A GENTLE INTRODUCTION TO FOURIER ANALYSIS ON POLYTOPES - EXERCISES FROM CHAPTER 4

FABRÍCIO C. MACHADO

Exercises from the book: Robins, S., "A friendly introduction to Fourier analysis on polytopes", available at https://arxiv.org/abs/2104.06407. This solution sheet is available at https://www.ime.usp.br/~fabcm/33coloquio-impa/.

- 4.2. Given a convex d-dimensional body $K \subset \mathbb{R}^d$, prove that K K is convex, and that K K is centrally symmetric.
- 4.3. The support of a function f is defined here as

$$supp(f) := \{ x \in \mathbb{R}^d \mid f(x) \neq 0 \}.$$

Suppose that we are given two convex bodies $A, B \subset \mathbb{R}^d$. Show that

$$supp(1_A * 1_B) = A + B,$$

where the addition is the Minkowski addition of sets.

- 4.4. Suppose we have a triangle Δ whose vertices v_1, v_2, v_3 are integer points. Prove that the following properties are equivalent:
 - (a) Δ has no other integer points inside or on its boundary.
 - (b) Area(Δ) = $\frac{1}{2}$.
 - (c) Δ is a unimodular triangle i.e. $v_3 v_1$ and $v_2 v_1$ form a basis for \mathbb{Z}^2 .

(Hint: You might begin by "doubling" the triangle to form a parallelogram.)

- 4.6. Show that in \mathbb{R}^d , an integer simplex Δ is unimodular if and only if $\operatorname{vol}(\Delta) = \frac{1}{d!}$.
- 4.7. Find in \mathbb{R}^3 , an integer simplex Δ that has no other integer points inside or on its boundary (other than its vertices of course), but such that Δ is not a unimodular simplex.
- 4.8. Prove that for any polytope P, $\hat{1}_P$ is not a Schwartz function.

Date: July 27, 2021.

4.11. Here we use Siegel's Theorem 4.4 to give an extension of Minkowski's classical Theorem 4.2 for bodies K that are not necessarily symmetric.

Namely, let K be any bounded, measurable subset of \mathbb{R}^d (so K is not necessarily symmetric), with a positive d-dimensional measure. Let $B := \frac{1}{2}K - \frac{1}{2}K$ be the symmetrized body of K (hence B is a convex symmetric body). Let \mathcal{L} be a (full rank) lattice in \mathbb{R}^d . Prove the following statement:

If vol $K > 2^d(\det \mathcal{L})$, then B must contain a nonzero point of \mathcal{L} in its interior.

Notes. We note that the positive conclusion of the existence of a nonzero integer point holds only for the symmetrized body B, with no guarantees for any integer points in K.

Lecture 4

• Application of Poisson summation to the theta function

$$\theta(t) := \sum_{n \in \mathbb{Z}} e^{-\pi t n^2}, \qquad \theta\Big(\frac{1}{t}\Big) = \sqrt{t}\theta(t).$$

$$G_t(x) := \frac{1}{\sqrt{t}} e^{-\frac{\pi}{t}x^2}, \qquad \hat{G}_t(\xi) = e^{-\pi t \xi^2}.$$

• Lattices

$$\mathcal{L} := \{ n_1 v_1 + \dots + n_d v_d \in \mathbb{R}^d : n_j \in \mathbb{Z}, \, \forall j \}, \quad M := \begin{pmatrix} | & | & \dots & | \\ v_1 & v_2 & \dots & v_d \\ | & | & \dots & | \end{pmatrix}, \quad \mathcal{L} = M(\mathbb{Z}^d).$$

$$\mathcal{L}^* := \{ m \in \mathbb{R}^d : \langle n, m \rangle \in \mathbb{Z}, \ \forall n \in \mathcal{L} \} = M^{-\mathsf{T}}(\mathbb{Z}^d).$$

• Poisson summation for lattices

$$\sum_{n \in \mathcal{L}} f(n+x) = \frac{1}{\det \mathcal{L}} \sum_{\xi \in \mathcal{L}^*} \hat{f}(\xi) e^{2\pi i \langle \xi, x \rangle}.$$

Recall
$$(\widehat{f \circ M})(\xi) = \frac{1}{|\det M|} \widehat{f}(M^{-\mathsf{T}}\xi).$$

• The convolution operation

$$(f * g)(x) := \int_{\mathbb{R}^d} f(x - y)g(y)dy.$$
$$(\widehat{f * g})(\xi) = \widehat{f}(\xi)\widehat{g}(\xi).$$

Let f_1 be $1_{\left[-\frac{1}{2},\frac{1}{2}\right]}$, the indicator function of the interval $\left[-\frac{1}{2},\frac{1}{2}\right]$.

$$f_2(x) := (f_1 * f_1)(x) = \int_{-\frac{1}{2}}^{\frac{1}{2}} 1_{[-\frac{1}{2}, \frac{1}{2}]}(x - t)dt = \begin{cases} -|x| + 1 & \text{if } |x| \le 1, \\ 0 & \text{otherwise.} \end{cases}$$

$$f_3(x) := (f_2 * f_1)(x) = \int_{-1}^1 f_2(t) 1_{\left[-\frac{1}{2}, \frac{1}{2}\right]}(x - t) dt = \begin{cases} -x^2 + \frac{3}{4} & \text{if } |x| \le \frac{1}{2}, \\ \frac{1}{8}(2|x| - 3)^2 & \text{if } \frac{1}{2} \le |x| \le \frac{3}{2}, \\ 0 & \text{otherwise.} \end{cases}$$

FIGURE 1. Functions $f_1, \ldots f_4$.

