
1/48

Preliminaries
Bounds for the kissing number

Extension to topological packing graphs

Semidefinite programming bounds
for the kissing number
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Spherical codes

x · y :=
∑n

i=1 xiyi

Sn−1 := {x ∈ Rn : x · x = 1}

d(x, y) := arccos(x · y)

A(n, θ) := max{|C| : C ⊂ Sn−1,

d(x, y) ≥ θ for x, y ∈ C, x 6= y}

Find upper bounds for the size of spherical codes with minimum
angular distance θ.
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The kissing number (case θ = π/3)
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n lower bound upper bound n lower bound upper bound
3 12 12 14 1606 3177
4 24 24 15 2564 4866
5 40 44 16 4320 7355
6 72 78 17 5346 11014
7 126 134 18 7398 16469
8 240 240 19 10668 24575
9 306 363 20 17400 36402
10 500 553 21 27720 53878
11 582 869 22 49896 81376
12 840 1356 23 93150 123328
13 1154 2066 24 196560 196560

Table 1. Lower and upper bounds for the kissing number A(n, π/3) in
dimensions 3, . . . , 24.
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Basic definitions from representation theory

A representation of a group G on a vector space V is a homo-
morphism ρ : G→ GL(V ).

A G-homomorphism between two representations ρ : G → GL(V )
and τ : G → GL(W ) is a homomorphism that commutes with the
representations. That is, T : V →W linear such that

Tρ(g) = τ(g)T

for every g ∈ G. If T is invertible, the representations are said to be
equivalent.
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Basic definitions from representation theory

We say that a representation space V is irreducible if there is no
proper and nonzero invariant subspace W of V (in the sense that
ρ(g)w ∈W for every w ∈W and g ∈ G).

Every finite dimensional representation space V can be written as a
direct sum of invariant and irreducible subspaces.

V = V1 ⊕ · · · ⊕ Vm.

Fabŕıcio C. Machado Thesis defense



8/48

Preliminaries
Bounds for the kissing number

Extension to topological packing graphs

Representation theory
Continuous, positive and invariant kernels
Conic programming

Basic definitions from representation theory

Every finite dimensional representation space V can be written as a
direct sum of invariant and irreducible subspaces.

V = V1 ⊕ · · · ⊕ Vm.

The main result of this section is that a G-homomorphism T : V →
V can be block-diagonalized with respect to the way that V decom-
poses as a direct sum of invariant and irreducible subspaces.
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Continuous and positive kernels

Consider a compact Hausdorff space X with a positive Radon me-
asure ω. The vector space L2(X) of square-integrable functions on
X is a Hilbert space with inner product

(f, g) :=

∫
X
f(x)g(x) dω(x).

A (Hilbert-Schmidt) kernel is a function K ∈ L2(X × X). To a
kernel is associated the integral operator TK : L2(X)→ L2(X):

(TKf)(x) :=

∫
X
K(x, y)f(y) dω(y).
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Continuous and positive kernels

A hermitian kernel (i.e. such that K(x, y) = K(y, x) for every
x, y ∈ X) is positive if for every f ∈ L2(X) we have

(TKf, f) ≥ 0.

When a kernel is continuous, the following result is very useful:

A continuous and hermitian kernel K is positive if and only if for

every finite subset {x1, ..., xN} of X, the matrix
(
K(xi, xj)

)N
i,j=1

is
positive semidefinite.
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Invariant kernels

Consider that there is a compact group G which acts continuously
on X and that ω is G-invariant (i.e., ω(gA) = ω(A) for every g ∈ G
and A ⊂ X measurable).

A continuous kernel K is invariant if K(gx, gy) = K(x, y) for any
x, y ∈ X and g ∈ G. It can be verified that this condition is
equivalent to that the associated operator Tk is a G-homomorphism
with respect the representation of G in L2(X) defined by

(ρ(g)f)(x) = f(g−1x).
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Invariant kernels

A continuous kernel K is invariant if K(gx, gy) = K(x, y) for any
x, y ∈ X and g ∈ G. It can be verified that this condition is
equivalent to that the associated operator Tk is a G-homomorphism
with respect the representation of G in L2(X) defined by

(ρ(g)f)(x) = f(g−1x).

