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A Universal Data Compression System 
JORMA RISSANEN 

Absrroct-A universal data compression algorithm is described which is 
capable of compressing long strings generated by a “finitely generated” 
souree, with a near optimum per symbol length without prior knowledge of 
the source. This class of sources may be viewed as a generalization of 
Markov sources to random fields. Moreover, the algorithm does not 
require a working storage much larger than that needed to describe the 
source generating parameters. 

I. INTRODUCTION 

T HE first universal data compression algorithms were 
capable of encoding strings, generated by independent 

information sources, with asymptotically optimum mean 
per symbol length without a priori given source probabili- 
ties (Davisson [2], Lawrence [4], Lynch [5], Schalkwijk 
[lo]). Clearly, such algorithms estimate either directly or 
indirectly the statistics with increasing accuracy while the 
string is being encoded. The same approach can be ex- 
tended, at least in principle, to all stationary sources by 
means of gathering the statistics of longer and longer 
segments. However, in practice there is an obvious diffi- 
culty of exponentially growing number of items to be 
stored, and new ideas are needed to do the job in a 
practically meaningful manner. 

The most powerful universal algorithm published to date 
is due to Ziv and Lempel [12]. Their elegant algorithm 
achieves asymptotically optimum compression for strings 
generated by any stationary ergodic source, and it does the 
job in many cases in a quite practicable manner. Although 
the authors emphasize the finite machine nature of their 
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data compression system and the associated notion of 
compressibility, the real power of the algorithm is its 
convenient data gathering capability. In order to see this as 
well as the limitations of the approach, we reinterpret their 
algorithm in a natural statistical framework of the type 
discussed in Rissanen and Langdon, [8]. This is done in 
Section II. 

The main results in this paper are in Sections III, IV, 
and V. After having demonstrated in Section III that Ziv 
and Lempel’s universal algorithm does not compress well 
the important class of strings generated by stationary ran- 
dom fields which arise, for example, in image compression 
applications, we describe a more powerful data gathering 
algorithm. Instead of partitioning the string into its “rele- 
vant” parsed segments of increasing length and collecting 
their occurrence counts, as done by Ziv-Lempel algorithm, 
our algorithm gathers the “contexts” in which each symbol 
of the string occurs, together with the associated condi- 
tional occurrence counts. The contexts, as subsets of the 
past string, have varying size, and they are in general 
overlapping. Instead of collecting all the possible sequences 
as contexts, which requires too much space, only the “rele- 
vant” ones are gathered. To find these the algorithm incor- 
porates as a design parameter a rule which ranks the past 
symbols, relative to each symbol in the string, according to 
their importance in influencing the value of the symbol. At 
this stage of development, this rule for efficient operation 
is to be selected by the designer based upon the general 
nature of the string, but any rule will work. 

In Section IV we complete the construction of the uni- 
versal model by describing how to select a unique context 
for each symbol of the string from among the possible 

001%9448/83/0900-0656$01.00 01983 IEEE 



RISSANEN: UNIVERSAL DATA COMPRESSION SYSTEM 657  

ones. As, generally speaking, the achieved compression 
improves with the size of the contexts, which in turn 
increases their number  and  the complexity of the mode l, 
we associate a  cost with each context.‘This cost is balanced 
against the incremental gain in compression due to its 
addition to the context space, and  the result is a  universal 
mode l with a  new degree of “intelligence”: the algorithm 
will find asymptotically any stationary ergodic “finitely 
generated” source from its samples. This means that with a  
reasonable choice of the design parameter the complexity 
of the mode l does not exceed appreciably that of the 
source. In contrast, the complexity of the Z iv-Lempel 
system when applied to the same string would increase 
beyond any bounds. The  class of finitely generated sources 
is described in Section V. 

II. A REINTERPRETATION OF ZIV-LBMPEL 
ALGORITHM 

W e  start with a  brief description of the universal data 
compression system of Z iv and  Lempel,  [12]. This discus- 
sion also serves as an  introduction to the ma in topic in this 
paper. The  heart of their system is a  so-called “incremental 
parsing algorithm,” which parses the source string into a  
collection of segments of gradually increasing length. The  
rule is simple: starting with the empty segment,  each new 
segment added to the collection is one  symbol longer than 
the longest match so far found. For example, the string 
010100010 gets parsed as the collection (0, l,O l,OO,OlO}. 
When  the parsed segments are retained in the same order 
as they are received, each segment can be  encoded as the 
ordered pair (i, y), where the index i, written as a  binary 
integer, gives the position of the longest earlier found 
matching segment in the collection, and  y gives the last 
added symbol. For example, the code of the segment “010” 
is, conceptually, the pair (3,O). W e  refer for further details 
of how the decoder can read the position index from the 
code string, to Z iv and  Lempel  [12]. 

The  code length of string s is given by 
n(s) 

J%,b) = c bg.A + 443 
j=l 

(1) 

where n(s) denotes the number  of parsed segments in s, 
and  1x1 denotes the least integer not smaller than X. 
Despite the relatively crude coding procedure used by Z iv 
and  Lempel,  their universal data compression algorithm is 
asymptotically ,optimum for infinite strings generated by a  
stationary ergodic source, in that the per symbol compres- 
sion converges to the per symbol entropy of the source. 
Clearly, the complexity of the implementation, in terms of 
the number  of stored items needed to generate the parsing 
trees, grows beyond all bounds. 

