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7. 

Analysis of function spaces under the action of some group.
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Analysis of function spaces under the action of some group.

Let G be a topological group that acts continuously in a
topological space X.

We also have an action on a space V of functions
X → C:

(L(g)f)(x) = f(g−1x),

for x ∈ X, g ∈ G, f ∈ V .
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Let G be a topological group that acts continuously in a
topological space X.

We also have an action on a space V of functions
X → C:

(L(g)f)(x) = f(g−1x),

for x ∈ X, g ∈ G, f ∈ V . This action is a
representation of G in V .

We say an invariant subspace W ⊆ V is irreducible if W
has no proper subspace invariant to each L(g) (in the
sense that L(g)f ∈W for all f ∈W and g ∈ G).
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We also have an action on a space V of functions
X → C:

(L(g)f)(x) = f(g−1x),

for x ∈ X, g ∈ G, f ∈ V . This action is a
representation of G in V .

We say an invariant subspace W ⊆ V is irreducible if W
has no proper subspace invariant to each L(g) (in the
sense that L(g)f ∈W for all f ∈W and g ∈ G).

Determine how V can be decomposed as a “direct sum”
of irreducible subspaces is useful to determine the linear
operators T : V → V that commutes with the action:

L(g)T = TL(g)
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Example R/Z:

Let X = R/Z and G = R/Z.

For m ∈ Z, the exponential
functions

φm(x) = e2πimx

are eigenvectors for the action of R/Z

:

(L(y)φm)(x) = φm(x− y) = e−2πimyφm(x).

Fourier series

f(x) ∼
∑
m∈Z

f̂mφm(x), f̂m =

∫ 1

0
f(x)e−2πi〈m,x〉 dx

Fabŕıcio C. Machado Applications of harmonic analysis to discrete geometry



6/37

Harmonic analysis
Equiangular lines

The solid angle and Ehrhart quasi-polynomials
The null set of a polytope

2. 

1. 

3. 

4. 

5. 

6. 

7. 

Example R/Z:

Let X = R/Z and G = R/Z. For m ∈ Z, the exponential
functions

φm(x) = e2πimx

are eigenvectors for the action of R/Z:

(L(y)φm)(x) = φm(x− y) = e−2πimyφm(x).

Fourier series

f(x) ∼
∑
m∈Z

f̂mφm(x), f̂m =

∫ 1

0
f(x)e−2πi〈m,x〉 dx
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2. Harmonic Analysis

2.1 Basics of representation theory

2.2 Invariant positive kernels

2.3 Harmonic analysis on the sphere

2.4 Fourier Analysis

2.5 Lattice sums
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k-point semidefinite programming bounds for
equiangular lines
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Joint work with D. de Laat, F.M.
de Oliveira Filho, and F. Vallentin.

Derive bounds for the maximum
number of equiangular lines in a
given dimension and with a given
angle.

We use semidefinite programming
and constraints based on k-tuple
of points. (k = 2, . . . , 6)

Domain: Sd−1, group: O(d).
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The problem is a special case of a
spherical code problem, which in
turn can be classified as a
geometrical packing problem.

Let D ⊆ [−1, 1) be the set of
allowable inner products.

A(n,D) := max
{
|C| : C ⊆ Sn−1, x · y ∈ D

for all distinct x, y ∈ C
}

Chapter 3 shows how this problem relates with other
geometrical packing problems and the similarities
between the methods used to deal with them.

Fabŕıcio C. Machado Applications of harmonic analysis to discrete geometry



10/37

Harmonic analysis
Equiangular lines

The solid angle and Ehrhart quasi-polynomials
The null set of a polytope

2. 

1. 

3. 

4. 

5. 

6. 

7. 

The problem is a special case of a
spherical code problem, which in
turn can be classified as a
geometrical packing problem.

Let D ⊆ [−1, 1) be the set of
allowable inner products.

