VC dimension : exercises

October 15, 2017

Notation :

We will consider functions $f: \chi \mapsto\{0,1\}$.
If F is a class of such functions and $x_{1}, \cdots x_{n}$ is a family of n points in χ, we define the set $N_{F}\left(x_{1}, \cdots x_{n}\right)$ as the set of all images of this family of points by the functions in F :

$$
N_{F}\left(x_{1}, \cdots x_{n}\right)=\left\{\left(f\left(x_{1}\right), \cdots f\left(x_{n}\right)\right), f \in F\right\}
$$

We define then the shattering coefficient of F with respect to n points sets in χ, denoted $S(F, n)$, as :

$$
S(F, n)=\max \left|N_{F}\left(x_{1}, \cdots x_{n}\right)\right|
$$

where the maximum is taken over all possible sets $\left(x_{1}, \cdots x_{n}\right) \in \chi^{n}$.

Finally, we define the VC dimension of F as :

$$
\mathrm{VC}(F)=\max \left\{n \geq 1, S(F, n)=2^{n}\right\}
$$

Exercises :

Determine the VC dimension of the next sets of functions where $\chi=[0,1]$:

- $F=\left\{f: \chi \mapsto\{0,1\}, f(x)=1_{x<t}, \mathrm{t} \in[0,1]\right\}$
- $F^{\prime}=\left\{f: \chi \mapsto\{0,1\}, f(x)=1_{x<t}\right.$ or $\left.f(x)=1-1_{x<t}, \mathrm{t} \in[0,1]\right\}$
- $F=\left\{f: \chi \mapsto\{0,1\}, f(x)=1_{t_{1} \leq x<t_{2}}, t_{1}<t_{2} \in[0,1]\right\}$
- $F^{\prime}=\left\{f: \chi \mapsto\{0,1\}, f(x)=1_{t_{1} \leq x<t_{2}}\right.$ or $\left.f(x)=1-1_{t_{1} \leq x<t_{2}}, t_{1}<t_{2} \in[0,1]\right\}$
- $F_{k}=\left\{f: \chi \mapsto\{0,1\}, f(x)=\sum_{i=0}^{k} 1_{t_{2 i} \leq x<t_{2 i+1}}\right.$, for $\left.0 \leq t_{0}<\cdots<t_{2 k+1} \leq 1\right\}$ for any $k \geq 1$

Note here that for any F, F^{\prime} is essentially the same set of functions, the only difference being that it allows to label the points indifferently 1 against 0 , or 0 against 1 . This apparently harmless technical enhancement is actually not totally insignificant as the VC dimension of F and F^{\prime} are different.

Solutions

- Obviously any set of one point can be shattered, so $\mathrm{VC}(F) \geq 1$. Moreover, if you take two points x_{1} and x_{2} (assume $x_{1}<x_{2}$ without loss of generality) then if x_{1} is labeled 1 and x_{2} labeled 0 , the set cannot be shattered by any function in F. Therefore $\operatorname{VC}(F)=1$.
- Now, if you take two points x_{1} and x_{2} (assume $x_{1}<x_{2}$ without loss of generality) all possible labeling of the points is reachable by putting $x_{1}<t<x_{2}, t<x_{1}$ or $t>x_{2}$. So $\operatorname{VC}\left(\mathrm{F}^{\prime}\right) \geq 2$. If you take three points x_{1}, x_{2} and x_{3} (assume $x_{1}<x_{2}<x_{3}$ without loss of generality), then for example there is no way that you can label x_{1} and x_{3} with the value 1 , and x_{2} with the value 0 . So $\operatorname{VC}\left(F^{\prime}\right)=2$.
- If you take two points x_{1} and x_{2} (assume $x_{1}<x_{2}$ without loss of generality) all possible labeling of the points is reachable by putting $t_{1}<x_{1}<t_{2}<x_{1}, x_{1}<t_{1}<x_{2}<t_{2}, t_{1}<x_{1}<x_{2}<t_{2}$ or $x_{1}<t_{1}<t_{2}<x_{2}$. So $\mathrm{VC}(F) \geq 2$. If you take three points x_{1}, x_{2} and x_{3} (assume $x_{1}<x_{2}<x_{3}$ without loss of generality) then there is no way that you can label x_{1} and x_{3} with the value 1 , and x_{2} with the value 0 . Thus $\mathrm{VC}(F)=2$.
- With F^{\prime} you can label x_{1} and x_{3} with the value 1 , and x_{2} with the value 0 . This was the only labeling that was impossible with the previous F, therefore $\operatorname{VC}\left(F^{\prime}\right) \geq 3$. With four points x_{1}, x_{2}, x_{3} and x_{4} (assumed increasing as always), you cannot label x_{1} and x_{3} with the value 1 and x_{2} and x_{4} with the value 0 for example. So $\operatorname{VC}\left(F^{\prime}\right)=3$.
- It's clear that the "worst" labeling you can encounter is when the labels are alternating ($0,1,0,1 \cdots$). Here "worst" means that if you can do this one you can do any other labeling. Now in this kind of configuration, if you have $k+1$ labels 1 (and therefore $2(k+1$) points in your set) it's clear that you can label all of them by putting one of the $k+1$ "doors" of your function over each one of the $k+1$ labels 1 of your set of points (the set F_{k} being the set of all functions with $k+1$ doors). So $\operatorname{VC}\left(F_{k}\right) \geq 2(k+1)$. Moreover if you have $2(k+1)+1$ points, you can create a configuration of alternating labels with $k+2$ labels 1 , by starting and ending by 1 $(1,0,1, \cdots, 0,1)$. this last configuration is unreachable with $k+1$ doors. Therefore $\operatorname{VC}\left(F_{k}\right)=2(k+1)$.

