Applications of harmonic analysis to discrete geometry

Fabrício Caluza Machado

Instituto de Matemática e Estatística Universidade de São Paulo, Brasil

> Thesis defense December 20, 2021

Acknowledgements

F.C.M was supported by grant #2017/25237-4, from the São Paulo Research Foundation (FAPESP) and was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior — Brasil (CAPES).

Chapters

- 1. Introduction
- 2. Harmonic Analysis
- 3. Packing problems
- 4. k-point semidefinite programming bounds for equiangular lines
- 5. The Fourier transform of a polytope
- 6. Coefficients of the solid angle and Ehrhart quasi-polynomials
- 7. The null set of a polytope and the Pompeiu property for polytopes

Harmonic Analysis

1.

2.

3. 4.

5.

Harmonic Analysis

Analysis of function spaces under the action of some group.

• Let G be a topological group that acts continuously in a topological space X.

Harmonic Analysis

Analysis of function spaces under the action of some group.

• Let G be a topological group that acts continuously in a topological space X.

 We also have an action on a space V of functions X → C: (L(q)f)(x) = f(q⁻¹x),

for $x \in X$, $g \in G$, $f \in V$.

Harmonic Analysis

Analysis of function spaces under the action of some group.

- Let G be a topological group that acts continuously in a topological space X.
- We also have an action on a space V of functions X → C: (L(q)f)(x) = f(q⁻¹x),

for $x \in X$, $g \in G$, $f \in V$. This action is a representation of G in V.

Harmonic Analysis

1.

2.

3. 4.

> 5. 6.

- Let G be a topological group that acts continuously in a topological space X.
- We also have an action on a space V of functions X → C: (L(q)f)(x) = f(q⁻¹x),

for
$$x \in X$$
, $g \in G$, $f \in V$. This action is a representation of G in V .

We say an invariant subspace W ⊆ V is *irreducible* if W has no proper subspace invariant to each L(g) (in the sense that L(g)f ∈ W for all f ∈ W and g ∈ G).

Harmonic Analysis

 We also have an action on a space V of functions X → C: (L(q)f)(x) = f(q⁻¹x),

for $x \in X$, $g \in G$, $f \in V$. This action is a representation of G in V.

- We say an invariant subspace $W \subseteq V$ is *irreducible* if W has no proper subspace invariant to each L(g) (in the sense that $L(g)f \in W$ for all $f \in W$ and $g \in G$).
- Determine how V can be decomposed as a "direct sum" of irreducible subspaces is useful to determine the linear operators T: V → V that commutes with the action:

$$L(g)T = TL(g)$$

7.

Example \mathbb{R}/\mathbb{Z} :

Let $X = \mathbb{R}/\mathbb{Z}$ and $G = \mathbb{R}/\mathbb{Z}$. For $m \in \mathbb{Z}$, the exponential functions

 $\phi_m(x) = e^{2\pi i m x}$

are eigenvectors for the action of \mathbb{R}/\mathbb{Z} :

Example \mathbb{R}/\mathbb{Z} :

Let $X=\mathbb{R}/\mathbb{Z}$ and $G=\mathbb{R}/\mathbb{Z}.$ For $m\in\mathbb{Z},$ the exponential functions

$$\phi_m(x) = e^{2\pi i m x}$$

are eigenvectors for the action of \mathbb{R}/\mathbb{Z} :

$$(L(y)\phi_m)(x) = \phi_m(x-y) = e^{-2\pi i m y}\phi_m(x).$$

Example \mathbb{R}/\mathbb{Z} :

Let $X=\mathbb{R}/\mathbb{Z}$ and $G=\mathbb{R}/\mathbb{Z}.$ For $m\in\mathbb{Z},$ the exponential functions

$$\phi_m(x) = e^{2\pi i m x}$$

are eigenvectors for the action of \mathbb{R}/\mathbb{Z} :

$$(L(y)\phi_m)(x) = \phi_m(x-y) = e^{-2\pi i m y} \phi_m(x).$$

Fourier series

$$f(x) \sim \sum_{m \in \mathbb{Z}} \hat{f}_m \phi_m(x), \quad \hat{f}_m = \int_0^1 f(x) e^{-2\pi i \langle m, x \rangle} \,\mathrm{d}x$$

2. Harmonic Analysis

2.1 Basics of representation theory

2.2 Invariant positive kernels

2.3 Harmonic analysis on the sphere

2.4 Fourier Analysis

2.5 Lattice sums

2 4. k-point semidefinite programming bounds for equiangular lines

k-point semidefinite programming bounds for equiangular lines

 Joint work with D. de Laat, F.M. de Oliveira Filho, and F. Vallentin.

37

k-point semidefinite programming bounds for equiangular lines

- Joint work with D. de Laat, F.M. de Oliveira Filho, and F. Vallentin.
- Derive bounds for the maximum number of equiangular lines in a given dimension and with a given angle.

37

k-point semidefinite programming bounds for equiangular lines

- Joint work with D. de Laat, F.M. de Oliveira Filho, and F. Vallentin.
- Derive bounds for the maximum number of equiangular lines in a given dimension and with a given angle.

37

k-point semidefinite programming bounds for equiangular lines

- 1. 4.
- Joint work with D. de Laat, F.M. de Oliveira Filho, and F. Vallentin.
- Derive bounds for the maximum number of equiangular lines in a given dimension and with a given angle.
- We use semidefinite programming and constraints based on k-tuple of points. (k = 2,...,6)

k-point semidefinite programming bounds for equiangular lines

- 1. 4.
- Joint work with D. de Laat, F.M. de Oliveira Filho, and F. Vallentin.
- Derive bounds for the maximum number of equiangular lines in a given dimension and with a given angle.
- We use semidefinite programming and constraints based on k-tuple of points. (k = 2,...,6)
- Domain: S^{d-1} , group: O(d).

