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Abstract
The kissing number of Rn is the maximum number of pairwise-nonoverlapping
unit spheres that can simultaneously touch a central unit sphere. Mittelmann
and Vallentin (2010), based on the semidefinite programming bound of Bachoc
and Vallentin (2008), computed the best known upper bounds for the kissing
number for several values of n ≤ 23. In this work, we exploit the symme-
try present in the semidefinite programming bound to provide improved upper
bounds for n = 9, . . . , 23.

Introduction
For x, y ∈ Rn, denote by x · y = x1y1 + · · ·+ xnyn the Euclidean inner product
and let Sn−1 = {x ∈ Rn : x · x = 1 } be the (n− 1)-dimensional unit sphere.
A spherical code with minimum angular distance θ is a set C ⊆ Sn−1 such
that x · y ≤ cos θ for all distinct x, y ∈ C . Determining the parameter

A(n, θ) := max{ |C| : C ⊆ Sn−1 and x · y ≤ cos θ for distinct x, y ∈ C }

is a problem of interest in communication theory. When θ = π/3, the quantity
τn := A(n, π/3) amounts to the maximum number of pairwise-nonoverlapping
unit spheres that can simultaneously touch a central unit sphere and is called the
kissing number.

Figure 1: A spherical code with minimum angular distance π/3 in R3 and its corresponding
kissing configuration.

A proof that τ3 = 12 appeared only in 1953, given by Schütte and van der Waer-
den (1953). Delsarte, Goethals, and Seidel (1977) proposed an upper bound
for A(n, θ), known as the linear programming bound, that was later used by
Odlyzko and Sloane (1979), and independently Levenshtein (1979), to prove
τ8 = 240 and τ24 = 196560. Musin (2008) used a stronger version of this bound
to show τ4 = 24 and Bachoc and Vallentin (2008) strengthened it further via
semidefinite programming.

The semidefinite programming bound
For square matricesA,B of the same dimensions, we write 〈A,B〉 := tr(BTA)
and for a square matrix A, we write A � 0 to mean that A is positive semidef-
inite. Let O(n) be the orthogonal group of Rn and denote by H the stabilizer
subgroup of a fixed point e ∈ Sn−1 with respect to the action of O(n) in Sn−1.
Let Pol≤d(S

n−1) denote the space of polynomial functions in Rn of degree at
most d with domain restricted to Sn−1.
By considering the action ofH onto Pol≤d(S

n−1), Bachoc and Vallentin (2008)
computed matrices Snk of size (d− k + 1)× (d− k + 1) for 0 ≤ k ≤ d, whose
coefficients are symmetric polynomials of degree at most 2d in three variables
and with the following property:

For all finite C ⊂ Sn−1,
∑

a,b,c∈C3

Snk (a · b, a · c, b · c) � 0. (1)

Let ∆ be the set of all triples (u, v, t) ∈ R3 that are possible inner products
between three points in a spherical code of minimum angular distance θ and J
denote the all-ones matrix. Using (1), it is possible to prove:
Theorem 1 (Bachoc and Vallentin, 2008). If F0, . . . , Fd are positive semidefinite
matrices such that

3
d∑
k=0

〈Fk, Snk (u, u, 1)〉 ≤ −1, for u ∈ [−1, cos θ], and

d∑
k=0

〈Fk, Snk (u, v, t)〉 ≤ 0, for (u, v, t) ∈ ∆,

then A(n, θ) ≤ 1 + 〈F0, J〉.

Exploiting symmetry
The constraints in Theorem 1 can be read as polynomials that are required to
be nonnegative on certain domains. These constraints can be rewritten with
sum-of-squares polynomials and semidefinite programming, resulting in a finite
semidefinite program that can be solved by a computer. The problem is that this
approach leads to matrices indexed by the set of all monomials of degree at most
d, which with polynomials in three variables leads to a program with matrices of
size

(d+3
3

)
. This limits the value of d that can be used in practice. Mittelmann and

Vallentin (2010) used this approach with degree d = 14 and computed bounds
with a computation time of several weeks.
Since the polynomials occurring in the Snk matrices are symmetric, the semidef-

inite program has many symmetries. Using a method from Gatermann and Par-
rilo (2004), it is possible to block-diagonalize the matrices needed to represent
the sum-of-squares polynomials, leading us to smaller and more stable problems.
More specifically, let R[u, v, t]≤2d be the space of polynomials in three variables
and of degree at most 2d, we have:
Theorem 2 (Gatermann and Parrilo, 2004). For each integer d > 0, there are
square matrices V trv

d , V alt
d , and V std

d , whose entries are symmetric polynomials
in R[u, v, t]≤2d, such that a polynomial p ∈ R[u, v, t]≤2d is symmetric and a
sum of squares if and only if there are positive semidefinite matrices Qtrv, Qalt,
and Qstd of appropriate sizes satisfying

p = 〈Qtrv, V trv
d 〉 + 〈Qalt, V alt

d 〉 + 〈Qstd, V std
d 〉.

If moreover the dimensions of the matrices V trv
d , V alt

d , and V std
d are a, b, and c,

respectively, then
(d+3

3

)
= a + b + 2c.

This theorem comes from representation theory applied to the action of the
symmetric group S3 on R[u, v, t]≤d and the fact that S3 has three irreducible
representations: the trivial and alternating, both of dimension one, and the stan-
dard representation, of dimension two.

Results
The symmetry reduction leads to big improvements in practice. For instance,
for d = 11 a computation time of 9 days was reduced to less than 12 hours. In
this way, it was possible to make computations with d = 16 within a computing
time of 6 weeks and improve previous upper bounds for the kissing number on
dimensions 9 to 23.
By finding a solution with positive definite matrices and relatively small nu-

merical error, one can prove that it can be turned into a feasible solution, without
changing its objective value. With the help of an interval arithmetic library, this
analysis produces a rigorous proof of the bounds obtained.
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