It was shown by Ma  [6] that exactly the same sequence 
of parsed segments can also be  generated with an  older 
algorithm due to Tunstall [ 111. Here is how: start with the 
initial parsing tree consisting of two leaves, where a  weight 
of two. is placed at the root and  a  weight of one  at both 
leaves. Use this tree to parse the first segment as the path 
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Fig. 1. Example of parsing algorithm. 

from the root to a  leaf. W h ile climbing the tree, increment 
by one the count of each node visited. Hence the last leaf 
visited gets the count of 2, which is the maximum of all the 
leaf counts (because the others have the count of one). Split 
this leaf by creating two new nodes, and  assign the count 
of one  to both. This determines the new parsing tree, which 
is used to parse the next segment,  and  the cycle is repeated. 
As an  example, we parse the string 010100010 with the 
same result as above. The  final parsing tree is shown in 
F ig. 1, where the numbers at the nodes indicate the counts; 
we also drew the tree upside down. 

W e  describe next how the parsing algorithm defines 
automatically a  binary information source. As in [8], for 
this we need to generate a  probability function, which 
assigns a  probability P(s) to every finite string such that 
the compatibility condition P(s) = P(s0) + P(s1) holds. 
Here SO and’s1 denote the strings obtained by tagging 0  
and  1, respectively, to the end of s. From the initial 2-leaf 
tree on, the above described algorithm defines a  complete 
binary tree after each block is parsed. Let the (variable) 
string s have n(s) parsed segments, and  let T(s) denote the 
binary tree defined by s. Each node’s count equals the 
number  of leaves that are its descendants, and, in particu- 
lar, the root has the count n(s) + 2. Divide the node 
counts by the root count, and  we have the machinery for 
defining the conditional probability of the next parsed 
segment as well as of any of its prefixes. 

The  algorithm defines the next segment to be  one of the 
paths to the leaves in T(s), while the intermediate nodes 
along this path correspond to the prefixes of this segment.  
If x denotes a  prefix, set the conditional probability P( x/s) 
as the ratio of the count of the node defined by x to the 
root count. In particular, when x is the entire parsed 
segment (i.e., when x defines a  leaf) then P(x/s) = 
l/(n(s) + 2). Define the probability P(sx) of the new 
string sx to be  P(s)P(x/s), and, because the probability 
of the empty string is 1, we get the probability of a  string s 
with n(s) full blocks as 

P(s) = l/(n(s) + I)!. (2) 
The  compatibility condition is immediately verified. As an  
example, suppose the strings = 010001010 with T(s) given 
in F ig. 1  continues as 011. The  conditional probabilities of 
all the symbols in the new segment are given by the tree as 
P(O/s) = 5/7, P(l/sO) = 3/5, and  P(l/.sOl) = l/3. 
These define the conditional probability P(O1 l/s) = l/7 
for the sixth block 911. 
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The ideal code length for strings s having n(s) full 
blocks is given by (2) as 

-log P(s) = log(n(s) + l)!. (3) 
This suggests an interpretation of the statistical model we 
have defined: a string s with n(s) blocks is one of the 
(n(s) + l)! strings possible obtained by picking each of 
their blocks for k = 1,2,. . . , n(s) randomly as one of the 
k + 1 leaves available at that point. Hence, with this type 
of model, the mean code length cannot be smaller than 
-log P(S) - a((1 + n(s))!), where a(n) < log log n 
(Rissanen [7]), no matter how the coding is done. This 
clearly justifies the name “ideal code length.” The length 
(3) is about one bit per block less than the length (1) in Ziv 
and Lempel’s code. 

The coding of s can be done practically by arithmetic 
coding, [8], in such a manner that the ideal code length is 
achieved for any string longer than, say, 1000 within 1 
percent. In fact, even with the fast algorithm described in 
[3] the code length would exceed the ideal by not more 
than 2 or 3 percent. 

III. A CONTEXTGATHERINGALGORITHM 

A major problem with the incremental parsing algo- 
rithm, and with all block models for that matter, is that it 
can capture random dependencies only between symbols 
that fall within one and the same block. Hence, for the 
large class of strings, where symbols interact in two or 
higher dimensional neighborhoods, any technique produc- 
ing one-dimensional parsed segments is necessarily ineffec- 
tive and often impossible to implement in a practicable 
manner. Consider, for example, a black and white printed 
document, which is partitioned into a fine grid of squares. 
By a simple thresholding device, each square may be 
regarded either as completely black or as completely white, 
and we may model the entire grid of squares as a sample of 
a two-dimensional field of binary random variables x( i, j), 
where i and j are the coordinates specifying the position of 
a square. It is immediately clear that in a good model we 
should not regard the random variables x(i, j) as indepen- 
dent, but rather we should try to fit a model which allows 
the color of the variable x(i, j) to depend on the color of 
the neighboring variables. And there is clearly no reason to 
prefer the horizontal neighbors over the vertical ones. 

In an attempt to capture such two-dimensional depend- 
encies with parsed segments we may try to consider two- 
dimensional segments, i.e., rectangles. If we wish to apply 
the incremental parsing algorithm to collect the rectangles, 
we must define the notion of m inimal extension and do the 
extension while maintaining the property that the created 
rectangles still partition the entire surface. A little thought 
will reveal that this cannot be done in an entirely satisfac- 
tory way. We could, for instance, consider rectangles of, 
say, k lines high and grow them to the right, but then we 
do not capture dependencies that are further up than k 
positions, except when the length of these rectangles is 
made wider than the width of the document. This we can 
in effect do by a “wrap around” procedure: when the k 

lines reach the right end of the document, the rectangle is 
continued along the next k lines from the left end. Now, to 
grow such huge rectangles cannot be done even in the 
simplest case where k = 1, which amounts to a linear 
representation of the grid. Indeed, if a document has the 
normal width of about 2000 symbols, then the algorithm 
would have to grow the binary tree to the depth of 2000 
before any dependency of a symbol on the one lying 
immediately above it would start to show up, and the total 
number of symbols in the document would run out far 
before such a depth is reached. If we, again, try to avoid 
this difficulty by picking k so large, say 10, that we capture 
all the significant vertical dependencies, we run into another 
problem: the trees we must grow now have 2” symbols. 
Again we run out of the string before any horizontal 
dependencies even between two adjacent symbols can be 
detected. These are the reasons why the Ziv-Lempel algo- 
rithm, despite its asymptotic optimality, is not able to 
reach even the vicinity of the ultimate compression within 
the length of any sample string. 