- The problem is a special case of a spherical code problem, which in turn can be classified as a geometrical packing problem.
- Let $D \subseteq [-1, 1)$ be the set of allowable inner products.

$$A(n,D) := \max \left\{ |C| : C \subseteq S^{n-1}, \quad x \cdot y \in D \\ \text{for all distinct } x, y \in C \right\}$$

- The problem is a special case of a spherical code problem, which in turn can be classified as a geometrical packing problem.
- Let D ⊆ [-1, 1) be the set of allowable inner products.

$$A(n,D) := \max \left\{ |C| : C \subseteq S^{n-1}, \quad x \cdot y \in D \\ \text{for all distinct } x, y \in C \right\}$$

- The problem is a special case of a spherical code problem, which in turn can be classified as a geometrical packing problem.
- Let $D \subseteq [-1, 1)$ be the set of allowable inner products.

10/37

$$A(n,D) := \max \left\{ |C| : C \subseteq S^{n-1}, \quad x \cdot y \in D \\ \text{for all distinct } x, y \in C \right\}$$

• Chapter 3 shows how this problem relates with other geometrical packing problems and the similarities between the methods used to deal with them.

3. Packing problems

3.1 Modeling packing problems with graphs

3.2 Semidefinite programming bounds for the independence number of a finite graph

3.3 The Cohn-Elkies bound for the density of translative packings of convex bodies

Summary of main contributions

1.

3.

4.

- Produced a new sequence $\Delta_k(G)^*$ of semidefinite programming bounds for A(n,D) when D is finite. When k = 2 and 3, this bound reduces to known bounds in the literature.
- We computed the bound for k = 4, 5, and 6 and found improved bounds for the maximum number of equiangular lines in Euclidean space with a fixed common angle.
- For k > 4, this is the first time a k-point bound is computed for a geometric problem.

Summary of main contributions

1.

3.

4.

- Produced a new sequence $\Delta_k(G)^*$ of semidefinite programming bounds for A(n,D) when D is finite. When k = 2 and 3, this bound reduces to known bounds in the literature.
- We computed the bound for k = 4, 5, and 6 and found improved bounds for the maximum number of equiangular lines in Euclidean space with a fixed common angle.
- For k > 4, this is the first time a k-point bound is computed for a geometric problem.

Summary of main contributions

1.

3.

4.

- Produced a new sequence $\Delta_k(G)^*$ of semidefinite programming bounds for A(n,D) when D is finite. When k = 2 and 3, this bound reduces to known bounds in the literature.
- We computed the bound for k = 4, 5, and 6 and found improved bounds for the maximum number of equiangular lines in Euclidean space with a fixed common angle.
- For k > 4, this is the first time a k-point bound is computed for a geometric problem.

Results $D = \{-1/7, 1/7\}$

Fabrício C. Machado Applications of harmonic analysis to discrete geometry

4. k-point semidefinite programming bounds for equiangular lines

- **4.1 Introduction**
- 4.2 Derivation of the hierarchy
- 4.3 Symmetry reduction
- 4.4 Parameterizing invariant kernels on the sphere by positive semidefinite matrices
- 4.5 Semidefinite programming formulations
- 4.6 Two-distance sets and equiangular lines

3 6. Coefficients of the solid angle and Ehrhart quasi-polynomials

Coefficients of the solid angle and Ehrhart quasi-polynomials

Coefficients of the solid angle and Ehrhart quasi-polynomials

• Joint work with S. Robins.

1.

6.

• Determine a local formula for the codimension two quasi-coefficient of the Ehrhart and solid angle sum quasi-polynomials.

Coefficients of the solid angle and Ehrhart quasi-polynomials

Joint work with S. Robins.

1.

6.

- Determine a local formula for the codimension two quasi-coefficient of the Ehrhart and solid angle sum quasi-polynomials.
- Domain: $\mathbb{R}^d/\mathbb{Z}^d$, group: $\mathbb{R}^d/\mathbb{Z}^d$.

For a given rational polytope $P \subset \mathbb{R}^d$ and t > 0, let $tP := \{tx : x \in P\}$.

For a given rational polytope $P \subset \mathbb{R}^d$ and t > 0, let $tP := \{tx : x \in P\}$.

The Ehrhart's function $L_P(t)$ $L_P(t):=|tP\cap \mathbb{Z}^d|, \quad \text{for } t\in \mathbb{Z}$

1.

3.

4.

5.

6.

7.

For a given rational polytope $P \subset \mathbb{R}^d$ and t > 0, let $tP := \{tx : x \in P\}$.

1.

3.

4.

5.

6.

For a given rational polytope $P \subset \mathbb{R}^d$ and t > 0, let $tP := \{tx : x \in P\}$.

1.

3.

5.

6.

7.

For a given rational polytope $P \subset \mathbb{R}^d$ and t > 0, let $tP := \{tx : x \in P\}$.

1.

3.

5.

6.

For a given rational polytope $P \subset \mathbb{R}^d$ and t > 0, let $tP := \{tx : x \in P\}$.

1.

3.

4.

5.

6.

For a given rational polytope $P \subset \mathbb{R}^d$ and t > 0, let $tP := \{tx : x \in P\}$.

Ehrhart's theorem

If P is a rational d-dimensional polytope, then $L_P(t)$ is a quasi-polynomial in t of degree d. The period of its quasi-coefficients divides the denominator m of P.

$$L_P(t) = e_d(t)t^d + e_{d-1}(t)t^{d-1} + \dots + e_0(t),$$

Ehrhart's theorem

If P is a rational d-dimensional polytope, then $L_P(t)$ is a quasi-polynomial in t of degree d. The period of its quasi-coefficients divides the denominator m of P.

$$L_P(t) = e_d(t)t^d + e_{d-1}(t)t^{d-1} + \dots + e_0(t),$$

•
$$e_k(t+m) = e_k(t)$$
 for all $0 \le k \le d$ and $t \in \mathbb{R}$.