A(n,D) := max
{
|C| : C ⊆ Sn−1, x · y ∈ D

for all distinct x, y ∈ C
}

Chapter 3 shows how this problem relates with other
geometrical packing problems and the similarities
between the methods used to deal with them.
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3. Packing problems

3.1 Modeling packing problems with graphs

3.2 Semidefinite programming bounds for the       
.      independence number of a finite graph

3.3 The Cohn-Elkies bound for the density of          
.      translative packings of convex bodies
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Summary of main contributions

2. 

1. 

3. 

4. 

5. 

6. 

7. 

Produced a new sequence ∆k(G)∗ of semidefinite
programming bounds for A(n,D) when D is finite.
When k = 2 and 3, this bound reduces to known
bounds in the literature.

We computed the bound for k = 4, 5, and 6 and found
improved bounds for the maximum number of
equiangular lines in Euclidean space with a fixed
common angle.

For k > 4, this is the first time a k-point bound is
computed for a geometric problem.
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Results D = {−1/7, 1/7}
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4. 

5. 
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7. 
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bound a = 1/7

Thm 6.1 [LS73]
∆3 (G) ∗  [BY14, KT19]
∆4 (G) ∗  
∆5 (G) ∗  
∆6 (G) ∗  
Thm 6.11 [GY18]
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4. k-point semidefinite programming bounds for equiangular lines

4.1 Introduction

4.2 Derivation of the hierarchy

4.3 Symmetry reduction

4.4 Parameterizing invariant kernels on the sphere by positive                          
.      semidefinite matrices

4.5 Semidefinite programming formulations

4.6 Two-distance sets and equiangular lines
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Coefficients of the solid angle and Ehrhart
quasi-polynomials
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Joint work with S. Robins.

Determine a local formula for the
codimension two quasi-coefficient
of the Ehrhart and solid angle sum
quasi-polynomials.

Domain: Rd/Zd, group: Rd/Zd.
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For a given rational polytope P ⊂ Rd and t > 0,
let tP := {tx : x ∈ P}.

The Ehrhart’s function LP (t)

LP (t) := |tP ∩ Zd|, for t ∈ Z

o

LP (1) = 5,
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Ehrhart’s theorem

If P is a rational d-dimensional polytope, then LP (t) is a
quasi-polynomial in t of degree d. The period of its quasi-
coefficients divides the denominator m of P .

LP (t) = ed(t)t
d + ed−1(t)td−1 + · · ·+ e0(t),
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Ehrhart’s theorem

If P is a rational d-dimensional polytope, then LP (t) is a
quasi-polynomial in t of degree d. The period of its quasi-
coefficients divides the denominator m of P .

LP (t) = ed(t)t
d + ed−1(t)td−1 + · · ·+ e0(t),

ek(t+m) = ek(t) for all 0 ≤ k ≤ d and t ∈ R.
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If P is a rational d-dimensional polytope, then LP (t) is a
quasi-polynomial in t of degree d. The period of its quasi-
coefficients divides the denominator m of P .

LP (t) = ed(t)t
d + ed−1(t)td−1 + · · ·+ e0(t),

ek(t+m) = ek(t) for all 0 ≤ k ≤ d and t ∈ R.

ed(t) = vol(P ).

e0(t) = 1 (for P integer polytope and t ∈ Z).

ek(t) has information from the k-dimensional faces of P .
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Solid angle

ωP (x) := lim
ε→0+

vol(Sd−1(x, ε) ∩ P )

vol(Sd−1(x, ε))

x
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Fabŕıcio C. Machado Applications of harmonic analysis to discrete geometry



19/37

Harmonic analysis
Equiangular lines

The solid angle and Ehrhart quasi-polynomials
The null set of a polytope

Solid angle sum AP (t)

2. 

1. 

3. 

4. 

5. 

6. 

7. 

Solid angle sum

AP (t) :=
∑
x∈Zd

ωtP (x) = ad(t)t
d + ad−1(t)td−1 + · · ·+ a0(t).

x
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Fabŕıcio C. Machado Applications of harmonic analysis to discrete geometry



19/37

Harmonic analysis
Equiangular lines

The solid angle and Ehrhart quasi-polynomials
The null set of a polytope

Solid angle sum AP (t)

2. 

