MAE 0580/ MAC 6926

Lista 6

Notations

- $\mathcal{X}=\mathbb{R}^{d}$ denotes the space of entries, or stimuli;
- $\mathcal{Y}=\{-1,1\}$ denotes the classifications labels;
- Given a vector $w=\left(w_{0}, \ldots, w_{d}\right) \in \mathbb{R}^{d+1}$, we define the transformation $s_{w}: \mathcal{X} \rightarrow \mathbb{R}$ in the following way $s_{w}(x)=w_{0}+\sum_{i=1}^{d} w_{i} x(i)$
- We state the Jensen inequality in the specific form it will be used in exercise 5 .

Proposition For any real number $p \in[0,1], r_{1} \geq 0$ and $r_{2} \geq 0$, the following inequality is verified:

$$
\log \left(p r_{1}+(1-p) r_{2}\right) \geq p \log \left(r_{1}\right)+(1-p) \log \left(r_{2}\right)
$$

Solutions

1. The statement we want to prove is obviously true for $\mathbb{P}(Y=1 \mid X=x)=\frac{1}{1+e^{-s_{\tilde{w}}(x)}}$, therefore it remains only to prove it for $Y=-1$. We have:

$$
\mathbb{P}(Y=-1 \mid X=x)=1-\mathbb{P}(Y=1 \mid X=x)=1-\frac{1}{1+e^{-s_{\tilde{w}}(x)}}=\frac{e^{-s_{\tilde{w}}(x)}}{1+e^{-s_{\tilde{w}}(x)}}
$$

Then, multiplying by $e^{s_{\tilde{w}}(x)}$ both the numerator and the denominator, we get the desired result, that is:

$$
\mathbb{P}(Y=-1 \mid X=x)=\frac{1}{1+e^{s_{\tilde{w}}(x)}}
$$

2. Using the independence of the $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)$, we have that:

$$
\begin{aligned}
\frac{1}{n} \log \mathbb{P}\left(Y_{1}=y_{1}, \ldots Y_{n}=y_{n} \mid X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right) & =\frac{1}{n} \log \prod_{m=1}^{n} \mathbb{P}\left(Y_{m}=y_{m} \mid X_{m}=x_{m}\right) \\
& =\frac{1}{n} \sum_{m=1}^{n} \log \mathbb{P}\left(Y_{m}=y_{m} \mid X_{m}=x_{m}\right)
\end{aligned}
$$

And replacing the $\mathbb{P}\left(Y_{i}=y_{i} \mid X_{i}=x_{i}\right)$ by the formula from the previous exercise indeed gives us:

$$
\frac{1}{n} \log \mathbb{P}\left(Y_{1}=y_{1}, \ldots Y_{n}=y_{n} \mid X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right)=-\frac{1}{n} \sum_{m=1}^{n} \log \left(1+e^{-y_{m} s_{\tilde{w}}\left(x_{m}\right)}\right)
$$

3. Here because $w_{0}=0$ in each case, and because we are in dimension $d=1$, the risk $\mathcal{E}_{n}(w)$ will look like this :

$$
\mathcal{E}_{n}(w)=\frac{1}{n} \sum_{m=1}^{n} \log \left(1+e^{-Y_{m} w_{1} X_{m}}\right)
$$

The values obtained are the following :

- $w_{1}=1$, then $\mathcal{E}_{10}(w) \approx 0.7480745$
- $w_{1}=2$, then $\mathcal{E}_{10}(w) \approx 0.8832807$
- $w_{1}=-1$, then $\mathcal{E}_{10}(w) \approx 0.7310745$

Tips

It's way faster to write few lines of code in your favorite language than to actually compute it by hand. Here a short R code to dot it:

```
x = c(-0.93, -0.90,0.64,-0.36,-0.93,-0.23, 0.59, -0.02, 0.29, 0.50)
y = c( 1, 1,-1,-1,-1,-1, 1, 1,-1, 1)
W = 1
n = length(x)
Epsilon = 0
for(i in seq(1,n))
{
    Epsilon = Epsilon + log(1 + exp(-y[i] * w * x[i]))
}
Epsilon = -Epsilon/n
```

4. Using the law of large number we get that:

$$
\begin{aligned}
\lim _{n \rightarrow+\infty} \mathcal{E}_{n}(w) & =\mathbb{E}\left(\log \left(1+e^{-Y s_{w}(X)}\right)\right) \\
& =-\sum_{y \in\{-1,1\}} \mathbb{E}\left(\log \left(\frac{1}{1+e^{-y s_{w}(X)}}\right) 1_{Y=y}\right) \\
& =\sum_{y \in\{-1,1\}} \int_{\mathcal{X}} \mathbb{P}_{X}(d x) \log \left(\frac{1}{1+e^{-y s_{w}(x)}}\right)^{-1} \mathbb{P}(Y=y \mid X=x)
\end{aligned}
$$

Inversing the sum and the integral and using the notations of the exercise, we get the desired result.
5. To lighten the computation we will use $p(\tilde{w})$ as a short hand for $p_{\tilde{w}}(1 \mid x)$ and $p(w)$ for $p_{w}(1 \mid x)$. Translated in these terms, the inequality we want to show becomes :

$$
p(\tilde{w}) \log (p(w))+(1-p(\tilde{w})) \log (1-p(w))-(p(\tilde{w}) \log (p(\tilde{w}))+(1-p(\tilde{w})) \log (1-p(\tilde{w}))) \leq 0
$$

And the left part of the inequality can be rewritten :

$$
p(\tilde{w}) \log \left(\frac{p(w)}{p(\tilde{w})}\right)+(1-p(\tilde{w})) \log \left(\frac{1-p(w)}{1-p(\tilde{w})}\right)
$$

And using Jensen inequality, this last expression is less or equal than :

$$
\log \left(p(\tilde{w}) \frac{p(w)}{p(\tilde{w})}+(1-p(\tilde{w})) \frac{1-p(w)}{1-p(\tilde{w})}\right)
$$

Which reduces to $\log (1)=0$.
6. We can see in exercise 3 that $\mathcal{E}_{10}(\tilde{w}) \approx 0.7480745$ is actually greater than $\mathcal{E}_{10}(w)$ for the w given by $w_{0}=0$ and $w_{1}=-1$ (then, as stated in the exercise $\mathcal{E}_{10}(w) \approx 0.7310745$). This is obviously only true because our sample is too small $(n=10)$, and is never true asymptotically as we showed in previous exercise.

