VC dimension : exercises

October 15, 2017

Notation :

We will consider functions $f : \chi \mapsto \{0, 1\}$.

If F is a class of such functions and x_1, \dots, x_n is a family of n points in χ , we define the set $N_F(x_1, \dots, x_n)$ as the set of all images of this family of points by the functions in F:

$$N_F(x_1, \cdots x_n) = \{(f(x_1), \cdots f(x_n)), f \in F\}$$

We define then the shattering coefficient of F with respect to n points sets in χ , denoted S(F, n), as :

 $S(F,n) = \max |N_F(x_1, \cdots x_n)|$

where the maximum is taken over all possible sets $(x_1, \cdots x_n) \in \chi^n$.

Finally, we define the VC dimension of F as :

$$VC(F) = \max \{ n \ge 1, S(F, n) = 2^n \}$$

Exercises :

Determine the VC dimension of the next sets of functions where $\chi = [0, 1]$:

- $F = \{f : \chi \mapsto \{0, 1\}, f(x) = 1_{x < t}, t \in [0, 1]\}$
- $F' = \{f : \chi \mapsto \{0, 1\}, f(x) = 1_{x < t} \text{ or } f(x) = 1 1_{x < t}, t \in [0, 1]\}$
- $F = \{f : \chi \mapsto \{0, 1\}, f(x) = 1_{t_1 \le x < t_2}, t_1 < t_2 \in [0, 1]\}$
- $F' = \{f : \chi \mapsto \{0,1\}, \ f(x) = 1_{t_1 \le x < t_2} \text{ or } f(x) = 1 1_{t_1 \le x < t_2}, \ t_1 < t_2 \in [0,1]\}$
- $F_k = \{f : \chi \mapsto \{0, 1\}, f(x) = \sum_{i=0}^k 1_{t_{2i} \le x < t_{2i+1}}, \text{ for } 0 \le t_0 < \dots < t_{2k+1} \le 1\} \text{ for any } k \ge 1$

Note here that for any F, F' is essentially the same set of functions, the only difference being that it allows to label the points indifferently 1 against 0, or 0 against 1. This apparently harmless technical enhancement is actually not totally insignificant as the VC dimension of F and F' are different.

Solutions

- Obviously any set of one point can be shattered, so $VC(F) \ge 1$. Moreover, if you take two points x_1 and x_2 (assume $x_1 < x_2$ without loss of generality) then if x_1 is labeled 1 and x_2 labeled 0, the set cannot be shattered by any function in F. Therefore VC(F) = 1.
- Now, if you take two points x_1 and x_2 (assume $x_1 < x_2$ without loss of generality) all possible labeling of the points is reachable by putting $x_1 < t < x_2$, $t < x_1$ or $t > x_2$. So VC(F') ≥ 2 . If you take three points x_1, x_2 and x_3 (assume $x_1 < x_2 < x_3$ without loss of generality), then for example there is no way that you can label x_1 and x_3 with the value 1, and x_2 with the value 0. So VC(F') = 2.
- If you take two points x_1 and x_2 (assume $x_1 < x_2$ without loss of generality) all possible labeling of the points is reachable by putting $t_1 < x_1 < t_2 < x_1$, $x_1 < t_1 < x_2 < t_2$, $t_1 < x_1 < x_2 < t_2$ or $x_1 < t_1 < t_2 < x_2$. So $VC(F) \ge 2$. If you take three points x_1 , x_2 and x_3 (assume $x_1 < x_2 < x_3$ without loss of generality) then there is no way that you can label x_1 and x_3 with the value 1, and x_2 with the value 0. Thus VC(F) = 2.
- With F' you can label x_1 and x_3 with the value 1, and x_2 with the value 0. This was the only labeling that was impossible with the previous F, therefore $VC(F') \ge 3$. With four points x_1 , x_2 , x_3 and x_4 (assumed increasing as always), you cannot label x_1 and x_3 with the value 1 and x_2 and x_4 with the value 0 for example. So VC(F') = 3.
- It's clear that the "worst" labeling you can encounter is when the labels are alternating $(0, 1, 0, 1 \cdots)$. Here "worst" means that if you can do this one you can do any other labeling. Now in this kind of configuration, if you have k + 1 labels 1 (and therefore 2(k + 1) points in your set) it's clear that you can label all of them by putting one of the k + 1 "doors" of your function over each one of the k + 1 labels 1 of your set of points (the set F_k being the set of all functions with k+1 doors). So VC(F_k) $\geq 2(k+1)$. Moreover if you have 2(k+1)+1points, you can create a configuration of alternating labels with k + 2 labels 1, by starting and ending by 1 $(1, 0, 1, \cdots, 0, 1)$. this last configuration is unreachable with k + 1 doors. Therefore VC(F_k) = 2(k + 1).