It is possible to represent continuous, positive and invariant kernels
using positive semidefinite matrices and the block diagonalization of
G-homomorphisms given by the representation theory.
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Conic programming

A duality between two real vector spaces E and F is a non-
degenerate bilinear form

〈
,
〉

: E × F → R (non-degenerate means
that

〈
e, f
〉

= 0 for every e ∈ E implies f = 0 and
〈
e, f
〉

= 0 for
every f ∈ F implies e = 0).

Let
〈
,
〉

1
: E1 × F1 → R and

〈
,
〉

2
: E2 × F2 → R be two duali-

ties. The adjoint of a linear transformation A : E1 → E2 is a linear
transformation A∗ : F2 → F1 such that〈

Ae, f
〉

2
=
〈
e,A∗f

〉
1

for all e ∈ E1, f ∈ F2.
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Conic programming

Let
〈
,
〉

1
: E1 × F1 → R and

〈
,
〉

2
: E2 × F2 → R be two duali-

ties. The adjoint of a linear transformation A : E1 → E2 is a linear
transformation A∗ : F2 → F1 such that〈

Ae, f
〉

2
=
〈
e,A∗f

〉
1

for all e ∈ E1, f ∈ F2.

A subset K of a vector space E is a cone if αx+ βy ∈ K for every
α, β ≥ 0 and x, y ∈ K. If

〈
,
〉

: E × F → R is a duality, then the
dual cone K∗ ⊂ F is defined as

K∗ := {y ∈ F :
〈
x, y
〉
≥ 0 for all x ∈ K}.
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Pair of problems primal and dual

Let
〈
,
〉

1
: E1 × F1 → R and

〈
,
〉

2
: E2 × F2 → R be two dualities,

K1 ⊂ E1, K2 ⊂ E2 two convex cones and A : E1 → E2 a linear
transformation. For c ∈ F1 and b ∈ E2, we have:

Primal problem

max
〈
x, c
〉

1

subject to b−Ax ∈ K2,

x ∈ K1.

Dual problem

min
〈
b, y
〉

2

subject to A∗y − c ∈ K∗1 ,
y ∈ K∗2 .
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The linear programming bound

The linear programming bound was proposed by Delsarte,
Goethals and Seidel (1977) and used by Odlyzko and Sloane
(1979) and, independently, Levenshtein (1979) to derive upper
bounds for the kissing number in n ≤ 24.

It solves the cases A(8, π/3) = 240 and A(24, π/3) = 196560.

It relies on the following property satisfied by the Gegenbauer
polynomials Pnk :

∑
x,y∈C

Pnk (x · y) ≥ 0, for every C ⊂ Sn−1 finite.
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Fabŕıcio C. Machado Thesis defense



15/48

Preliminaries
Bounds for the kissing number

Extension to topological packing graphs

The linear programming bound
The semidefinite programming bound
Polynomial optimization with sum of squares and symmetries
Application to the semidefinite programming bound

The linear programming bound

The linear programming bound was proposed by Delsarte,
Goethals and Seidel (1977) and used by Odlyzko and Sloane
(1979) and, independently, Levenshtein (1979) to derive upper
bounds for the kissing number in n ≤ 24.

It solves the cases A(8, π/3) = 240 and A(24, π/3) = 196560.

It relies on the following property satisfied by the Gegenbauer
polynomials Pnk :

∑
x,y∈C

Pnk (x · y) ≥ 0, for every C ⊂ Sn−1 finite.
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Continuous, positive and O(Rn)-invariant kernels on Sn−1

The space Pol≤d(S
n−1) decomposes as a direct sum of invariant

and irreducible subspaces:

Pol≤d(S
n−1) = Hn

0 ⊥ Hn
1 ⊥ · · · ⊥ Hn

d ,

where

Hn
k :=

{
f ∈ Pol≤d(Sn−1) : f homogeneous,deg f = k,

n∑
j=1

∂2

∂x2j
f = 0

}
is the space of spherical harmonic polynomials of degree k.
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Gegenbauer polynomials

Addition formula

If {R1, . . . , Rhn
k
} is an orthonormal ba-

sis of Hn
k , then for any x, y ∈ Sn−1:

Pn
k (x · y) =

1

hn
k

hn
k∑

i=1

Ri(x)Ri(y).