Ehrhart's theorem

If P is a rational d-dimensional polytope, then $L_P(t)$ is a quasi-polynomial in t of degree d. The period of its quasi-coefficients divides the denominator m of P.

$$L_P(t) = e_d(t)t^d + e_{d-1}(t)t^{d-1} + \dots + e_0(t),$$

•
$$e_k(t+m) = e_k(t)$$
 for all $0 \le k \le d$ and $t \in \mathbb{R}$.
• $e_d(t) = \operatorname{vol}(P)$.

Ehrhart's theorem

If P is a rational d-dimensional polytope, then $L_P(t)$ is a quasi-polynomial in t of degree d. The period of its quasi-coefficients divides the denominator m of P.

$$L_P(t) = e_d(t)t^d + e_{d-1}(t)t^{d-1} + \dots + e_0(t),$$

•
$$e_k(t+m) = e_k(t)$$
 for all $0 \le k \le d$ and $t \in \mathbb{R}$.

•
$$e_d(t) = \operatorname{vol}(P).$$

•
$$e_0(t) = 1$$
 (for P integer polytope and $t \in \mathbb{Z}$).

Ehrhart's theorem

If P is a rational d-dimensional polytope, then $L_P(t)$ is a quasi-polynomial in t of degree d. The period of its quasi-coefficients divides the denominator m of P.

$$L_P(t) = e_d(t)t^d + e_{d-1}(t)t^{d-1} + \dots + e_0(t),$$

•
$$e_k(t+m) = e_k(t)$$
 for all $0 \le k \le d$ and $t \in \mathbb{R}$.

•
$$e_d(t) = \operatorname{vol}(P).$$

- $e_0(t) = 1$ (for P integer polytope and $t \in \mathbb{Z}$).
- $e_k(t)$ has information from the k-dimensional faces of P.

Solid angle sum $A_P(t)$

Solid angle

$$\omega_P(x) := \lim_{\epsilon \to 0^+} \frac{\operatorname{vol}(S^{d-1}(x,\epsilon) \cap P)}{\operatorname{vol}(S^{d-1}(x,\epsilon))}$$

Solid angle sum $A_P(t)$

Solid angle sum

$$A_P(t) := \sum_{x \in \mathbb{Z}^d} \omega_{tP}(x)$$

Solid angle sum $A_P(t)$

1.

3.

4.

5.

6.

Solid angle sum

$$A_P(t) := \sum_{x \in \mathbb{Z}^d} \omega_{tP}(x) = a_d(t)t^d + a_{d-1}(t)t^{d-1} + \dots + a_0(t).$$

Solid angle sum $A_P(t)$

1.

3. 4.

5. **6**.

Solid angle sum

$$A_P(t) := \sum_{x \in \mathbb{Z}^d} \omega_{tP}(x) = a_d(t)t^d + a_{d-1}(t)t^{d-1} + \dots + a_0(t).$$

•
$$a_k(t+m) = a_k(t)$$
 for all $0 \le k \le d$ and $t \in \mathbb{R}$.

Solid angle sum $A_P(t)$

Solid angle sum

$$A_P(t) := \sum_{x \in \mathbb{Z}^d} \omega_{tP}(x) = a_d(t)t^d + a_{d-1}(t)t^{d-1} + \dots + a_0(t).$$

•
$$a_k(t+m) = a_k(t)$$
 for all $0 \le k \le d$ and $t \in \mathbb{R}$.
• $a_d(t) = \operatorname{vol}(P)$.

Solid angle sum $A_P(t)$

Solid angle sum

$$A_P(t) := \sum_{x \in \mathbb{Z}^d} \omega_{tP}(x) = a_d(t)t^d + a_{d-1}(t)t^{d-1} + \dots + a_0(t).$$

•
$$a_k(t+m) = a_k(t)$$
 for all $0 \le k \le d$ and $t \in \mathbb{R}$.

•
$$a_d(t) = \operatorname{vol}(P).$$

• $a_0(t) = 0$ (for P integer polytope and $t \in \mathbb{Z}$).

Solid angle sum $A_P(t)$

Solid angle sum

$$A_P(t) := \sum_{x \in \mathbb{Z}^d} \omega_{tP}(x) = a_d(t)t^d + a_{d-1}(t)t^{d-1} + \dots + a_0(t).$$

- $a_k(t+m) = a_k(t)$ for all $0 \le k \le d$ and $t \in \mathbb{R}$.
- $a_d(t) = \operatorname{vol}(P).$
- $a_0(t) = 0$ (for P integer polytope and $t \in \mathbb{Z}$).
- $a_{d-1}(t) = a_{d-3}(t) = \cdots = 0$ (for P integer polytope and $t \in \mathbb{Z}$).

1.

3.

4.

5.

The Fourier transform of a polytope

• For any compact set $\Omega \subset \mathbb{R}^d$, its *Fourier transform* is the function

$$\hat{\mathbb{1}}_{\Omega}(\xi) = \int_{\Omega} e^{-2\pi i \langle x, \xi \rangle} \, \mathrm{d}x.$$

This function is analytic in \mathbb{C}^d and $\sup_{\xi \in \mathbb{R}^d} |\hat{\mathbb{1}}_{\Omega}(\xi)| = \operatorname{vol}(\Omega)$.

1.

3. 4.

5.