1. 

3. 

4. 

5. 

6. 

7. 

Solid angle sum

AP (t) :=
∑
x∈Zd

ωtP (x) = ad(t)t
d + ad−1(t)td−1 + · · ·+ a0(t).

ak(t+m) = ak(t) for all 0 ≤ k ≤ d and t ∈ R.

ad(t) = vol(P ).

a0(t) = 0 (for P integer polytope and t ∈ Z).
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Solid angle sum

AP (t) :=
∑
x∈Zd

ωtP (x) = ad(t)t
d + ad−1(t)td−1 + · · ·+ a0(t).

ak(t+m) = ak(t) for all 0 ≤ k ≤ d and t ∈ R.

ad(t) = vol(P ).

a0(t) = 0 (for P integer polytope and t ∈ Z).

ad−1(t) = ad−3(t) = · · · = 0 (for P integer polytope
and t ∈ Z).
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For any compact set Ω ⊂ Rd, its Fourier transform is the
function

1̂Ω(ξ) =

∫
Ω
e−2πi〈x, ξ〉 dx.

This function is analytic in Cd and supξ∈Rd |1̂Ω(ξ)| = vol(Ω).

We consider 1̂P for polytopes since we have special tools to
evaluate it (the divergence theorem and Brion’s theorem).

One application of 1̂P is in the determination of LP (t) and
AP (t).
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LP (t) = |tP ∩ Zd| =
∑
n∈Zd

1tP (n)

In view of Poisson summation, “it is tempting to consider”∑
ξ∈Zd

1̂tP (ξ) = vol(P )td +
∑

ξ∈Zd\{0}

td1̂P (tξ)

and use the last series to estimate LP (t)− vol(P )td for
large t.

Using this method and an expression for 1̂P (ξ) in terms of
the facets of P , we produce formulas for ad−1(t) and ad−2(t)
in terms of “local” information along the faces, valid for any
rational polytope P and real t > 0.

Fabŕıcio C. Machado Applications of harmonic analysis to discrete geometry



21/37

Harmonic analysis
Equiangular lines

The solid angle and Ehrhart quasi-polynomials
The null set of a polytope

2. 

1. 

3. 

4. 

5. 

6. 

7. 

LP (t) = |tP ∩ Zd| =
∑
n∈Zd

1tP (n)

In view of Poisson summation, “it is tempting to consider”∑
ξ∈Zd

1̂tP (ξ) = vol(P )td +
∑

ξ∈Zd\{0}

td1̂P (tξ)

and use the last series to estimate LP (t)− vol(P )td for
large t.

Using this method and an expression for 1̂P (ξ) in terms of
the facets of P , we produce formulas for ad−1(t) and ad−2(t)
in terms of “local” information along the faces, valid for any
rational polytope P and real t > 0.
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Theorem (M., Robins 2019+)

Let P ⊂ Rd be a rational polytope. Then the codimension two
quasi-coefficient of the solid angle sum AP (t) has the following
closed form for any positive real t:

ad−2(t) =
∑
G⊂P,

dimG=d−2

vol∗(G)

[
cG
2k

(
‖vF2‖
‖vF1‖

B2

(
〈vF1 , x̄G〉t

)
+
‖vF1‖
‖vF2‖

B2

(
〈vF2 , x̄G〉t

))
+

(
ωP (G)− 1

4

)
1Λ∗

G
(tx̄G)− s

(
h, k; (x1 + hx2)t,−kx2t

)]
.
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Theorem (M., Robins 2019+)

Let P ⊂ Rd be a rational polytope. Then the codimension two
quasi-coefficient of the solid angle sum AP (t) has the following
closed form for any positive real t:

ad−2(t) =
∑
G⊂P,

dimG=d−2

vol∗(G)

[
cG
2k

(
‖vF2‖
‖vF1‖

B2

(
〈vF1 , x̄G〉t

)
+
‖vF1‖
‖vF2‖

B2

(
〈vF2 , x̄G〉t

))
+

(
ωP (G)− 1

4

)
1Λ∗

G
(tx̄G)− s

(
h, k; (x1 + hx2)t,−kx2t

)]
.