Pn
k is a univariate polynomial of

degree k such that Pn
k (1) = 1.

Orthogonality relation:∫ 1

−1

Pn
k (t)Pn

l (t)(1− t2)(n−3)/2dt = 0,

if k 6= l.

P 3
0 (x) 1
P 3
1 (x) x
P 3
2 (x) 3/2x2 − 1/2
P 3
3 (x) 5/2x3 − 3/2x
P 3
4 (x) 35/8x4 − 15/4x2 + 3/8

Table 2. Gegenbauer polynomials,
n = 3
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The linear programming bound

If a1, . . . , ad is a feasible solution for the following program:

min 1 +

d∑
k=1

ak

subject to
d∑

k=1

akP
n
k (t) ≤ −1 for t ∈ [−1, cos θ],

ak ≥ 0 for k = 1, 2, . . . , d.

Then A(n, θ) ≤ 1 +
∑d

k=1 ak.
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min 1 +
d∑

k=1

ak

s. t.
d∑

k=1

akP
n
k (t) ≤ −1 for t ∈ [−1, cos θ],

ak ≥ 0 for k = 1, 2, . . . , d.

If a1, . . . , ad is a feasible
solution for the program,
then

A(n, θ) ≤ 1 +
d∑

k=1

ak.

If C ⊂ Sn−1, C 6= ∅, is a spherical code of minimum angular distance θ,

∑
x,y∈C

(
1 +

d∑
k=1

akP
n
k (x · y)

)
= |C|2 +

d∑
k=1

ak
∑

x,y∈C
Pn
k (x · y) ≥ |C|2.

∑
x,y∈C

(
1 +

d∑
k=1

akP
n
k (x · y)

)
=
∑
x∈C

(
1 +

d∑
k=1

akP
n
k (x · x)

)
+

∑
x,y∈C,
x 6=y

(
1 +

d∑
k=1

akP
n
k (x · y)

)

≤ |C|
(

1 +
d∑

k=1

ak

)
.
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The semidefinite programming bound

The semidefinite programming bound was proposed by
Bachoc and Vallentin (2008) and is responsible for all the
upper bounds currently known for the kissing number.

It improves the linear programming bound with constraints
based on relations between triples of points.

It relies on the following property satisfied by the zonal
matrices Snk whose coefficients are symmetric polynomials in
three variables:

∑
x,y,z∈C

Snk (x · z, y · z, x · y) � 0, for every C ⊂ Sn−1 finite.
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Continuous positive and H-invariant kernels on Sn−1

Fix one point e ∈ Sn−1 and consider the subgroup H that stabilizes
e under the action of O(Rn):

H := {T ∈ O(Rn) : Te = e},

writing Rn = Rn−1 ⊥ Re, we have that H ' O(Rn−1).

The spaces Hn
k are not irreducible with respect to the action of the

subgroup H. They can be decomposed as a direct sum of smaller
invariant and irreducible subspaces:

Hn
k = Hn−1

0,k ⊥ H
n−1
1,k ⊥ · · · ⊥ H

n−1
k,k ,

where the representation of H in Hn−1
i,k is equivalent to the repre-

sentation of O(Rn−1) in Hn−1
i .
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Pol≤d(S
n−1) = Hn

0 ⊥ Hn
1 ⊥ · · · ⊥ Hn

d

= Hn−1
0,0 ⊥ Hn−1

0,1 ⊥ · · · ⊥ Hn−1
0,d

⊥ Hn−1
1,1 ⊥ · · · ⊥ Hn−1

1,d

⊥ · · · ⊥ · · ·
⊥ Hn−1

d,d

The representations of H in the subspaces of a same line are equi-
valent to each other and using an expression similar to the addition
formula, one can define the matrices Snk of dimension (d− k+ 1)×
(d− k + 1) for each line k = 0, . . . , d.