The Fourier transform of a polytope

• For any compact set $\Omega \subset \mathbb{R}^d$, its *Fourier transform* is the function

$$\hat{\mathbb{1}}_{\Omega}(\xi) = \int_{\Omega} e^{-2\pi i \langle x, \xi \rangle} \, \mathrm{d}x.$$

This function is analytic in \mathbb{C}^d and $\sup_{\xi \in \mathbb{R}^d} |\hat{\mathbb{1}}_{\Omega}(\xi)| = \operatorname{vol}(\Omega)$.

• We consider $\hat{\mathbb{1}}_P$ for polytopes since we have special tools to evaluate it (the divergence theorem and Brion's theorem).

1.

3.

4.

5.

The Fourier transform of a polytope

• For any compact set $\Omega \subset \mathbb{R}^d$, its *Fourier transform* is the function

$$\hat{\mathbb{1}}_{\Omega}(\xi) = \int_{\Omega} e^{-2\pi i \langle x, \xi \rangle} \, \mathrm{d}x.$$

This function is analytic in \mathbb{C}^d and $\sup_{\xi \in \mathbb{R}^d} |\hat{\mathbb{1}}_{\Omega}(\xi)| = \operatorname{vol}(\Omega)$.

- We consider $\hat{\mathbb{1}}_P$ for polytopes since we have special tools to evaluate it (the divergence theorem and Brion's theorem).
- One application of $\hat{\mathbb{1}}_P$ is in the determination of $L_P(t)$ and $A_P(t)$.

۲

 $L_P(t) = |tP \cap \mathbb{Z}^d| = \sum \mathbb{1}_{tP}(n)$ $n \in \mathbb{Z}^d$

$$L_P(t) = |tP \cap \mathbb{Z}^d| = \sum_{n \in \mathbb{Z}^d} \mathbb{1}_{tP}(n)$$

In view of Poisson summation, "it is tempting to consider"

$$\sum_{\xi \in \mathbb{Z}^d} \hat{\mathbb{1}}_{tP}(\xi) = \operatorname{vol}(P)t^d + \sum_{\xi \in \mathbb{Z}^d \setminus \{0\}} t^d \hat{\mathbb{1}}_P(t\xi)$$

and use the last series to estimate $L_P(t) - \operatorname{vol}(P)t^d$ for large t.

1.

2. 3.

4.

5.

6.

$$L_P(t) = |tP \cap \mathbb{Z}^d| = \sum_{n \in \mathbb{Z}^d} \mathbb{1}_{tP}(n)$$

In view of Poisson summation, "it is tempting to consider"

$$\sum_{\xi \in \mathbb{Z}^d} \hat{\mathbb{1}}_{tP}(\xi) = \operatorname{vol}(P)t^d + \sum_{\xi \in \mathbb{Z}^d \setminus \{0\}} t^d \hat{\mathbb{1}}_P(t\xi)$$

and use the last series to estimate $L_P(t) - \operatorname{vol}(P)t^d$ for large t.

• Using this method and an expression for $\hat{\mathbb{1}}_{P}(\xi)$ in terms of the facets of P, we produce formulas for $a_{d-1}(t)$ and $a_{d-2}(t)$ in terms of "local" information along the faces, valid for any rational polytope P and real t > 0.

1.

2. 3.

4.

5.

6.

$$L_P(t) = |tP \cap \mathbb{Z}^d| = \sum_{n \in \mathbb{Z}^d} \mathbb{1}_{tP}(n)$$

In view of Poisson summation, "it is tempting to consider"

$$\sum_{\xi \in \mathbb{Z}^d} \hat{\mathbb{1}}_{tP}(\xi) = \operatorname{vol}(P)t^d + \sum_{\xi \in \mathbb{Z}^d \setminus \{0\}} t^d \hat{\mathbb{1}}_P(t\xi)$$

and use the last series to estimate $L_P(t) - \operatorname{vol}(P)t^d$ for large t.

 Using this method and an expression for Î_P(ξ) in terms of the facets of P, we produce formulas for a_{d-1}(t) and a_{d-2}(t) in terms of "local" information along the faces, valid for any rational polytope P and real t > 0.

Theorem (M., Robins 2019^+)

Let $P \subset \mathbb{R}^d$ be a rational polytope. Then the codimension two quasi-coefficient of the solid angle sum $A_P(t)$ has the following closed form for any positive real t:

$$a_{d-2}(t) = \sum_{\substack{G \subset P, \\ \dim G = d-2}} \operatorname{vol}^{*}(G) \\ \left[\frac{c_{G}}{2k} \left(\frac{\|v_{F_{2}}\|}{\|v_{F_{1}}\|} \overline{B}_{2}(\langle v_{F_{1}}, \bar{x}_{G} \rangle t) + \frac{\|v_{F_{1}}\|}{\|v_{F_{2}}\|} \overline{B}_{2}(\langle v_{F_{2}}, \bar{x}_{G} \rangle t) \right) \\ + \left(\omega_{P}(G) - \frac{1}{4} \right) \mathbb{1}_{\Lambda_{G}^{*}}(t\bar{x}_{G}) - s(h, k; (x_{1} + hx_{2})t, -kx_{2}t) \right].$$

Theorem (M., Robins 2019^+)

1.

5.

6.