In order to obtain more powerful models we must 
abandon the requirement that the collected segments parti- 
tion the string. Instead, we plan to collect overlapping sets 
of symbols, each set defining a “context,” on which symbol 
occurrences can be conditioned. As proved in [8], such 
conditioning allows for a more efficient way to take ad- 
vantage of statistical regularities. In fact, even the segments 
found by the incremental parsing algorithm are contexts of 
each of their symbols, which interpretation offers a uni- 
form and more fundamental explanation to the modeling 
efficiency of block models. 

Formally, a context is defined by means of a total 
recursive function f: B* -+ N, where B* denotes the set of 
all finite binary strings and N denotes the set of the natural 
numbers. The context z(t) of the symbol x(t), immediately 
following the “past” string s = x(1) . * * x(t - l), is the 
class of strings s’ = x’(1) . . . x’(t - 1) such that f(s’) = 
f(s). What this abstract definition really says is that the 
context of x(t) is some (computable) function of the past 
string. That the context is an equivalence class means only 
that not every conceivable value for the past sequence of 
random variables need define a distinct context; some 
relevant feature of the past, common to several of them, is 
enough. Clearly, a measure of the degree of relevance is the 
context’s capability of “skewing” the symbol’s occurrence 
counts to lower its conditional entropy. As a simple exam- 
ple, consider the function f that maps any sequence (of 
length at least two) to the value defined by its last two 
symbols. Hence, the context of x(t) is the binary number 
x(t - 2)x(t - l), as in the second-order Markov process. 

We shall eventually describe a way to obtain the all- 
important structure functionf, as it was called in [8], but in 
this section we give an algorithm that defines it partially. 
We consider for simplicity binary strings only, which we 
write as s = x(1)x(2) 1 . . x(t) * . . ; we also let the same 
symbols x(i) denote binary-valued random variables. The 
first step is to establish a ranking order for the past symbol 
positions relative to each symbol x(t). The idea is to pi& 
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that position first in which we judge the random variable to 
have the greatest influence on  the value of the variable 
x(t); then comes the next most influential position, and  so 
on. O ften, the geometric distance is taken as the basis for 
this; for example, in the string resulting from a  linear scan 
of the document  above with width M , we could pick the 
order to start as follows: first comes the preceding variable, 
x(t - l), then the one right above, or x(t - M) in the 
linear representation, next the left upper  corner position, 
or x(t - M  - 1). 

To  generalize, let i * ti be a  permutation of the natural 
numbers and define for any string s = x( 1) * * . x(t - 1) 
another a(s) = x(t - t,) . . . x(t - ttpl). In this, we have 
to decide how to set the values of symbols x(t - ti) whose 
index t - ti is nonpositive. This choice wilI have an  effect 
only for small values of t, because we will be  needing only 
about log t first members in the sequence a(s). The  most 
natural choice is to define a(s) to consist of those consecu- 
tive symbols x(t - tl)x(t - tz) . . * , only, whose indices 
are positive and, hence, which are symbols in s; if already 
the first symbol t - t, is nonpositive, define a(s) to be  the 
empty string A. This convention would be  used in more 
practicable versions of the algorithm. However, if we set 
the values of the symbols with nonposit ive indices to some 
arbitrary value, say 0, all the symbols of u(s) get defined, 
and  this simplifies matters somewhat.  For this reason, we 
adopt the latter convention. W e  write u(s) as the sequence 
z, ** . z,-,, where, accordingly, zi = x(t - ti). In fact, the 
description of our algorithm does not involve the details of 
any particular permutation, and  the reader may take it to 
be  the identity permutation ti = i, which means that u(s) is 
just the sequence s written in reverse: x(t - 1) * . . x(1). 
W e  mention that in some applications there is a  need for 
an  even more general  way to sort the past sequence, one  
that allows the sorting to change with t, but for the 
purposes of this paper  the above described sorting function 
u is adequate.  

The  idea in the next step is to grow two binary trees, one  
for the case where the current symbol x(t), which we 
denote by u, has the value 0, and  the other when it has the 
value 1. W e  are interested in the intersection of the two 
trees, which we actually generate directly; this is how: 

1) 

2) 

W e  declare the context tree of the first symbol x( 1) in 
the string to be  the l-leaf tree T(O), where the only 
node, the root, is marked with the pair of counts 
tcto, A), 41, A)) = (191). 
Proceeding recursively, let Z’(t - 1) be  the last con- 
structed tree with (~(0, z), ~(1, z)) denoting the pair 
of the counts at node z. After the next symbol u  = 
x(t) is observed, generate the next tree T(t) as fol- 
lows: climb the tree Z’(t - l), starting at the root and  
taking the branch, left for 0  and  right for 1, indicated 
by each of the successive symbols in the past se- 
quence u(x(1) ... x(t - 1)) = z,zZ 0.. . For each 
node z visited, increment the component  count c( u, z) 
by one. Continue until a  node w is reached whose 
count c(u, w) = 1  before the update. 