$$f_4(x) := (f_3 * f_1)(x) = \int_{-\frac{3}{2}}^{\frac{3}{2}} f_3(t) 1_{[-\frac{1}{2}, \frac{1}{2}]}(x - t) dt = \begin{cases} \frac{1}{2} |x|^3 - x^2 + \frac{2}{3} & \text{if } |x| \le 1, \\ -\frac{1}{6} (|x| - 2)^3 & \text{if } 1 \le |x| \le 2, \\ 0 & \text{otherwise.} \end{cases}$$

• The geometry of numbers: Siegel's formula. Let $B \subset \mathbb{R}^d$ be a d-dimensional convex body, symmetric about the origin. If the only integer point in its interior is the origin, then

$$2^{d} = \operatorname{vol} B + \frac{4^{d}}{\operatorname{vol} B} \sum_{\xi \in \mathbb{Z}^{d} \setminus \{0\}} \left| \hat{1}_{\frac{1}{2}B}(\xi) \right|^{2}.$$

(Poisson summation applied to $1_{\frac{1}{2}B}*1_{-\frac{1}{2}B}.)$

• The geometry of numbers: Minkowski's first theorem. Let $B \subset \mathbb{R}^d$ be a d-dimensional convex body, symmetric about the origin. If $\operatorname{vol} B > 2^d$, then B must contain a nonzero integer point in its interior.

Exercise 4.2. Given a convex d-dimensional body $K \subset \mathbb{R}^d$, prove that K - K is convex, and that K - K is centrally symmetric.

Solution: Let $x, y \in K - K$, hence $x = x_1 - x_2$ and $y = y_1 - y_2$, with $x_1, x_2, y_1, y_2 \in K$. For any $a \in [0, 1]$,

$$ax + (1-a)y = a(x_1 - x_2) + (1-a)(y_1 - y_2) = ax_1 + (1-a)y_1 - (ax_2 + (1-a)y_2).$$

Since K is convex, $ax_1 + (1-a)y_1 \in K$ and $ax_2 + (1-a)y_2 \in K$. Therefore $ax + (1-a)y \in K - K$.

The show that K-K is centrally symmetric, let $x \in K-K$, hence $x=x_1-x_2$ with $x_1, x_2 \in K$. Since $-x=x_2-x_1 \in K-K$, we conclude that K-K is centrally symmetric.

Exercise 4.6. Show that in \mathbb{R}^d , an integer simplex Δ is unimodular if and only if $\operatorname{vol}(\Delta) = \frac{1}{d!}$.

Solution: Let $S \subset \mathbb{R}^d$ be the standard simplex:

$$S = \text{conv}(\{0, e_1, \dots, e_d\})$$

= $\{x \in \mathbb{R}^d : x_1 + \dots + x_d \le 1, \ x_1, \dots, x_d \ge 0\}.$

Next we proof by induction in d that $vol(S) = \frac{1}{d!}$:

$$\operatorname{vol}(S) = \int_0^1 \int_0^{1-x_1} \cdots \int_0^{1-x_1-\dots-x_{d-1}} dx_d \dots dx_2 dx_1$$

$$= \int_0^1 \int_0^{1-x_1} \cdots \int_0^{1-x_1-\dots-x_{d-2}} (1-x_1-\dots-x_{d-1}) dx_{d-1} \dots dx_2 dx_1$$

$$= \int_0^1 \frac{(1-x_1)^{d-1}}{(d-1)!} dx_1 = \frac{1}{d!}.$$

In the second to last equality we used induction in d (verify the case d=2) and, denoting the (d-1)-dimensional standard simplex in the coordinates $x_2, \ldots x_d$ by S', notice that $(1-x_1)S' = \{(x_2, \ldots, x_d) \in \mathbb{R}^{d-1} : x_2 + \cdots + x_d \leq 1 - x_1, x_2, \ldots, x_d \geq 0\}.$

If
$$\Delta = \text{conv}(\mathbf{v}_0, \dots, \mathbf{v}_d)$$
, then $M = (v_1 - v_0, \dots, v_d - v_0) \in \mathbb{Z}^{d \times d}$ and

$$\operatorname{vol}(\Delta) = \int_{\Delta} dx = \int_{MS} dx = |\det M| \int_{S} dx$$
$$= |\det M| \operatorname{vol}(S) = |\det M| \frac{1}{d!}.$$

We say that Δ is unimodular if $M = (v_1 - v_0, \dots, v_d - v_0) \in \mathbb{Z}^{d \times d}$ and $|\det M| = 1$. By the above equation we see that Δ is unimodular if and only if $\operatorname{vol}(\Delta) = \frac{1}{d!}$.

Exercise 4.7. Find in \mathbb{R}^3 , an integer simplex Δ that has no other integer points inside or on its boundary (other than its vertices of course), but such that Δ is not a unimodular simplex.

Solution: Consider Δ as the convex hull of (0,0,0), (1,1,0), (1,0,1), and (0,1,1). Computing the determinant of the matrix with its vertices, we get $\operatorname{vol}(\Delta) = \frac{1}{3}$. If Δ has an integer point v other than its vertices, then there is $x, y, z \geq 0$ with $x + y + z \leq 1$ such that

$$v = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{Z}^3.$$

From the first line, we get either x+y=1 or x+y=0. If x+y=0, then z=0 or z=1, but both cases are not possible since $v \neq (0,0,0)$ and $v \neq (0,1,1)$. So x+y=1 and z=0. From the second line, x+z=0 or x+z=1, but neither case is possible, since if x=0, y=1 we get v=(1,0,1) and from x=1, y=0 we get v=(1,1,0). Therefore Δ has no integer points other than its vertices.