ωP (G),Λ∗G, cG, vF1 , vF2 , h, k, x̄G, x1, x2 are all “local geometric in-
formation” of the codimension two face G of P .

Fabŕıcio C. Machado Applications of harmonic analysis to discrete geometry



22/37

Harmonic analysis
Equiangular lines

The solid angle and Ehrhart quasi-polynomials
The null set of a polytope

2. 

1. 

3. 

4. 

5. 

6. 

7. 

Theorem (M., Robins 2019+)

Let P ⊂ Rd be an integer polytope. Then for integer dilations,
the codimension two coefficient of the of the solid angle sum
AP (t) has the following local formula:

ad−2 =
∑
G⊂P,

dimG=d−2

vol∗(G)

[
cG
12k

(
‖vF1‖
‖vF2‖

+
‖vF2‖
‖vF1‖

)
+ωP (G)−1

4
−s(h, k)

]
.
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Theorem (M., Robins 2019+)

Let P ⊂ Rd be an integer polytope. Then for integer dilations,
the codimension two coefficient of the of the solid angle sum
AP (t) has the following local formula:

ad−2 =
∑
G⊂P,

dimG=d−2

vol∗(G)

[
cG
12k

(
‖vF1‖
‖vF2‖

+
‖vF2‖
‖vF1‖

)
+ωP (G)−1

4
−s(h, k)

]
.

Therefore, if P is an integer polytope in Rd with d = 3 or 4, its
solid angle sum for integer dilations is:

AP (t) = vol(P )td + ad−2t
d−2.
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Lemma (M., Robins 2019+)

Let P ⊂ Rd be a d-dimensional rational polytope and a ∈ int(P )
be a rational vector. Then for any positive real t,

LP (t) = lim
s→∞

AP+s−1(P−a)(t).
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Lemma (M., Robins 2019+)

Let P ⊂ Rd be a d-dimensional rational polytope and a ∈ int(P )
be a rational vector. Then for any positive real t,

LP (t) = lim
s→∞

AP+s−1(P−a)(t).

ad−1(t)→ ed−1(t),

ad−2(t)→ ed−2(t).
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6. Coefficients of the solid angle and Ehrhart quasi-polynomials

6.1 Introduction

6.2 Main results

6.3 Fourier transforms of polytopes and solid angle sums

6.4 Proofs of Theorem 6.2.1 and Corollary 6.2.2

6.5 Obtaining the Ehrhart quasi-coefficients e
d−1

 (t) and e
d−2

 (t)

6.6 Two examples in three dimensions

6.7 Concrete polytopes and further remarks

6.8 Appendix: Obtaining the solid angle quasi-coefficients from the               
.      Ehrhart quasi-coefficients
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4 7. The null set of a polytope and the Pompeiu property for
polytopes
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The null set of a polytope and the Pompeiu property
for polytopes
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Joint work with S. Robins.

Let Ω ⊂ Rd be a compact set. The Fourier transform
of Ω is the function 1̂Ω : Cd → C:

1̂Ω(ξ) =

∫
Ω
e−2πi〈x,ξ〉 dx.

The null set of Ω is N(Ω) = {ξ ∈ Cd : 1̂Ω(ξ) = 0}.
Using an explicit form for the Fourier transform of a
polytope (Brion’s theorem), we give a simple proof that
polytopes have the Pompeiu property.
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Let Ω ⊂ Rd be a bounded set with nonempty interior. Ω has
the Pompeiu property if, for f ∈ C(Rd),∫

σ(Ω)
f(x) dx = 0.

over all rigid motions σ ∈M(d) implies that f ≡ 0.
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Let Ω ⊂ Rd be a bounded set with nonempty interior. Ω has
the Pompeiu property if, for f ∈ C(Rd),∫

σ(Ω)
f(x) dx = 0.

over all rigid motions σ ∈M(d) implies that f ≡ 0.