Fabŕıcio C. Machado Thesis defense



23/48

Preliminaries
Bounds for the kissing number

Extension to topological packing graphs

The linear programming bound
The semidefinite programming bound
Polynomial optimization with sum of squares and symmetries
Application to the semidefinite programming bound

The semidefinite programming bound

min 1 +
d∑

k=1

ak + b11 +
〈
F0, Jd+1

〉
subject to (a)

d∑
k=1

akP
n
k (u) + 2b12 + b22

+ 3

d∑
k=0

〈
Fk, S

n
k (u, u, 1)

〉
≤ −1 for u ∈ [−1, cos θ],

(b) b22 +
d∑

k=0

〈
Fk, S

n
k (u, v, t)

〉
≤ 0 for (u, v, t) ∈ ∆,

ak ≥ 0 for k = 1, . . . , d,

B =

(
b11 b12
b12 b22

)
� 0,

Fk ∈ R(d−k+1)×(d−k+1), Fk � 0 for k = 0, . . . , d.
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The semidefinite programming bound

Where

∆ = { (u, v, t) ∈ R3 : gi(u, v, t) ≥ 0 for i = 1, . . . , 4},

with

g(u) := (u+ 1)(cos θ − u),

g1(u, v, t) := g(u), g2(u, v, t) := g(v),

g3(u, v, t) := g(t), g4(u, v, t) := 1 + 2uvt− u2 − v2 − t2.
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Polynomial optimization with sum of squares

Write a real polynomial p(x) (with x ∈ Rn) in the form

p = r +

s∑
i=1

rigi

with r, r1, . . . , rs sum of squares is a sufficient condition for p to be
non-negative in the semialgebraic set

{x ∈ Rn : g1(x) ≥ 0, g2(x) ≥ 0, . . . , gs(x) ≥ 0}.

A polynomial r of degree 2d can be expressed as a sum of squares
if and only if there exists a matrix Q � 0 such that

r = ztQz =
〈
Q, zzt

〉
,

where z is a vector with a basis for R[x]≤d in its entries.
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min 1 +

d∑
k=1

ak + b11 +
〈
F0, Jd+1

〉
s. t. (a)− 1−

d∑
k=1

akP
n
k (u)− 2b12 − b22

− 3

d∑
k=0

〈
Fk, S

n
k (u, u, 1)

〉
= q(u) + p(u)q1(u),

(b)− b22 −
d∑

k=0

〈
Fk, S

n
k (u, v, t)

〉
= r(u, v, t) +

4∑
i=1

ri(u, v, t)gi(u, v, t),

ak ≥ 0 for k = 1, . . . , d,

B =

(
b11 b12
b12 b22

)
� 0,

Fk ∈ R(d−k+1)×(d−k+1), Fk � 0 for k = 0, 1, . . . , d,

q, q1, r, r1, . . . , r4 sum of squares.
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Sum of squares with invariant polynomials

(b) − b22 −
d∑

k=0

〈
Fk, S

n
k (u, v, t)

〉
= r(u, v, t) +

4∑
i=1

ri(u, v, t)gi(u, v, t)

r =
〈
Q, zzt

〉
, dimR[u, v, t]≤d =

(
d+ 3

3

)
When r is invariant with respect to the action of the group of permutations
of three elements, Q can be block-diagonalized in three blocks of sizes
m1,m2 and m3 such that

m1 +m2 + 2m3 =
(
d+3
3

)
.
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n lower bound previous upper bound new upper bound
3 12 12.381810 12.368591
4 24 24.066284 24.056903
5 40 44.998997 44.981067
6 72 78.240613 78.187761
7 126 134.448817 134.270201
8 240 240.000000 240.000010
9 306 364.091929 363.675154

10 500 554.507549 553.827497
11 582 870.883116 869.244985
12 840 1357.889300 1356.603728
13 1154 2069.587585 2066.405173
14 1606 3183.133169 3177.917052
15 2564 4866.245659 4858.505436
16 4320 7355.809036 7332.776399
17 5346 11072.37543 11014.183845
18 7398 16572.26478 16469.090329
19 10668 24812.30254 24575.871259
20 17400 36764.40138 36402.675795
21 27720 54584.76757 53878.722941
22 49896 82340.08003 81376.459564
23 93150 124416.9796 123328.397290
24 196560 196560.0000 196560.000465

Table 3. New upper bounds for the kissing number.
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Rigorous verification with interval arithmetic

The computation of the block-diagonalization and the solver use
floating point arithmetic and so the obtained solution is just an
approximation. It is possible to obtain a feasible solution and verify
it with the following steps:

Find an approximate solution with matrices positive definite
together with lower bounds to their eigenvalues.〈

X,A
〉

= b, X � 0→
〈
X ′, A

〉
= b−

〈
λminI, A

〉
, X ′ � 0.