659  

3) If w is an  internal node with node w0 as the left and  
wl as the right successor, increment the component  
counts c(u, w0) and  c(u, wl) by one. Define the 
resulting tree to be  T(t). If, again, w is a  leaf, extend 
the tree by creating two new leaves w0 and W I. 
Assign to both leaves the same counts: c(u, w0) = 
c(u, wl) = 1  and  c(u’, w0) = c(u’, wl) = 0, where u’ 
denotes the opposite symbol to u. Call the resulting 
tree T(t). 

This completes the description of the algorithm, which we 
for future reference call “context.” 

As an  illustration, we consider the binary string 10001,  
in which the past symbols are ordered by their distance 
from the current symbol, i.e., we use the identity permuta- 
tion. After the first symbol 1  is observed, the second tree 
T( 1) is the 2-leaf tree with the marking (1,2) at the root 
and  the marking (0,l) at both leaves. The  second symbol 0  
does not add  any new leaves, by the first “if” clause in 
Step 3, but the root marking changes to (2,2) and  the leaf 
markings to (1,l). The  tree T(3), generated by the third 
symbol 0, is given in F ig. 2(a), and  the tree T(5) after the 
last symbol 1  is given in F ig. 2(b). 

Let z denote a  node, which is defined by and identified 
with a  past sequence zi . * . z, as the path from the root to 
that node. Then  the sibling nodes z0 and zl denote the 
past sequences z, . . . z,O and z, . . * z,l, respectively, while 
with 0, z and  1, z we denote the collections of events 
consisting of the “current” symbol u  = x(t) and the past 
sequence z. If we denote by c(z) the sum of the counts at 
node z, then we may say that out of c(z) occurrences of z 
the event U, z occurs c( u, z) times, and  we may define the 
conditional probability of the symbol u  in context z as 

f+/z) = 4% 4/C(Z), (34 
provided 0  < P( u/z) < 1. For example, in the tree T(5) of 
F ig. 2, we have P(x(t) = O /z = 0) = 3/5. Clearly, if a  
symbol, say u  = 0, has not been observed at all in a  
context z, it does not mean  that it will not occur in the 
future, and  for coding purposes we must not assign the 
probability 0  to it. For this reason we put 

~(u/z> = v(+) + 11, if c(u,z) = 0. (3b) 

The  way we eventually will select the context for each 
symbol makes the assignment (3b) possible only in the 
early part of the string, while the normal case is (3a). These 
conditional probabilities define the binary entropy 

H(U; z) = -plogp - (1 -p)log(l -p>, 

P = fv/Z)? (4) 
where z stands for a  sequence z, + * . zk. 

It follows from the updating and the node splitting rules 
in the algorithm that 

c(u, ZO) + c(u, zl) = c(u, z> (5) 

holds whenever the counts are greater than 1. By summing 
up over the two values of u, we get the compatibility 
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Fig. 2. Example of algorithm Context. (a) T(3). (b) T(5). 

equation 
c(z0) + c(z1) = c(z), (6) 

which holds if all the counts are greater than one. It is 
these two last equations that would not hold (except, 
approximately for long strings) if we had adopted the other 
rule for defining u(s), mentioned above, namely, one where 
the variables with nonpositive indices are dropped. These 
equations are by no means necessary for a proper behavior 
of the algorithm, but they do shorten the proof of the 
theorem in Section V. 

Further, let Z  denote the set of leaves defining a com- 
plete subtree, where for all the leaves c( u, z) > 1. Then by 
(6) the root count c(A) equals the sum of the leaf counts 
c(z), and we may regard Z as a context-valued random 
variable with probability distribution given by 

P(z) = c(z)/c(h). (7) 
It can be seen from the algorithm that the node count 

c(u, z) differs from the number of times symbol u occurs 
in context z in the so far processed string by at most a 
number that depends on z but not on the length of the 
string. This is because after the context z has been added to 
the tree as a node and its counts exceed 1, every occurrence 
of u in context z will be noted and the count incremented. 
Accordingly, only a few earlier occurrences of u in context 
z may have been omitted. As a result, the tree generated by 
the algorithm accumulates essentially all the relevant con- 
texts and the associated symbol statistics as the length of 
the string grows. 

IV. UNIVERSAL MODEL 

The trees T(t), generated by the algorithm context, 
incorporate a stockpile of contexts for the symbols in the 
string, and as noted at the end of previous section, essen- 
tially all the past contexts are included. Specifically, the 
contexts for the symbol x(t) correspond to the nodes met 
as we climb the tree T(t - 1) in Step 2 of the algorithm 
according to the past sequence z,zz * * . , The question is 
which node we should pick as the context for x(t). Sup- 
pose for the moment that we already have made the 
selection, i.e., we have associated with the symbol x(t) a 
context z*(t) as some prefix of u(x(l) . . . x(t - 1)). This 
really means that we then have defined a binary source 
(B*, P), where P(s) is defined as the product of the 
conditional probabilities of its symbols, (3a) or (3b). These 
probabilities can be used to encode each symbol, and the 
optimum code length for string s = x(1) * + . x(t) is given 

by 

-log P(s) = - i log P(x(i)/z*(i)). 03) 
i=l 

The formula (8) suggests an intuitively attractive context 
selection rule: define z*(t) as the first node z in T(t - 1) 
along the path z,zl * . . , where P(x(i)/z) deviates most 
from l/2. Indeed, if in a stationary source each such 
context z* would occur increasingly often with relative 
frequency P(z*), then the per symbol length from (8) 
would approach a conditional entropy of the type 

CP(z)H(U; z) = H(U/Z), (9) 

where z runs through the set of the contexts. Moreover, 
because the rule m inimizes the binary entropies H(U; z) in 
(4), the entire conditional entropy and the per symbol 
mean length are clearly m inimized. The main problem with 
this context selection rule is that the number of contexts 
z*(t) tends to increase with t even when the string is 
generated by an independent information source. The rea- 
son for this will be apparent later in the proof of Theorem 
1, but intuitively it follows from the trend that condi- 
tioning on a larger set tends to lower the conditional 
entropy. 