The group M(d) of rigid motions in Rd is the group generated
by all translations and rotations.
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Let Ω ⊂ Rd be a bounded set with nonempty interior. Ω has
the Pompeiu property if, for f ∈ C(Rd),∫

σ(Ω)
f(x) dx = 0.

over all rigid motions σ ∈M(d) implies that f ≡ 0.

Equivalently, Ω has the Pompeiu property if the values∫
σ(Ω)

f(x) dx

over all rigid motions σ ∈ M(d) uniquely determine
f ∈ C(Rd).
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An interval does not have the Pompeiu property:∫ c+L

c
sin
(2π

L
x
)

dx = 0

x
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A ball does not have the Pompeiu property. If R is the radius
of the ball and a is such that Jd/2(aR) = 0, then∫

‖x−c‖≤R
sin(ax1) dx = 0.
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e2πi〈ξ, x〉 dx =
( R

‖ξ‖

)d/2
Jd/2(2πR‖ξ‖).
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Theorem (M., Robins)

Let P ⊂ Rd be a d-dimensional polytope, H ⊂ Rd be a 2-
dimensional real subspace that is not orthogonal to any edge
from P , and fix an orthonormal basis {e, f} ⊂ Rd for H.
Then{

α(cos t)e+ α(sin t)f ∈ Cd : t ∈ [−π, π]
}
6⊂ N(P )

for any α ∈ C \ {0}.
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7. The null set of a polytope and the Pompeiu 
property for polytopes

7.1 Introduction

7.2 Preliminaries

7.3 Proof of Theorem 7.1.2
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For each facet F of P , let nF be the outer unit normal vector
along F and dFx denote the surface integral along F .
Applying the divergence theorem to the vector field
ξe−2πi〈x, ξ〉, we get:

Combinatorial Stokes formula

∫
P
e−2πi〈x, ξ〉 dx =

−1

2πi

∑
F∈F(P )

dim(F )=d−1

〈ξ, nF 〉
‖ξ‖2

∫
F
e−2πi〈x, ξ〉 dFx

If ξ is not orthogonal to F , we may interate the process along
the lower dimensional faces of P .
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Let P ⊂ Rd be a d-dimensional polytope. For each
v ∈ V (P ), let Kv be the tangent cone of P at v and
Kv,1, . . . ,Kv,Mv be a triangulation of Kv into simplicial cones
with no new edges. For each 1 ≤ j ≤ Mv, let wvj,1, . . . , w

v
j,d

be the edges of Kv,j .

v

Kv
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Brion’s theorem

If P ⊂ Rd is a d-dimensional polytope and for each v ∈ V (P ),
Kv,1, . . . ,Kv,Mv are simplicial cones with disjoint interiors

such that tcone(P, v) =
⋃Mv
j=1Kv,j and for each 1 ≤ j ≤Mv,

wvj,1, . . . , w
v
j,d are the generators of Kv,j . Then

1̂P (ξ) =
∑

v∈V (P )

Mv∑
j=1

e−2πi〈v, ξ〉

(2πi)d
det(wvj,1, . . . , w

v
j,d)

〈wvj,1, ξ〉 . . . 〈wvj,d, ξ〉
.
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5. The Fourier transform of a polytope

5.1 Combinatorial Stokes Formula

5.2 The integral and exponential sum valuations

Fabŕıcio C. Machado Applications of harmonic analysis to discrete geometry



37/37

Harmonic analysis
Equiangular lines

The solid angle and Ehrhart quasi-polynomials
The null set of a polytope

Thank you for your attention!