Let $P \subset \mathbb{R}^d$ be a rational polytope. Then the codimension two quasi-coefficient of the solid angle sum $A_P(t)$ has the following closed form for any positive real t:

$$\begin{aligned} a_{d-2}(t) &= \sum_{\substack{G \subset P, \\ \dim G = d-2}} \operatorname{vol}^*(G) \\ &\left[\frac{c_G}{2k} \left(\frac{\|v_{F_2}\|}{\|v_{F_1}\|} \overline{B}_2(\langle v_{F_1}, \, \bar{x}_G \rangle t) + \frac{\|v_{F_1}\|}{\|v_{F_2}\|} \overline{B}_2(\langle v_{F_2}, \, \bar{x}_G \rangle t) \right) \\ &+ \left(\omega_P(G) - \frac{1}{4} \right) \mathbb{1}_{\Lambda_G^*}(t\bar{x}_G) - s(h, k; (x_1 + hx_2)t, -kx_2t) \right]. \end{aligned}$$

 $\omega_P(G), \Lambda_G^*, c_G, v_{F_1}, v_{F_2}, h, k, \bar{x}_G, x_1, x_2$ are all "local geometric information" of the codimension two face G of P.

1. 3. 4. 5. 6.

Theorem (M., Robins 2019⁺)

Let $P \subset \mathbb{R}^d$ be an integer polytope. Then for integer dilations, the codimension two coefficient of the of the solid angle sum $A_P(t)$ has the following local formula:

$$a_{d-2} = \sum_{\substack{G \subset P, \\ \dim G = d-2}} \operatorname{vol}^*(G) \left[\frac{c_G}{12k} \left(\frac{\|v_{F_1}\|}{\|v_{F_2}\|} + \frac{\|v_{F_2}\|}{\|v_{F_1}\|} \right) + \omega_P(G) - \frac{1}{4} - s(h,k) \right].$$

Theorem (M., Robins 2019^+)

Let $P \subset \mathbb{R}^d$ be an integer polytope. Then for integer dilations, the codimension two coefficient of the of the solid angle sum $A_P(t)$ has the following local formula:

$$a_{d-2} = \sum_{\substack{G \subset P, \\ \dim G = d-2}} \operatorname{vol}^*(G) \left[\frac{c_G}{12k} \left(\frac{\|v_{F_1}\|}{\|v_{F_2}\|} + \frac{\|v_{F_2}\|}{\|v_{F_1}\|} \right) + \omega_P(G) - \frac{1}{4} - s(h, k) \right].$$

Therefore, if P is an integer polytope in \mathbb{R}^d with d = 3 or 4, its solid angle sum for integer dilations is:

$$A_P(t) = \operatorname{vol}(P)t^d + a_{d-2}t^{d-2}.$$

Obtaining the Ehrhart quasi-coefficients

1. 3. 4. 5. 6.

Lemma (M., Robins 2019^+)

Let $P \subset \mathbb{R}^d$ be a *d*-dimensional rational polytope and $a \in int(P)$ be a rational vector. Then for any positive real t,

$$L_P(t) = \lim_{s \to \infty} A_{P+s^{-1}(P-a)}(t).$$

Obtaining the Ehrhart quasi-coefficients

Lemma (M., Robins 2019⁺)

Let $P \subset \mathbb{R}^d$ be a *d*-dimensional rational polytope and $a \in int(P)$ be a rational vector. Then for any positive real t,

 $L_P(t) = \lim_{s \to \infty} A_{P+s^{-1}(P-a)}(t).$

Obtaining the Ehrhart quasi-coefficients

Lemma (M., Robins 2019⁺)

Let $P \subset \mathbb{R}^d$ be a *d*-dimensional rational polytope and $a \in int(P)$ be a rational vector. Then for any positive real t,

 $L_P(t) = \lim_{s \to \infty} A_{P+s^{-1}(P-a)}(t).$

Obtaining the Ehrhart quasi-coefficients

Lemma (M., Robins 2019^+)

Let $P \subset \mathbb{R}^d$ be a *d*-dimensional rational polytope and $a \in int(P)$ be a rational vector. Then for any positive real t,

$$L_P(t) = \lim_{s \to \infty} A_{P+s^{-1}(P-a)}(t).$$

•
$$a_{d-1}(t) \to e_{d-1}(t)$$
,
• $a_{d-2}(t) \to e_{d-2}(t)$.

7. The null set of a polytope and the Pompeiu property for polytopes

The null set of a polytope and the Pompeiu property for polytopes

• Joint work with S. Robins.

1.

3.

4.

7.

The null set of a polytope and the Pompeiu property for polytopes

- Joint work with S. Robins.
- Let Ω ⊂ ℝ^d be a compact set. The Fourier transform of Ω is the function Î_Ω: ℂ^d → ℂ:

$$\hat{\mathbb{1}}_{\Omega}(\xi) = \int_{\Omega} e^{-2\pi i \langle x,\xi \rangle} \,\mathrm{d}x.$$
1.

3.

4.

5.

7.

The null set of a polytope and the Pompeiu property for polytopes

- Joint work with S. Robins.
- Let Ω ⊂ ℝ^d be a compact set. The Fourier transform of Ω is the function Î_Ω: ℂ^d → ℂ:

$$\hat{\mathbb{1}}_{\Omega}(\xi) = \int_{\Omega} e^{-2\pi i \langle x,\xi \rangle} \,\mathrm{d}x.$$

• The null set of Ω is $N(\Omega) = \{\xi \in \mathbb{C}^d : \hat{\mathbb{1}}_{\Omega}(\xi) = 0\}.$

1.

3.

4.

7.

The null set of a polytope and the Pompeiu property for polytopes

- Joint work with S. Robins.
- Let Ω ⊂ ℝ^d be a compact set. The Fourier transform of Ω is the function Î_Ω: ℂ^d → ℂ:

$$\hat{\mathbb{1}}_{\Omega}(\xi) = \int_{\Omega} e^{-2\pi i \langle x,\xi \rangle} \,\mathrm{d}x.$$

- The null set of Ω is $N(\Omega) = \{\xi \in \mathbb{C}^d : \hat{\mathbb{1}}_{\Omega}(\xi) = 0\}.$
- Using an explicit form for the Fourier transform of a polytope (Brion's theorem), we give a simple proof that polytopes have the Pompeiu property.