Instead of putting an arbitrarily selected bound to the 
number of contexts, we would like the algorithm itself to 
set the bound as it processes the string. The idea behind 
such an “intelligent” algorithm, which we adapt from the 
recent approaches to estimation theory, Akaike [l] and 
Rissanen [9], is to associate a cost with each context, and 
accept a context in the set Z  only if its share in reducing 
the conditional entropy exceeds its cost. For this we need 
to calculate the increase in the conditional entropy (9) that 
results when two of the elements z0 and zl in Z  are fused 
into the parent node z. Call the reduced set Z’. The 
increase, which is independent of the set Z, is given by 

A(t, z) = H(U/Z’) - H(U/Z) 
= P(z)H(U; z) - P(zO)H(U; zo) 

-P(zl)H(U; zl), 00) 
where the probabilities and the binary entropies are de- 
fined by the node counts in T(t - I), (3a), (3b), (4), and 
(7). The difference A(t, z) is also nonnegative by a well- 
known inequality; we shall later give a formula showing 
that. 

We now describe a context selection rule as follows: 
define the context z*(t) for the symbol x(t) to be the node 
in T(t - 1) with greatest length ]z], i.e., depth, along the 
path defined by the past sequence z,zz . . . , such that 

A(t, z) > (l/t) log t, 
while 

I4 6 Plog t, 
and 

m in{c(zO), c(zl)} 2 2at/Jlogt, (11) 
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or, if no  such node exists, take z to be  the root node. Here, 
~1 and fi are positive numbers.  Their purpose is to define 
the range of the nodes to be  searched to be  appropriate for 
a  finite string, but for infinite strings any values for them 
will do. The  upper  bounds for z are selected for the 
purpose of making the proof of the ma in theorem easy. 
The  first bound @ log t is in most cases satisfied automati- 
cally, because the depth of the entire tree T(t) is of the 
order of log t. The purpose of the second bound is to make 
sure that the counts grow at the selected contexts, while not 
restricting the set of the contexts to be  uniformly bounded.  
Observe that the count c(z) for a  string generated by a  
stationary source grows as PO(z)t, where the source proba- 
bility P’(z) tends to zero as the length of z grows. This is 
why the mu ltiplier of t in the second bound is taken as a  
function that tends to zero as t grows. 

W e  could mark in some manner  the special context 
nodes in the tree, for example, by turning a  “flag” bit to 
one, while keeping it at zero if a  node is not a  context. 
Then  a  creation of a  new context turns an  earlier found 
context node on  its path to a  nonf lagged regular node, and  
since every path has a  context, the set Z(t) of them all in 
the tree T(t - 1) defines a  complete subtree. Once the 
count ratios at the nodes are stabilized and if Z(t) = Z  
remains unchanged,  then as easily verified, this selection 
rule will m inimize locally the combined cost 

W /Z) + Gw%o/t~ (14 

where IZI denotes the number  of elements in Z. By a  local 
m inimum we mean  a  set of leaves such that a  fusion of any 
two leaves or a  split of any leaf into two new leaves will 
increase the value of the sum in (12). 

Why is the cost associated with each context taken as 
(log t)/t? A pragmatic answer will be  given in the theorem 
below, namely, that with such a  cost we get the desired 
behavior. But we can also give a  natural justification for 
the cost term. This is particularly easy if we instead of 
adaptation would first construct the context tree for the 
entire string and then using the so-found data would 
determine in the second pass the contexts of the symbols 
and  calculate the ideal code length (8). Indeed, as each 
count is proportional to t, it takes about log t bits to write 
down each, and  therefore about ]Z]log t bits are needed to 
describe all the parameters defining the mode l. Because in 
such a  two-pass data compression algorithm the mode l 
clearly must also be  sent to the decoder along with the 
code string, the total code length is approximately as given 
in (12). 

But it is a  quite remarkable fact, which we were able to 
show only after this paper  went to print, that the same cost 
term is valid even when the parameters are determined 
adaptively from the past string, as is done here. The  
intuitive reason for this is that the cumulative effect of the 
inherent estimation errors increases the ideal per symbol 
code length by (log t)/2t per parameter. Accordingly, the 
per symbol entropy (9) ought to be  incremented by this 
much in order to account for the fact that we are using an  
estimate for the next symbol’s probability, and  a  good 

context selection rule should m inimize the total per symbol 
ideal code length, which is what (11) seeks to do. (The 
second term in (11) should really be  divided by two, but 
this correction does not change the ma in theorem, 
Section V.) 

V. MAIN THEOREM 

For the ma in theorem in this section we need to define a  
class of “finitely generated” sources, appropriate for ran- 
dom fields. Although these sources are technically Markov 
sources, we must describe them more efficiently by taking 
advantage of their random field nature. Just as in Section 
II, viewing them as Markov chains may involve an  im- 
mense number  of states with their transition probabilities, 
while viewing them as random fields allows us to describe a  
small number  of conditional probabilities as generators, 
which with a  simple extension rule define the rest. This 
simplification in the description of such sources is of 
crucial importance, if one  wishes to construct an  algorithm 
for their estimation. 