Fabrı́cio Caluza Machado

www.ime.usp.br/∼fabcm
fabcm1@gmail.com

Mathematics and Statistics Institute,

University of S~ao Paulo, Brazil
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Fourier transforms of polytopes (Diaz,Le, and Robins 2016+)

LP (t) =
∑
n∈Zd

1tP (n) =
∑
ξ∈Zd

1̂tP (ξ) = td
∑
ξ∈Zd

∫
P
e−2πi〈tξ, x〉 dx
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LP (t) =
∑
n∈Zd

1tP (n) =
∑
ξ∈Zd

1̂tP (ξ) = td
∑
ξ∈Zd

∫
P
e−2πi〈tξ, x〉 dx

φd,ε(x) := ε−d/2e−π‖x‖
2/ε

ωP (n) = lim
ε→0+

(1P ∗ φd,ε)(n)

= lim
ε→0+

∫
P
φd,ε(y − n) dy.

−3 −2 −1 0 1 2 3
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= lim
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φ̂d,ε(ξ)

∫
tP
e−2πi〈ξ, x〉 dx

= tdvol(P ) + td−1 lim
ε→0+

∑
ξ∈Zd\{0}

φ̂d,ε(ξ)
∑
F⊆P

dim(F )=d−1

〈ξ, NP (F )〉
−2πi‖ξ‖2

∫
F
e−2πi〈tξ, x〉 dx
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Theorem (Diaz, Le, and Robins 2016+)

Let P be a d-dimensional rational polytope in Rd, and t be a
positive real number. Then we have AP (t) =

∑d
k=0 ak(t)t

k,
where, for 0 ≤ k ≤ d,

ad−k(t) = lim
ε→0+

∑
T : l(T )=k

∑
ξ∈Zd∩S(T )

RT (ξ)e−2πi〈tξ,xFk
〉φ̂d,ε(ξ),

where the first sum is over all chains T = (P → F1 → · · · → Fk)
with Fj a facet of Fj−1 for every j and S(T ) is the set of vectors ξ
orthogonal to lin(Fk) but not to lin(Fk−1).
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Lattice sums — Definition

Let Λ be a k-dimensional lattice in Rd, w1, . . . , wk be linearly inde-
pendent vectors from

Λ∗ := {y ∈ span(Λ) : 〈x, y〉 ∈ Z for all x ∈ Λ}
and W ∈ Rd×k be a matrix with them as columns. For a k-tuple
e = (e1, . . . , ek) of positive integers, let |e| :=

∑k
j=1 ej . For all

x ∈ Rd, we want to evaluate:

LΛ(W, e;x) := lim
ε→0+

1

(2πi)|e|

∑
ξ∈Λ:

〈wj , ξ〉6=0,∀j

e−2πi〈x, ξ〉∏k
j=1〈wj , ξ〉ej

e−πε‖ξ‖
2
.
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Lattice sums — Theorem

Theorem (M., Robins 2019+)

If W ∈ Rd×k is a matrix with linearly independent columns
w1, . . . , wk ∈ Λ∗, e = (e1, . . . , ek) is a k-tuple of positive integers
and x ∈ Rd, then:

LΛ(W, e;x) =
∑

n∈Λ∗∩PW,x

(−1)kBe
(
W+(n− x)

)
ωPW,x

(n)

e1! · · · ek! det(WTW )1/2 det(Λ)
.
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(−1)kBe
(
W+(n− x)

)
ωPW,x

(n)

e1! · · · ek! det(WTW )1/2 det(Λ)
.

Br(x) are the Bernoulli polynomials with support in [0, 1].
B1(x) = x− 1/2, B2(x) = x2 − x+ 1/6 for x ∈ [0, 1].

Be(x) := Be1(x1) · · ·Bek(xk).
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and x ∈ Rd, then:

LΛ(W, e;x) =
∑

n∈Λ∗∩PW,x

(−1)kBe
(
W+(n− x)

)
ωPW,x

(n)

e1! · · · ek! det(WTW )1/2 det(Λ)
.

x

w1

w2
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