X ′ = LLt + λXI

Use interval arithmetic to find a bound for the violation in the
constraints of the problem.
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Topological packing graphs

Definition: a graph whose vertex set is a Hausdorff topological space
is a topological packing graph if every finite clique is contained in
an open clique.

Note that if the vertex set is compact, the topological packing con-
dition implies that the independence number of the graph is finite.
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Denote as subt(V ) the family of subsets with at most t vertices,
as It the family of independent subsets with at most t vertices,
I=t the family of independent subsets with exactly t vertices and
I ′t = It \ {∅}.

Topology on the family of subsets with at most t vertices subt(V )

We can associate a topology to the family of subsets with at most
t vertices subt(V ) using the product topology in V t and then the
quotient topology to the image of V t under the map

q : (v1, ..., vt)→ {v1, ..., vt}

and finally adding {∅} with the disjoint union topology.

If V is compact, one can show with the topological packing con-
dition that It is compact and I=r is open and closed in It for all
r = 1, . . . , t.
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Moment matrix and k-point bounds for finite graphs

For y : sub2t(V ) → R, the truncated moment matrix
Mt(y) : subt(V )× subt(V )→ R is the matrix defined as:

[Mt(y)]S,S′ := yS∪S′ .

The moment matrix can be used to define optimization programs
that upper bounds the independence number of a graph. For ins-
tance, the t-th step of the Lasserre’s hierarchy is:

max
∑
u∈V

y{u}

s. t. y : sub2t(V )→ R,
y∅ = 1,

yS = 0 if S /∈ I2t,
Mt(y) � 0.

The denomination “k-point
bound” refers to the size k of
the biggest subset considered.
This program is a 2t-point
bound.
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Fabŕıcio C. Machado Thesis defense



34/48

Preliminaries
Bounds for the kissing number

Extension to topological packing graphs

Topological packing graphs
Moment matrix and k-point bounds for finite graphs
3-point bound for topological packing graphs
The semidefinite programming bound revisited

The extended Lovász theta number ϑ′t(G)

Replace subt(V ) by sub′t(V ) = subt(V ) \ {∅} and denote by M ′t(y)
the corresponding truncate moment matrix without the row and
column associated to {∅}.

max
∑

u,v∈V
y{u,v}

s. t. y : sub′2t(V )→ R≥0,∑
u∈V

y{u} = 1,

yS = 0 if S /∈ I ′2t,
M ′t(y) � 0.

To see that α(G) ≤ ϑ′t(G),
given I ⊆ V independent,
consider y defined as yS = 1

|I|
if S ⊆ I and yS = 0
otherwise.
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3-point bound for finite graphs

For u ∈ V , consider the matrix M ′u(y) : V × V → R defined as:

[M ′u(y)]v,w := y{u,v,w}.

max
∑

u,v∈V
y{u,v}

s. t. y : sub′3(V )→ R≥0,∑
u∈V

y{u} = 1

yS = 0 if S /∈ I ′3,
M ′1(y) � 0,

M ′u(y) � 0 for all u ∈ V.
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3-point bound for topological packing graphs

max
∑

u,v∈V
y{u,v}

s. t. y : sub′3(V )→ R≥0,∑
u∈V

y{u} = 1

yS = 0 if S /∈ I ′3,
M ′1(y) � 0,

M ′u(y) � 0 for all u ∈ V.

max λ(I=1) + 2λ(I=2)

s. t. λ ∈M(I ′3)≥0,

λ(I=1) = 1,

A∗1λ ∈M(V × V )�0,

A∗3PBλ ∈M(V × V × V )�0.