Let i, < *a* -C i, denote n natural numbers,  and  let f” 
denote a  function which maps every string s = x(1) . . * 
x(t), to its context 

f O(s) = x( t - i,) * * * x( t - i,), (13) 
where we set x(t - i,) empty if t - ij G 0. The  range off’ 
clearly consists of the nodes of the balanced tree of depth 
n, called the (source) contexts. W e  denote by Z” the set of 
the 2” leaves, defined by the values of the variables x(t - 
iI>; * *) x( t - i,). W e  call a  stationary ergodic process 
finite& generated, if for all finite strings su, 

PO(m) = P”(s)PO(u/fO(s)). (14) 
Observe that with this rule the random variables 
x(t), x(t’) * * . ) condit ioned on  the same context z at dif- 
ferent locations t, are independent.  

The  conditional probabilities P’(O/f O(s)) and 1  - 
P’(O/f O(s)) cannot be  chosen entirely freely to generate a  
stationary process, for they must also satisfy the conditions 
for stationarity, namely, P(0.s) + P(1.s) = P(s) for all s 
(this nonorthodox but handy way of defining stationarity 
was done in [S]). However, it is clear that these conditions 
can be  satisfied, and  we may regard the class of finitely 
generated processes as being well defined. They clearly 
include all Markov processes with fixed transition proba- 
bilities. F inally, we also assume that the generat ing index 
set i,; . ., i, is unique (so that it can be  estimated), which 
in particular implies that it is m inimal, i.e., that none of its 
proper subsets defines the same probabilities (13). 

The  per symbol entropy of a  stationary finitely gener- 
ated source is seen to be  given by the conditional entropy 

HO(U/ZO) = c PO(z)HO(U; z), (15) 
2GZ0 

where H’(U; z) = -plogp - (1 -p)log(l -p) with p 
= PO(O/z). 

W e  define one more notion for the theorem to follow. 
For a  sorting function u(s) = x(t - t,)x(t - t2) . . . = 
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z1z2 .-* denote the set of the shortest past sequences 
z, 0.. z, that contain all the random variables x(t - 
ill,- . -) x(t - i,) defining the source by Z,. Hence, m is 
the index for which t, = i,. An example showing the 
relationship between the two sequences is given in the 
discussion following the theorem. 

Theorem 1: Let s be an infinite string from a finitely 
generated stationary ergodic source defined by the indices 
1,;. -, i,, and let the algorithm Context generate the tree 
T(t - 1) for the growing prefix s’ of s, using any sorting 
function u. Then with the context selection rule (1 l), for 
almost all samples s, 

Pr{z*(t) E Z,} + 1, ast -+ co. (16) 
Moreover, 

- (l/t) . logP(s’) -+ H”(U/Zo), as t + 03. 

07) 
We give the proof in the Appendix. 

The following corollary is worth mentioning. 
Corollary: Let the source be a Markov source of some 

(unknown) order n. Then (16) and (17) hold, where Z, = Z” 
is the set of the 2” states. 

VI. DISCUSSION 

By Theorem 1 the universal model is capable of contain- 
ing the source generating contexts within a finite set Z,, 
whose size depends on the sorting function (I. This means 
that we do not need to grow the trees T(t) much beyond 
Z,. In practice, we can let the trees T(t) grow until they 
have, say, twice the number of leaves in the maximum set 
of contexts z* found. Because the maximum context set 
depends on T(t), and we wish to maintain T(t) twice the 
size of the maximum context set, there is a bit of “dog- 
chasing-its-tail” process involved. This is easily resolved, 
however. We can, for example, partition the indefinitely 
long string into a set of growing segments of length 
K,2K,3K;.., where K is some positive integer. During 
the first segment we let the tree T(t) grow freely, but in the 
subsequent intervals we let it grow only until it has twice 
the number of nodes in the context set found in the 
previous interval. It is easily seen that this process lets the 
context set grow to its final size and shape, as stated in the 
theorem, and the trees T(t) stay bounded too. 

Although the theorem holds for any function u we select, 
the size of the final context tree and, therefore, the size of 
the maximum of the trees T(t) and the implementation 
cost of the algorithm are strongly dependent on the selec- 
tion. The best case, of course, is when we know the ranking 
of the past symbols and hence the sorting function. This is 
still a nontrivial modeling problem, because we must locate 
a subset Z” that generates all the contexts of the source, 
among the set of all possible contexts, namely, the set B* 
of all binary strings. In this case the algorithm will generate 
the trees T(t) until they have about twice the number of 
leaves in Z”, no matter how long the string is. In contrast, 

for example, the Ziv-Lempel algorithm would keep on 
generating longer and longer parsed blocks until it runs out 
of work space, without ever realizing that no further com- 
pression is being gained. 

In many cases we do not, of course, know the sorting 
function u. However, this universal algorithm provides a 
means of experimentally estimating it, which we regard as 
the single most important and unique feature of the algo- 
rithm, not shared by any other known to us. We can fix the 
maximum permitted size for the trees T(t) and run the 
algorithm for several different sorting functions. The one 
giving the best compression evidently captures the most 
efficient contexts. We believe that such exploratory study 
can give valuable information of the strings to be com- 
pressed, and make the crucial modeling problem a little 
more mechanical. Bear in mind that the problem of finding 
the best model is undecidable, and all we can do is try to 
build more and more intelligent algorithms to aid us in 
finding good models if not the very best. 