Pompeiu property

Let $\Omega \subset \mathbb{R}^d$ be a bounded set with nonempty interior. Ω has the Pompeiu property if, for $f \in \mathcal{C}(\mathbb{R}^d)$, $\int_{\sigma(\Omega)} f(x) \, \mathrm{d}x = 0.$

over all rigid motions $\sigma \in M(d)$ implies that $f \equiv 0$.

Pompeiu property

Let $\Omega\subset\mathbb{R}^d$ be a bounded set with nonempty interior. Ω has the Pompeiu property if, for $f\in\mathcal{C}(\mathbb{R}^d)$,

$$\int_{\sigma(\Omega)} f(x) \, \mathrm{d}x = 0.$$

over all rigid motions $\sigma \in M(d)$ implies that $f \equiv 0$.

The group M(d) of rigid motions in \mathbb{R}^d is the group generated by all translations and rotations.

Pompeiu property

1. 3. **4**. **5**. 7. Let $\Omega \subset \mathbb{R}^d$ be a bounded set with nonempty interior. Ω has the Pompeiu property if, for $f \in \mathcal{C}(\mathbb{R}^d)$, $\int_{\sigma(\Omega)} f(x) \, \mathrm{d}x = 0.$ over all rigid motions $\sigma \in M(d)$ implies that $f \equiv 0$.

Equivalently, $\boldsymbol{\Omega}$ has the Pompeiu property if the values

$$\int_{\sigma(\Omega)} f(x) \, \mathrm{d}x$$

over all rigid motions $\sigma \in M(d)$ uniquely determine $f \in \mathcal{C}(\mathbb{R}^d).$

d = 1

$$\int_{c}^{c+L} \sin\left(\frac{2\pi}{L}x\right) \mathrm{d}x = 0$$

d = 1

An interval does not have the Pompeiu property:

$$\int_{c}^{c+L} \sin\left(\frac{2\pi}{L}x\right) \mathrm{d}x = 0$$

d = 1

An interval does not have the Pompeiu property:

$$\int_{c}^{c+L} \sin\left(\frac{2\pi}{L}x\right) \mathrm{d}x = 0$$

d = 1

$$\int_{c}^{c+L} \sin\left(\frac{2\pi}{L}x\right) \mathrm{d}x = 0$$

d = 1

$$\int_{c}^{c+L} \sin\left(\frac{2\pi}{L}x\right) \mathrm{d}x = 0$$

d = 1

An interval does not have the Pompeiu property:

$$\int_{c}^{c+L} \sin\left(\frac{2\pi}{L}x\right) \mathrm{d}x = 0$$

d = 1

$$\int_{c}^{c+L} \sin\left(\frac{2\pi}{L}x\right) \mathrm{d}x = 0$$

$d \ge 2$

1. 3. 4. 5. 7.

A ball does not have the Pompeiu property. If R is the radius of the ball and a is such that $J_{d/2}(aR)=0,$ then

$$\int_{\|x-c\| \le R} \sin(ax_1) \,\mathrm{d}x = 0.$$

$d \ge 2$

1.

2. 3. 4.

5.

7.

A ball does not have the Pompeiu property. If R is the radius of the ball and a is such that $J_{d/2}(aR) = 0$, then $\int_{\|x-c\| \le R} \sin(ax_1) \, \mathrm{d}x = 0.$ $\int_{\|x\| \le R} e^{2\pi i \langle \xi, x \rangle} \, \mathrm{d}x = \left(\frac{R}{\|\xi\|}\right)^{d/2} J_{d/2}(2\pi R \|\xi\|).$

Theorem (M., Robins)

Let $P \subset \mathbb{R}^d$ be a *d*-dimensional polytope, $H \subset \mathbb{R}^d$ be a 2-dimensional real subspace that is not orthogonal to any edge from P, and fix an orthonormal basis $\{e, f\} \subset \mathbb{R}^d$ for H. Then

$$\left\{\alpha(\cos t)e + \alpha(\sin t)f \in \mathbb{C}^d : t \in [-\pi,\pi]\right\} \not\subset N(P)$$

for any $\alpha \in \mathbb{C} \setminus \{0\}$.

Example

Let $P \subset \mathbb{R}^2$ be an hexagon,

Example

In blue is $N(P)\cap \mathbb{R}^2$

Example

In blue is $N(P) \cap \mathbb{R}^2$ and in red is a circle.

Example

In blue is $N(P) \cap \mathbb{R}^2$ and in red is a circle.

Example

In blue is $N(P) \cap \mathbb{R}^2$ and in red is a circle.

7. The null set of a polytope and the Pompeiu property for polytopes

7.1 Introduction

7.2 Preliminaries

7.3 Proof of Theorem 7.1.2

1. 5.

For each facet F of P, let n_F be the outer unit normal vector along F and $d_F x$ denote the surface integral along F. Applying the divergence theorem to the vector field $\xi e^{-2\pi i \langle x, \xi \rangle}$, we get:

If ξ is not orthogonal to F, we may interate the process along the lower dimensional faces of P.

1.

5.

1. 5.