Where the operators A1 : C(V×V )sym → C(I ′3) andA3PB : C(V × V × V )sym →
C(I ′3) are defined as:

A1K(S) :=
∑

u,v∈V :
{u,v}=S

K(u, v), A3PBT (S) :=
∑

u,v,t∈V :
{u,v,t}=S

T (u, v, t).
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Primal and dual formulations

max λ(I=1) + 2λ(I=2)

s. t. λ ∈M(I ′3)≥0,

λ(I=1) = 1,

A∗1λ ∈M(V × V )�0,

A∗3PBλ ∈M(V × V × V )�0.

min a

s. t. a ∈ R, K ∈ C(V × V )�0,

T ∈ C(V × V × V )�0,

A1K(S) +A3PBT (S) ≤ a− 1 if S ∈ I=1,

A1K(S) +A3PBT (S) ≤ −2 if S ∈ I=2,

A1K(S) +A3PBT (S) ≤ 0 if S ∈ I=3.

Fabŕıcio C. Machado Thesis defense



38/48

Preliminaries
Bounds for the kissing number

Extension to topological packing graphs

Topological packing graphs
Moment matrix and k-point bounds for finite graphs
3-point bound for topological packing graphs
The semidefinite programming bound revisited

Symmetrization for homogeneous graphs

A graph G is homogeneous if there exists a compact group Γ, sub-
group of the group of automorphisms of G, that acts continuously
in V and such that the action of Γ in V is transitive.

Fixing e ∈ V and letting H be the subgroup that stabilizes e under
the action of Γ, there is a one-to-one correspondence Φ between
C(V × V × V )Γ

�0 and C(V × V )H�0 given by:

Φ(T )(x, y) = T (x, y, e),

whose inverse is

Φ−1(R)(x, y, z) = R(ψ−1
z x, ψ−1

z y),

where for each z ∈ V , ψz ∈ Γ is such that ψze = z.
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Fabŕıcio C. Machado Thesis defense



39/48

Preliminaries
Bounds for the kissing number

Extension to topological packing graphs

Topological packing graphs
Moment matrix and k-point bounds for finite graphs
3-point bound for topological packing graphs
The semidefinite programming bound revisited

The semidefinite programming bound revisited

A kernel of C(Sn−1× Sn−1)H�0 can be written in terms of the zonal

matrices in such way that for T ∈ C(Sn−1 × Sn−1 × Sn−1)
O(Rn)
�0 ,

A3PBT can be approximated by expressions of the form

A3PBT ({x, y, z}) =

d∑
k=0

〈
Fk, S

n
k (x · z, y · z, x · y)

〉
.

and, after the substitutions, the three point bound applied to the
kissing number problem becomes equal to the semidefinite program-
ming bound.
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[KKLS16] Rob Kusner, Wöden Kusner, Jeffrey C. Lagarias and Senya Shlosman.
The twelve spheres problem.
arXiv preprint, 2016.
arXiv:1611.10297.

[KL78] Grigorii A. Kabatiansky and Vladimir I. Levenshtein.
Bounds for packings on the sphere and in space.
Problemy Peredachi Informacii, 14(1):3–25, 1978.

[Knu94] Donald E. Knuth.
The sandwich theorem.
Electron. J. Combin., 1:Article 1, approx. 48 pp. (electronic), 1994.
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páginas 29–34. IEEE, 2010.

[OS79] Andrew M. Odlyzko and Neil J. A. Sloane.
New bounds on the number of unit spheres that can touch a unit sphere in n dimensions.
J. Combin. Theory Ser. A, 26(2):210–214, 1979.

[Put93] Mihai Putinar.
Positive polynomials on compact semi-algebraic sets.
Indiana Univ. Math. J., 42(3):969–984, 1993.
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Fabŕıcio C. Machado Thesis defense



47/48

Preliminaries
Bounds for the kissing number

Extension to topological packing graphs

Topological packing graphs
Moment matrix and k-point bounds for finite graphs
3-point bound for topological packing graphs
The semidefinite programming bound revisited

References VIII

[Sim63] George F. Simmons.
Introduction to topology and modern analysis.
McGraw-Hill Book Co., Inc., New York-San Francisco, Calif.-Toronto-London, 1963.

[Slo81] Neil J. A. Sloane.
Tables of sphere packings and spherical codes.
IEEE Trans. Inform. Theory, 27(3):327–338, 1981.

[Stu08] Bernd Sturmfels.
Algorithms in invariant theory.
Texts and Monographs in Symbolic Computation. Springer Wien New York, Vienna, segunda edição,
2008.
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