We illustrate with a simple example the effect of choos- 
ing a good and a bad sorting function to the size of the 
needed workspace. Suppose the source is generated by the 
four conditional probabilities P(O/x(t - l)x(t - loo)), 
corresponding to the four values of the two indicated 
variables. In a two-dimensional field of 100 symbols wide, 
this means that a symbol’s value is statistically dependent 
only on the previous value and the one right above it. If we 
choose for the model the sorting function u defined by the 
identity permutation, then Z, consists of the 2’O” sequences 
of length 100, and the algorithm will not find the second 
generating context within any string of practical size. We 
have the same problem as with the Ziv-Lempel algorithm. 
But if we guess that the nearby symbols are the significant 
symbols, and we put u(s) = x(t - l)x(t - 2)x(t - 99) 
x(t - 100) **a, then Z,, is defined by the 16 sequences of 
length 4. This time, the algorithm finds both of the generat- 
ing contexts quickly with a small workspace. Observe, that 
it is not necessary to guess the precise ranking of the 
symbols in order to achieve asymptotically the ideal com- 
pression with a limited workspace. 

What about compressing a string which cannot be well 
modeled by a finitely generated source? Again, by guessing 
a reasonable sorting function we can let the algorithm 
generate the trees T(t) and the contexts, but this time the 
trees grow until a preset bound for the workspace is 
reached. The situation is quite analogous to the Ziv-Lempel 
algorithm, and the only advantage is that for the same 
amount of workspace we get a better compression if a 
sorting function sufficiently different from the one defined 
by the identity permutation is required. In the case with 
the identity permutation, the roles are reversed, because 
then the best contexts are to be found among the im- 
mediately preceding symbols, which the Ziv-Lempel algo- 
rithm is capable of taking advantage of. This is accom- 
plished with a somewhat smaller workspace. The number 
of nodes in the tree built by the incremental parsing 
algorithm for a string of length t is approximately t/log t, 
while the tree T(t) built by the algorithm context has t 
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nodes. In typical cases the ratio of the workspace size in 
favor of Z iv-Lempel algorithm is then something like 
10-20. The  final compressions in both cases are about the 
same, because one can simulate, as it were, the block model 
created by the incremental parsing algorithm as a  binary 
mode l using contexts. 

W e  conclude this section with two more remarks. In 
order to obtain a  universal data compression system with 
per symbol code length near the ideal (16), all we need to 
do  is to apply an  arithmetic binary code to encode each 
symbol u  = x(t) using the conditional probability 
P(u/z*(t)). W e  have written a  computer program for the 
algorithm context in a  slightly mod ified form in the general  
case with any finite number of symbols. An implementa- 
tion of the m inimum conditional entropy rule, ment ioned 
in the beginning of Section V, is straightforward, al though 
a  new problem not present in the binary case arises, 
namely the problem of how to assign a  distribution for an  
alphabet of which only a  small number  of symbols has yet 
occurred. Several reasonable solutions exist, and  with one  
of them, strings defined by English text can be  compressed 
very well with a  reasonable workspace size. Notice that the 
storage space explodes if we mode l such strings by Markov 
sources of some order k > 1. 

maximum length node whose counts satisfy the constraint in (11). 
These are the nodes among which the context z*(t) is to be 
selected. We  know by the first part of the theorem that for all t 
greater than some number M such nodes exist. We  can expand 
the second sum in (Al) in Taylor series with the result 

Att, z> = P(z) c P(Y/z)~*(~> z, Y> + R, W I 
y=o, 1 

where 0( t, z, y) = P(O/z) - P(O/zy) and R consists of the higher 
order terms such that R/e2(t, z, y) +  0  as e(t, z, y) -+ 0. The 
estimates P(O/z) = ~~(0, z)/c,(z) are asymptotically normal with 
mean P’(O/z) and standard deviation proportional to l/ \ict(z>, 
where we denote the count of node z in the tree T( t - 1) by c,(z) 
to emphasize its dependence on t. This is true, because in the 
source the random variables x(t), x(t’), . . that “occur” in a 
context z, or more correctly, are conditioned on a sequence z 
which contains a sequence in Z” as a subsequence, are indepen- 
dent. Here, the argument then is the same as with Markov chains, 
where the distinct symbols are dependent but they become inde- 
pendent when they are conditioned on any one state; in other 
words, “different symbol occurrences at each state are indepen- 
dent,” to abuse the language a little. Hence 0( t, z, y) is also 
asymptotically normal. Further, by (13) P’(u/z) =  P’(u/zy), 
which means that A’(z) = 0, and  the mean  of 0(t, z, y) is zero. 
Its standard deviation d( t, z, y) clearly satisfies the inequality 

APPENDIX 

d2(t, z, y) i l/c,(z) + max(I/c,(zO), I/c,(zl)} + R’ 

< 2max(l/c,(zO), l/c,(zl)} + 2R’, (A3) 
Proof of Theorem I: The first task is to evaluate A(t, z) at a  

node z of T(t - 1) in terms of the probabilities (3a), (3b), (4), 
and (7), defined by the counts. The result is, as can be verified by 
a direct computation, the familiar formula 

A(t,z) = P(z) c P(Y/Z> c P%/ZY> 

where R’ denotes the higher order terms such that R’/d2( t, z, y ) 
--f 0  as d(t, z, y) ---* 0. Further, the ratio O*(t, z, y)/d*(t, z, y) 
has asymptotically x2 distribution. Using the second bound in 
(11) with (A3) we have the inequality 

d2(t, z, y) i (,/i@+‘at +  2R’ (A9 
y=o, 1 u=o, 1 

.log[Ptu/z~)/Ptu/z)1, (Al) 

where for simplicity we did not indicate that the probabilities 
depend on t. Also, we use the same symbol P for all the 
conditional probabilities and let the argument variables tell which 
one is meant; for instance, P(u/z) is not the same function as 
P( y/z). Moreover, by a well-known result, A (t/z) >  0, and it is 
zero if and only if for all u, z, and y, P( u/zy) =  P( u/z). 