Brion's theorem

If $P \subset \mathbb{R}^d$ is a *d*-dimensional polytope and for each $v \in V(P)$, $K_{v,1}, \ldots, K_{v,M_v}$ are simplicial cones with disjoint interiors such that $\operatorname{tcone}(P, v) = \bigcup_{j=1}^{M_v} K_{v,j}$ and for each $1 \leq j \leq M_v$, $w_{j,1}^v, \ldots, w_{j,d}^v$ are the generators of $K_{v,j}$. Then

$$\hat{\mathbb{1}}_P(\xi) = \sum_{v \in V(P)} \sum_{j=1}^{M_v} \frac{e^{-2\pi i \langle v, \xi \rangle}}{(2\pi i)^d} \frac{\det(w_{j,1}^v, \dots, w_{j,d}^v)}{\langle w_{j,1}^v, \xi \rangle \dots \langle w_{j,d}^v, \xi \rangle}.$$

5. The Fourier transform of a polytope

5.1 Combinatorial Stokes Formula

5.2 The integral and exponential sum valuations

Fabrício Caluza Machado www.ime.usp.br/~fabcm fabcm1@gmail.com Mathematics and Statistics Institute, University of São Paulo, Brazil

Fourier transforms of polytopes (Diaz, Le, and Robins 2016^+)

$$L_P(t) = \sum_{n \in \mathbb{Z}^d} \mathbb{1}_{tP}(n) = \sum_{\xi \in \mathbb{Z}^d} \hat{\mathbb{1}}_{tP}(\xi) = t^d \sum_{\xi \in \mathbb{Z}^d} \int_P e^{-2\pi i \langle t\xi, x \rangle} \, \mathrm{d}x$$

Fabrício C. Machado

Fourier transforms of polytopes (Diaz, Le, and Robins 2016^+)

$$L_P(t) = \sum_{n \in \mathbb{Z}^d} \mathbb{1}_{tP}(n) = \sum_{\xi \in \mathbb{Z}^d} \hat{\mathbb{1}}_{tP}(\xi) = t^d \sum_{\xi \in \mathbb{Z}^d} \int_P e^{-2\pi i \langle t\xi, x \rangle} \,\mathrm{d}x \quad \checkmark$$

Fourier transforms of polytopes (Diaz,Le, and Robins 2016^+)

$$L_P(t) = \sum_{n \in \mathbb{Z}^d} \mathbb{1}_{tP}(n) = \sum_{\xi \in \mathbb{Z}^d} \hat{\mathbb{1}}_{tP}(\xi) = t^d \sum_{\xi \in \mathbb{Z}^d} \int_P e^{-2\pi i \langle t\xi, x \rangle} \,\mathrm{d}x \quad \checkmark$$

$$\begin{split} \phi_{d,\epsilon}(x) &:= \epsilon^{-d/2} e^{-\pi \|x\|^2/\epsilon} \\ \omega_P(n) &= \lim_{\epsilon \to 0^+} (\mathbbm{1}_P * \phi_{d,\epsilon})(n) \\ &= \lim_{\epsilon \to 0^+} \int_P \phi_{d,\epsilon}(y-n) \, \mathrm{d}y \end{split}$$

$$A_P(t) = \sum_{n \in \mathbb{Z}^d} \omega_{tP}(n) = \sum_{n \in \mathbb{Z}^d} \lim_{\epsilon \to 0^+} (\mathbb{1}_{tP} * \phi_{d,\epsilon})(n)$$

$$A_P(t) = \sum_{n \in \mathbb{Z}^d} \omega_{tP}(n) = \sum_{n \in \mathbb{Z}^d} \lim_{\epsilon \to 0^+} (\mathbb{1}_{tP} * \phi_{d,\epsilon})(n)$$
$$= \lim_{\epsilon \to 0^+} \sum_{n \in \mathbb{Z}^d} (\mathbb{1}_{tP} * \phi_{d,\epsilon})(n) = \lim_{\epsilon \to 0^+} \sum_{\xi \in \mathbb{Z}^d} \hat{\mathbb{1}}_{tP}(\xi) \hat{\phi}_{d,\epsilon}(\xi)$$

$$A_P(t) = \sum_{n \in \mathbb{Z}^d} \omega_{tP}(n) = \sum_{n \in \mathbb{Z}^d} \lim_{\epsilon \to 0^+} (\mathbb{1}_{tP} * \phi_{d,\epsilon})(n)$$

$$= \lim_{\epsilon \to 0^+} \sum_{n \in \mathbb{Z}^d} (\mathbb{1}_{tP} * \phi_{d,\epsilon})(n) = \lim_{\epsilon \to 0^+} \sum_{\xi \in \mathbb{Z}^d} \hat{\mathbb{1}}_{tP}(\xi) \hat{\phi}_{d,\epsilon}(\xi)$$

$$= \lim_{\epsilon \to 0^+} \sum_{\xi \in \mathbb{Z}^d} \hat{\phi}_{d,\epsilon}(\xi) \int_{tP} e^{-2\pi i \langle \xi, x \rangle} dx$$

$$A_P(t) = \sum_{n \in \mathbb{Z}^d} \omega_{tP}(n) = \sum_{n \in \mathbb{Z}^d} \lim_{\epsilon \to 0^+} (\mathbbm{1}_{tP} * \phi_{d,\epsilon})(n)$$

$$= \lim_{\epsilon \to 0^+} \sum_{n \in \mathbb{Z}^d} (\mathbbm{1}_{tP} * \phi_{d,\epsilon})(n) = \lim_{\epsilon \to 0^+} \sum_{\xi \in \mathbb{Z}^d} \mathbbm{1}_{tP}(\xi) \hat{\phi}_{d,\epsilon}(\xi)$$

$$= t^d \lim_{\epsilon \to 0^+} \sum_{\xi \in \mathbb{Z}^d} \hat{\phi}_{d,\epsilon}(\xi) \int_P e^{-2\pi i \langle t\xi, x \rangle} dx$$

