
A GENTLE INTRODUCTION TO FOURIER ANALYSIS ON
POLYTOPES - EXERCISES FROM CHAPTER 4

FABRÍCIO C. MACHADO

Exercises from the book: Robins, S., “A friendly introduction to Fourier analysis on poly-

topes”, available at https://arxiv.org/abs/2104.06407. This solution sheet is available

at https://www.ime.usp.br/~fabcm/33coloquio-impa/.

4.2. Given a convex d-dimensional body K ⊂ Rd, prove that K−K is convex, and that

K −K is centrally symmetric.

4.3. The support of a function f is defined here as

supp(f) := {x ∈ Rd | f(x) 6= 0}.

Suppose that we are given two convex bodies A,B ⊂ Rd. Show that

supp(1A ∗ 1B) = A + B,

where the addition is the Minkowski addition of sets.

4.4. Suppose we have a triangle ∆ whose vertices v1, v2, v3 are integer points. Prove

that the following properties are equivalent:

(a) ∆ has no other integer points inside or on its boundary.

(b) Area(∆) = 1
2 .

(c) ∆ is a unimodular triangle - i.e. v3 − v1 and v2 − v1 form a basis for Z2.

(Hint: You might begin by “doubling” the triangle to form a parallelogram.)

4.6. Show that in Rd, an integer simplex ∆ is unimodular if and only if vol(∆) = 1
d! .

4.7. Find in R3, an integer simplex ∆ that has no other integer points inside or on its

boundary (other than its vertices of course), but such that ∆ is not a unimodular

simplex.

4.8. Prove that for any polytope P , 1̂P is not a Schwartz function.

Date: July 27, 2021.
1



2 FABRÍCIO C. MACHADO

4.11. Here we use Siegel’s Theorem 4.4 to give an extension of Minkowski’s classical

Theorem 4.2 for bodies K that are not necessarily symmetric.

Namely, let K be any bounded, measurable subset of Rd (so K is not necessarily

symmetric), with a positive d-dimensional measure. Let B := 1
2K −

1
2K be the

symmetrized body of K (hence B is a convex symmetric body). Let L be a (full

rank) lattice in Rd. Prove the following statement:

If volK > 2d(detL), then B must contain a nonzero point of L in its interior.

Notes. We note that the positive conclusion of the existence of a nonzero integer

point holds only for the symmetrized body B, with no guarantees for any integer

points in K.
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Lecture 4

• Application of Poisson summation to the theta function

θ(t) :=
∑
n∈Z

e−πtn
2
, θ

(1

t

)
=
√
tθ(t).

Gt(x) :=
1√
t
e−

π
t
x2 , Ĝt(ξ) = e−πtξ

2
.

• Lattices

L := {n1v1 + · · ·+ ndvd ∈ Rd : nj ∈ Z, ∀j}, M :=


| | . . . |

v1 v2 . . . vd

| | . . . |

 , L = M(Zd).

L∗ := {m ∈ Rd : 〈n,m〉 ∈ Z, ∀n ∈ L} = M−T(Zd).

• Poisson summation for lattices∑
n∈L

f(n+ x) =
1

detL
∑
ξ∈L∗

f̂(ξ)e2πi〈ξ, x〉.

Recall (f̂ ◦M)(ξ) = 1
| detM | f̂

(
M−Tξ

)
.

• The convolution operation

(f ∗ g)(x) :=

∫
Rd
f(x− y)g(y)dy.

(f̂ ∗ g)(ξ) = f̂(ξ)ĝ(ξ).

Let f1 be 1[− 1
2
, 1
2

], the indicator function of the interval [−1
2 ,

1
2 ].

f2(x) := (f1 ∗ f1)(x) =

∫ 1
2

− 1
2

1[− 1
2
, 1
2

](x− t)dt =

−|x|+ 1 if |x| ≤ 1,

0 otherwise.

f3(x) := (f2 ∗ f1)(x) =

∫ 1

−1
f2(t)1[− 1

2
, 1
2

](x− t)dt =


−x2 + 3

4 if |x| ≤ 1
2 ,

1
8(2|x| − 3)2 if 1

2 ≤ |x| ≤
3
2 ,

0 otherwise.
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Figure 1. Funcions f1, . . . f4.

f4(x) := (f3 ∗ f1)(x) =

∫ 3
2

− 3
2

f3(t)1[− 1
2
, 1
2

](x− t)dt =


1
2 |x|

3 − x2 + 2
3 if |x| ≤ 1,

−1
6(|x| − 2)3 if 1 ≤ |x| ≤ 2,

0 otherwise.