for all z of the considered type, all y = 0, 1, and all t. 
The probability of the event that z*(t) is not in Z, for t > M, 

is by (11) the probability of the event that for at least one z of the 
above defined type, A( t, z) > (log t)/t. This probability, in turn, 
is bounded from above by the sum of the probabilities 

c Pr[A(t, z) > (logtb’tl, (A51 
z 

We  show first that any node z of Z, is a prefix of some context 
z*(t) for large enough t. We  have nothing to prove if the source is 
independent, because then Z,, consists clearly of the root A, only. 
Otherwise, let z be an interior node with depth m - 1 of T,, the 
tree defined by Z,, as the set of leaves. Then its descendants zy 
are leaves in Z,,, and they contain a source generating context, 
i.e., a  sequence of the values x( t - i,) . . . x(t - i,), as a subse- 
quence. By the minimality of the source generating contexts, the 
source probability P’(u/zy) cannot equal P”( u/z) for both 
values of u, and 

over the at most /?log t values of z. From (A2) and (A4) we get 
the inequalities 

Pr[A(t, z) > (logt)/tl 

= Pr{i3* + R > (log t)/t} 

< Pr{B2/d2 > ( (Y - (R + 2R’)/d2)Jlogt} 

6 Pr(8*/d2 > a/c}, 

A’(z) =  P’(z)H’(u; z) - P~(zo)H~(u; zo) 

-PO(zl)HO(U; zl) > 0. 

By the ergodic theorem, A( t, z) + A’(z), and we conclude with 
(11) that z is a proper prefix and zy a prefix of z*(t) for t large 
enough. We  have shown the first part, namely, that the algorithm 
context grows the tree at least as large as to include T,. 

where (Y’ > 0 for t greater than some number M’. We also 
dropped the argument variables for simplicity. The last probabil- 
ity, expressing the probability mass of the tail from p = a’= 
on in the x2 distribution, is not greater than e-p. Therefore, the 
sum in (A5), which has no more than /?log t terms, is not greater 
than 

@ log t)e-+q 

Consider a past sequence z = z,z2 . . , relative to u = x(t), 
such that it lies in the tree T( t - 1) between a node in Z- and the 

which goes to zero as t goes to infinity. We  have proved (16). 
From (S), where z*(t) denotes the context generated by the 

\ I ~~~ -u ~~- -~~~ rule (11) the ideal per symbol code length is seen to converge to a 
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conditional entropy (9), where by the first part of the theorem Z [51 
contains Z,, for t greater than some number. The convergence 
(17) follows with the ergodic theorem. Q.E.D. 16] 
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A Simple Class of Asymptotically 
Optimal Quantizers 

STAMATIS CAMBANIS, MEMBER, IEEE, AND NEIL L. GERR 

Ahtract-A simple class of quantizers is introduced which are asymptot- 
ically optimal, as the number of quantization levels increases to infinity, 
with respect to a mean rth power absolute error distortion measure. These 
asymptotically optimal quantizers are very easy to compute. Their perfor- 
mance is evaluated for several distributions and compares favorably with 
the performance of the optimal quantizers in all cases for which the latter 
have been computed. In addition their asymptotic robustness is studied 
under location; scale, and shape mismatch for several families of distribu- 
tions. 

I. INTRODUCTION 

T HE quantization of a random variable X with known 
probability density function p(x) is an important 

problem which has been studied extensively in the litera- 
ture. The special issue on quantization published in the 
March 1982 issue of this TRANSACTIONS provides a com- 
prehensive overview of the problem. 

Manuscript received May 11, 1982; revised November 1, 1982. This 
work was supported by the Air Force Office of Research under Contract 
AFOSR F49620-82-C-0009. This work was partially presented at the 1982 
Conference on Information Sciences and Systems, Princeton, NJ, March 
17-19. 

S. Cambanis is with the Statistics Department, University of North 
Carolina, Chapel Hill, NC 275 14. 

N. L. Gerr was with the Statistics Department of the University of 
North Carolina at Chapel Hill; he is now with D. H. Wagner, Associates, 
3887 Plaza Drive, Fairfax, VA 22030. 

Here we consider real valued random variables and 
mean r th power absolute error distortion measures, so that 
the optimal N-level quantizer minimizes & ]X - Q,(X)]’ 
over all N-level quantizers QN. The problem of finding 
optimal N-level quantizers has been considered by Lloyd 
[12] and Max [15], and its solution is not generally 
straightforward. The optimal mean square error N-level 
quantizers have been computed in the literature for the 
Gaussian, Rayleigh, and Laplacian distributions using the 
Lloyd-Max algorithm. (For a discussion of some problems 
inherent in such algorithms see Bucklew and Gallagher [S].) 

In this paper we determine in a very simple manner a 
sequence Q$ of N-level quantizers which, while not neces- 
sarily optimal ‘for any N, are nevertheless asymptotically 
optimal in the sense that their r th-order mean approxima- 
tion error tends to zero as N --+ co at the same rate as for 
the sequence of optimal quantizers: 

&IX - Q;(X>Y 
d?to inn&IX - Q,( X)1’ = ” 

where the infimum is taken over all N-level quantizers QN. 
Under appropriate conditions on the tails of the density 
p(x), the asymptotically optimal sequence of quantizers 
Qg is determined as follows. The quantization levels aiN) 
< a$N) < . . . < a(NN’ are, respectively, the l/(2 N), 
3/(2N); . . ,(2N - 1)/(2N) quantiles of the density h(x) 
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