$$\begin{aligned} A_P(t) &= \sum_{n \in \mathbb{Z}^d} \omega_{tP}(n) = \sum_{n \in \mathbb{Z}^d} \lim_{\epsilon \to 0^+} (\mathbbm{1}_{tP} * \phi_{d,\epsilon})(n) \\ &= \lim_{\epsilon \to 0^+} \sum_{n \in \mathbb{Z}^d} (\mathbbm{1}_{tP} * \phi_{d,\epsilon})(n) = \lim_{\epsilon \to 0^+} \sum_{\xi \in \mathbb{Z}^d} \mathbbm{1}_{tP}(\xi) \hat{\phi}_{d,\epsilon}(\xi) \\ &= t^d \lim_{\epsilon \to 0^+} \sum_{\xi \in \mathbb{Z}^d} \hat{\phi}_{d,\epsilon}(\xi) \int_P e^{-2\pi i \langle t\xi, x \rangle} \, \mathrm{d}x \\ &= t^d \mathrm{vol}(P) + t^{d-1} \lim_{\epsilon \to 0^+} \sum_{\xi \in \mathbb{Z}^d \setminus \{0\}} \hat{\phi}_{d,\epsilon}(\xi) \sum_{\substack{F \subseteq P \\ \mathrm{dim}(F) = d-1}} \frac{\langle \xi, N_P(F) \rangle}{-2\pi i \|\xi\|^2} \int_F e^{-2\pi i \langle t\xi, x \rangle} \, \mathrm{d}x \end{aligned}$$

Fabrício C. Machado Applications of harmonic analysis to discrete geometry

Theorem (Diaz, Le, and Robins 2016^+)

Let P be a d-dimensional rational polytope in \mathbb{R}^d , and t be a positive real number. Then we have $A_P(t) = \sum_{k=0}^d a_k(t)t^k$, where, for $0 \le k \le d$,

$$a_{d-k}(t) = \lim_{\epsilon \to 0^+} \sum_{T: \, l(T)=k} \sum_{\xi \in \mathbb{Z}^d \cap S(T)} \mathcal{R}_T(\xi) e^{-2\pi i \langle t\xi, x_{F_k} \rangle} \hat{\phi}_{d,\epsilon}(\xi),$$

where the first sum is over all chains $T = (P \to F_1 \to \cdots \to F_k)$ with F_j a facet of F_{j-1} for every j and S(T) is the set of vectors ξ orthogonal to $\lim(F_k)$ but not to $\lim(F_{k-1})$.

Lattice sums — Definition

Let Λ be a k-dimensional lattice in \mathbb{R}^d , w_1, \ldots, w_k be linearly independent vectors from

$$\Lambda^* := \{ y \in \operatorname{span}(\Lambda) : \langle x, \, y \rangle \in \mathbb{Z} \text{ for all } x \in \Lambda \}$$

and $W \in \mathbb{R}^{d \times k}$ be a matrix with them as columns. For a k-tuple $e = (e_1, \ldots, e_k)$ of positive integers, let $|e| := \sum_{j=1}^k e_j$. For all $x \in \mathbb{R}^d$, we want to evaluate:

$$L_{\Lambda}(W,e;x) := \lim_{\epsilon \to 0^+} \frac{1}{(2\pi i)^{|e|}} \sum_{\substack{\xi \in \Lambda: \\ \langle w_j, \xi \rangle \neq 0, \forall j}} \frac{e^{-2\pi i \langle x, \xi \rangle}}{\prod_{j=1}^k \langle w_j, \xi \rangle^{e_j}} e^{-\pi \epsilon \|\xi\|^2}.$$

Lattice sums — Theorem

Theorem (M., Robins 2019^+)

If $W \in \mathbb{R}^{d \times k}$ is a matrix with linearly independent columns $w_1, \ldots, w_k \in \Lambda^*$, $e = (e_1, \ldots, e_k)$ is a k-tuple of positive integers and $x \in \mathbb{R}^d$, then:

$$L_{\Lambda}(W,e;x) = \sum_{n \in \Lambda^* \cap P_{W,x}} \frac{(-1)^k \mathcal{B}_e(W^+(n-x)) \omega_{P_{W,x}}(n)}{e_1! \cdots e_k! \det(W^{\mathsf{T}}W)^{1/2} \det(\Lambda)}.$$

Theorem (M., Robins 2019^+)

If $W \in \mathbb{R}^{d \times k}$ is a matrix with linearly independent columns $w_1, \ldots, w_k \in \Lambda^*$, $e = (e_1, \ldots, e_k)$ is a k-tuple of positive integers and $x \in \mathbb{R}^d$, then:

$$L_{\Lambda}(W,e;x) = \sum_{n \in \Lambda^* \cap P_{W,x}} \frac{(-1)^k \mathcal{B}_e(W^+(n-x)) \omega_{P_{W,x}}(n)}{e_1! \cdots e_k! \det(W^\top W)^{1/2} \det(\Lambda)}.$$

 $B_r(x)$ are the Bernoulli polynomials with support in [0, 1]. $B_1(x) = x - 1/2$, $B_2(x) = x^2 - x + 1/6$ for $x \in [0, 1]$.

$$\mathcal{B}_e(x) := B_{e_1}(x_1) \cdots B_{e_k}(x_k).$$

Theorem (M., Robins 2019⁺)

If $W \in \mathbb{R}^{d \times k}$ is a matrix with linearly independent columns $w_1, \ldots, w_k \in \Lambda^*$, $e = (e_1, \ldots, e_k)$ is a k-tuple of positive integers and $x \in \mathbb{R}^d$, then:

$$L_{\Lambda}(W,e;x) = \sum_{\boldsymbol{n}\in\Lambda^*\cap P_{W,x}} \frac{(-1)^k \mathcal{B}_e(W^+(\boldsymbol{n}-x))\omega_{P_{W,x}}(\boldsymbol{n})}{e_1!\cdots e_k!\det(W^{\mathsf{T}}W)^{1/2}\det(\Lambda)}$$

