, m)}k≥1,m≥1 in this way, we can look at 

it as a decreasing sequence if on the set of double indices (k, m) we consider the order re-
lation “≤” which follows the order: (1, 1), (1, 2), (2, 1), (1, 3), (2, 2), (3, 1), . . . , (1, i), (2, i −
1), . . . , (i − 1, 2), (i, 1), . . . .

Next, for k ≥ 1 and m ≥ 1, we pick p1(k, m) > p2(k, m) > . . . > p5(k, m) satisfying 
(4) together with

q(k,m) > p1(k,m) > . . . > p5(k,m) > q(k0,m0) (5)

where (k0, m0) is the successor of (k, m) with respect to “≤”, and also

(m + k − 1)(m + k)
2 η(k,m) < 1

p1(k,m) − 1
q(k,m) . (6)

Lastly, we define N(k, m) as

N(k,m) =
[
(k + 1)1/η(k,m)

]
for k ≥ 1, m ≥ 1, which gives the estimate

k < N(k,m)η(k,m) ≤ k + 1. (7)

Proof of Theorem 3.1. When α = (αk)k ∈ (2ω)ω, β = (βk)k ∈ (2ω)ω satisfy αE1β we 
can see that the spaces X(α) and X(β) are isomorphic by means of a linear operator 
T : X(α) −→ X(β) which is defined as follows:

• when αk(m) = βk(m), then T |Yk,m
= Id |Yk,m

;
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• when αk(m) = 0 and βk(m) = 1, then on Xk,m = span [Zt]t≥1

T

⎛⎝∑
t≥1

(atxt + btyt)

⎞⎠ =
∑
t≥1

(at � xt − bt � yt) (8)

for all scalars {at}t≥1, {bt}t≥1;
• when αk(m) = 1 and βk(m) = 0, then on Xk,m = span [Zt]t≥1

T

⎛⎝∑
t≥1

(at � xt + bt � yt)

⎞⎠ =
∑
t≥1

(atxt − btyt) (9)

for all scalars {at}t≥1, {bt}t≥1.

Recall that multiplication by scalars in Xk,m is given by λ � x = λx, for λ ∈ C, 
x ∈ Xk,m. Taking into account the definition (1) of the basis of Xk,m and Xk,m we can 
rewrite (8) as

T

⎛⎝∑
t≥1

atf1,t + btf2,t + γ1atf3,t + γ2(at + bt)f4,t + γ3(at + ibt)f5,t

⎞⎠ =

=
∑
t≥1

atf1,t − btf2,t + γ1atf3,t + γ2(at − bt)f4,t + γ3(at − ibt)f5,t.

A simple computation shows that, in this situation, we have

‖T |Xk,m
‖ ≤ 2γ2γ

−1
3 = 2N(k,m) 16η(k.m) ≤ 2(k + 1)16.

In the case when we are dealing with (9) we also get ‖T |Xk,m
‖ ≤ 2(k + 1)16. Thus we 

can conclude that

‖T‖ ≤ 2 (1 + max{k | αk �= βk})16 .

Now let α = (αk)k ∈ (2ω)ω, with αk = (αk(m))m ∈ 2ω, and β = (βk)k ∈ (2ω)ω, with 
βk = (βk(m))m ∈ 2ω, be elements in (2ω)ω which are not E1-equivalent. Without loss of 
generality assume that

A = {k | ∃m such that αk(m) = 0 and βk(m) = 1}

is infinite.
Suppose that T : X(α) −→ X(β) is an isomorphism with ‖T‖ ≤ 1/4 and ‖T−1‖ =: C. 

For k ≥ 1, m ≥ 1, denote by Pk,m : X(β) −→ Yk,m the canonical projection of X(β)
onto
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Yk,m =

⎧⎨⎩Xk,m, when βk(m) = 0

Xk,m, when βk(m) = 1.

Furthermore, since Yk,m ⊂ �p1(k,m) ⊕p . . .⊕p �p5(k,m), we will denote by

Qj(k,m) : Yk,m −→ �pj(k,m)

the canonical projection for all j = 1, . . . , 5.
Let k ∈ A be arbitrarily fixed and pick m ≥ 1 such that αk(m) = 0 and 

βk(m) = 1. We will concentrate our attention on the action of the isomorphism T on 
Xk,m = span [Zt]t≥1.

First, we notice that for (k′, m′) > (k, m) we have the following: for every δ > 0 and 
infinite set L ⊆ N, there exists an infinite subset L′ ⊆ L such that

‖Pk′,m′T | span[Zt]t∈L′ ‖ ≤ δ.

Otherwise we can find δ0 > 0 and a normalized block sequence (zs)s ⊂ Xk,m (with 
respect to the UFDD {Zt}t) satisfying

δ0 < ‖Pk′,m′Tzs‖(
= (‖Q1(k′,m′)Pk′,m′Tzs‖p + . . . + ‖Q5(k′,m′)Pk′,m′Tzs‖p)

1
p

)
. (10)

By passing to a subsequence and perturbing the operator Pk′,m′T (similarly as in the 
remark following Proposition 3.2) we may assume that (Pk′,m′Tzs)s are successive in 
Yk′,m′ , with respect to the 2-dimensional UFDD in Yk′,m′ . This ensures that (Pk′,m′Tzs)s
admit a lower p1(k′, m′)-estimate, based on (10). On the other hand, (zs)s admit an upper 
p5(k, m)-estimate, and this gives a contradiction since p5(k, m) > q(k′, m′) > p1(k′, m′).