• The geometry of numbers: Siegel’s formula. Let B ⊂ Rd be a d-dimensional convex

body, symmetric about the origin. If the only integer point in its interior is the

origin, then

2d = volB +
4d

volB

∑
ξ∈Zd\{0}

∣∣∣1̂ 1
2
B(ξ)

∣∣∣2.
(Poisson summation applied to 1 1

2
B ∗ 1− 1

2
B.)

• The geometry of numbers: Minkowski’s first theorem. Let B ⊂ Rd be a d-

dimensional convex body, symmetric about the origin. If volB > 2d, then B

must contain a nonzero integer point in its interior.
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Exercise 4.2. Given a convex d-dimensional body K ⊂ Rd, prove that K−K is convex,

and that K −K is centrally symmetric.

Solution: Let x, y ∈ K −K , hence x = x1−x2 and y = y1− y2, with x1, x2, y1, y2 ∈ K.

For any a ∈ [0, 1],

ax+ (1− a)y = a(x1 − x2) + (1− a)(y1 − y2) = ax1 + (1− a)y1 −
(
ax2 + (1− a)y2

)
.

Since K is convex, ax1 +(1−a)y1 ∈ K and ax2 +(1−a)y2 ∈ K. Therefore ax+(1−a)y ∈

K −K.

Tho show that K −K is centrally symmetric, let x ∈ K −K, hence x = x1 − x2 with

x1, x2 ∈ K. Since −x = x2−x1 ∈ K−K, we conclude that K−K is centrally symmetric.

Exercise 4.6. Show that in Rd, an integer simplex ∆ is unimodular if and only if

vol(∆) = 1
d! .

Solution: Let S ⊂ Rd be the standard simplex:

S = conv({0, e1, . . . , ed})

= {x ∈ Rd : x1 + · · ·+ xd ≤ 1, x1, . . . , xd ≥ 0}.

Next we proof by induction in d that vol(S) = 1
d! :

vol(S) =

∫ 1

0

∫ 1−x1

0
· · ·
∫ 1−x1−...−xd−1

0
dxd . . . dx2dx1

=

∫ 1

0

∫ 1−x1

0
· · ·
∫ 1−x1−...−xd−2

0
(1− x1 − . . .− xd−1)dxd−1 . . . dx2dx1

=

∫ 1

0

(1− x1)d−1

(d− 1)!
dx1 =

1

d!
.

In the second to last equality we used induction in d (verify the case d = 2) and, denoting

the (d − 1)-dimensional standard simplex in the coordinates x2, . . . xd by S′, notice that

(1− x1)S′ = {(x2, . . . , xd) ∈ Rd−1 : x2 + · · ·+ xd ≤ 1− x1, x2, . . . , xd ≥ 0}.

If ∆ = conv(v0, . . . , vd), then M = (v1 − v0, . . . , vd − v0) ∈ Zd×d and

vol(∆) =

∫
∆
dx =

∫
MS

dx = | detM |
∫
S
dx

= | detM | vol(S) = |detM | 1
d!
.

We say that ∆ is unimodular if M = (v1− v0, . . . , vd− v0) ∈ Zd×d and | detM | = 1. By

the above equation we see that ∆ is unimodular if and only if vol(∆) = 1
d! .
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Exercise 4.7. Find in R3, an integer simplex ∆ that has no other integer points inside

or on its boundary (other than its vertices of course), but such that ∆ is not a unimodular

simplex.

Solution: Consider ∆ as the convex hull of (0, 0, 0), (1, 1, 0), (1, 0, 1), and (0, 1, 1).

Computing the determinant of the matrix with its vertices, we get vol(∆) = 1
3 . If ∆ has

an integer point v other than its vertices, then there is x, y, z ≥ 0 with x+ y + z ≤ 1 such

that

v =


1 1 0

1 0 1

0 1 1



x

y

z

 ∈ Z3.

From the first line, we get either x+ y = 1 or x+ y = 0. If x+ y = 0, then z = 0 or z = 1,

but both cases are not possible since v 6= (0, 0, 0) and v 6= (0, 1, 1). So x+y = 1 and z = 0.

From the second line, x + z = 0 or x + z = 1, but neither case is possible, since if x = 0,

y = 1 we get v = (1, 0, 1) and from x = 1, y = 0 we get v = (1, 1, 0). Therefore ∆ has no

integer points other than its vertices.