Inductively, for every (δk′,m′)(k′,m′)>(k,m) ↘ 0 we can get infinite sets

{Lk′,m′}(k′,m′)>(k,m)

with the property that

Lk′,m′ ⊇ Lk′′,m′′ , whenever (k′,m′) ≤ (k′′,m′′),

and

‖Pk′,m′T | span[Zt]t∈L
k′,m′

‖ ≤ δk′,m′ , for all (k′,m′) > (k,m).

Let I = {tk′,m′}(k′,m′)>(k,m) be the diagonal sequence of {Lk′,m′}(k′,m′)>(k,m). We then 
obtain a subspace of Xk,m, namely Sk,m := span[Zt]t∈I , and by a perturbation argument 
we can get a linear operator T0 : Sk,m −→ X(β) which satisfies
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1
2C ‖x‖ ≤ ‖T0x‖ ≤ 1

2‖x‖, for all x ∈ Sk,m,

and

Pk′,m′T0z = 0,

for all z ∈ span[Zt]t∈I, t≥tk′,m′ and all (k′, m′) > (k, m).
Denote by Rk,m : X(β) −→

(∑
(k′,m′)>(k,m) ⊕Yk′,m′

)
�p

the canonical projection.
It is easy to see now that for all δ > 0 and every infinite set L ⊆ I there exists t ∈ L

satisfying

‖Rk,mT0 | Zt
‖ ≤ δ.

Otherwise, we can find δ0 > 0, an infinite set L0 ⊆ I and, for each t ∈ L0, normal-
ized elements zt ∈ Zt such that ‖Rk,mT0zt‖ > δ0. By passing to a subsequence and 
perturbing the operator Rk,mT0 we may assume that (Rk,mT0zt)t∈L0 are disjoint in (∑

(k′,m′)>(k,m) ⊕Yk′,m′

)
�p

and thus they admit a lower p-estimate. However (zt)t∈L0

admit an upper p5(k, m)-estimate, and this gives a contradiction since p5(k, m) > p.
This allows us to obtain a subsequence Ĩ of I and, after some perturbations, a lin-

ear operator (denoted again by) T0 : span[Zt]t∈Ĩ −→ X(β) with the property that 
Rk,mT0 = 0 and

1
4C ‖x‖ ≤ ‖T0x‖ ≤ ‖x‖, for all x ∈ span[Zt]t∈Ĩ .

In addition, we can also assume that T0 has the property that Pk′,m′T0 : span[Zt]t∈Ĩ −→
Yk′,m′ is block-diagonal, with respect to their respective 2-dimensional decompositions, 
for all (k′, m′) ≤ (k, m).

Looking now at Pk,mT0 : span[Zt]t∈Ĩ −→ Yk,m = Xk,m we have all the conditions 
of Proposition 3.2 satisfied. We can then find I0 ⊂ Ĩ, |I0| = N(k, m) with the property 
that, for y =

∑
k∈I0

yk,

‖Pk,mT0y‖ ≤ 70N(k,m)−η(k,m)N(k,m)
1

p2(k,m) ,

and thus

‖
∑

(k′,m′)<(k,m)

Pk′,m′T0y‖ ≥ ‖T0y‖ − ‖Pk,mT0y‖

≥
(

1
4C − 70N(k,m)−η(k,m)

)
N(k,m)

1
p2(k,m) . (11)

For every (k′, m′) < (k, m) we have
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‖Pk′,m′T0y‖ = ‖
∑
k∈I0

Pk′,m′T0yk‖

≤ ‖
∑
k∈I0

Q1(k′,m′)Pk′,m′T0yk‖ + . . . + ‖
∑
k∈I0

Q5(k′,m′)Pk′,m′T0yk‖

≤ 2N(k,m)
1

p1(k′,m′) + . . . + 2N(k,m)
1

p5(k′,m′) ≤ 10N(k,m)
1

q(k,m) .

The last inequalities are consequences of (5) and the fact that Pk′,m′T0 is block-diagonal 
and

‖Qj(k′,m′)Pk′,m′T0yk‖ ≤ ‖yk‖ ≤ 2, ∀k ∈ I0, ∀j = 1, . . . , 5.

Since there are at most (m + k − 1)(m + k)/2 elements (k′, m′) < (k, m) we get, as a 
consequence of (6) and (7),

‖
∑

(k′,m′)<(k,m)

Pk′,m′T0y‖ ≤ 10(m + k − 1)(m + k)
2 N(k,m)

1
q(k,m)

≤ 10k
(m+k−1)(m+k)

2 N(k,m)
1

q(k,m)

< 10N(k,m)
(m+k−1)(m+k)

2 η(k,m)+ 1
q(k,m)

≤ 10N(k,m)
1

p1(k,m) .

We now conclude based on (11) that

10N(k,m)
1

p1(k,m)− 1
p2(k,m) ≥ 1

4C − 70N(k,m)−η(k,m)

which in turn gives C ≥ N(k,m)η(k,m)
/320 > k/320 (by (4) and (7)).

As k ∈ A was arbitrarily fixed, we obtain a contradiction and this concludes the 
proof. �
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