A GENTLE INTRODUCTION TO FOURIER ANALYSIS ON POLYTOPES - EXERCISES FROM CHAPTER 4

FABRÍCIO C. MACHADO

Exercises from the book: Robins, S., "A friendly introduction to Fourier analysis on polytopes", available at https://arxiv.org/abs/2104.06407. This solution sheet is available at https://www.ime.usp.br/~fabcm/33coloquio-impa/.
4.2. Given a convex d-dimensional body $K \subset \mathbb{R}^{d}$, prove that $K-K$ is convex, and that $K-K$ is centrally symmetric.
4.3. The support of a function f is defined here as

$$
\operatorname{supp}(\mathrm{f}):=\left\{\mathrm{x} \in \mathbb{R}^{\mathrm{d}} \mid \mathrm{f}(\mathrm{x}) \neq 0\right\}
$$

Suppose that we are given two convex bodies $A, B \subset \mathbb{R}^{d}$. Show that

$$
\operatorname{supp}\left(1_{\mathrm{A}} * 1_{\mathrm{B}}\right)=\mathrm{A}+\mathrm{B}
$$

where the addition is the Minkowski addition of sets.
4.4. Suppose we have a triangle Δ whose vertices v_{1}, v_{2}, v_{3} are integer points. Prove that the following properties are equivalent:
(a) Δ has no other integer points inside or on its boundary.
(b) $\operatorname{Area}(\Delta)=\frac{1}{2}$.
(c) Δ is a unimodular triangle - i.e. $v_{3}-v_{1}$ and $v_{2}-v_{1}$ form a basis for \mathbb{Z}^{2}.
(Hint: You might begin by "doubling" the triangle to form a parallelogram.)
4.6. Show that in \mathbb{R}^{d}, an integer simplex Δ is unimodular if and only if $\operatorname{vol}(\Delta)=\frac{1}{d!}$.
4.7. Find in \mathbb{R}^{3}, an integer simplex Δ that has no other integer points inside or on its boundary (other than its vertices of course), but such that Δ is not a unimodular simplex.
4.8. Prove that for any polytope $P, \hat{1}_{P}$ is not a Schwartz function.
4.11. Here we use Siegel's Theorem 4.4 to give an extension of Minkowski's classical Theorem 4.2 for bodies K that are not necessarily symmetric.

Namely, let K be any bounded, measurable subset of \mathbb{R}^{d} (so K is not necessarily symmetric), with a positive d-dimensional measure. Let $B:=\frac{1}{2} K-\frac{1}{2} K$ be the symmetrized body of K (hence B is a convex symmetric body). Let \mathcal{L} be a (full rank) lattice in \mathbb{R}^{d}. Prove the following statement:

If $\operatorname{vol} K>2^{d}(\operatorname{det} \mathcal{L})$, then B must contain a nonzero point of \mathcal{L} in its interior.
Notes. We note that the positive conclusion of the existence of a nonzero integer point holds only for the symmetrized body B, with no guarantees for any integer points in K.

Lecture 4

- Application of Poisson summation to the theta function

$$
\begin{array}{ll}
\theta(t):=\sum_{n \in \mathbb{Z}} e^{-\pi t n^{2}}, & \theta\left(\frac{1}{t}\right)=\sqrt{t} \theta(t) . \\
G_{t}(x):=\frac{1}{\sqrt{t}} e^{-\frac{\pi}{t} x^{2}}, & \hat{G}_{t}(\xi)=e^{-\pi t \xi^{2}} .
\end{array}
$$

- Lattices

$$
\begin{gathered}
\mathcal{L}:=\left\{n_{1} v_{1}+\cdots+n_{d} v_{d} \in \mathbb{R}^{d}: n_{j} \in \mathbb{Z}, \forall j\right\}, \quad M:=\left(\begin{array}{cccc}
\mid & \mid & \ldots & \mid \\
v_{1} & v_{2} & \ldots & v_{d} \\
\mid & \mid & \ldots & \mid
\end{array}\right), \quad \mathcal{L}=M\left(\mathbb{Z}^{d}\right) . \\
\mathcal{L}^{*}:=\left\{m \in \mathbb{R}^{d}:\langle n, m\rangle \in \mathbb{Z}, \forall n \in \mathcal{L}\right\}=M^{-\top}\left(\mathbb{Z}^{d}\right) .
\end{gathered}
$$

- Poisson summation for lattices

$$
\sum_{n \in \mathcal{L}} f(n+x)=\frac{1}{\operatorname{det} \mathcal{L}} \sum_{\xi \in \mathcal{L}^{*}} \hat{f}(\xi) e^{2 \pi i\langle\xi, x\rangle}
$$

Recall $(\widehat{f \circ M})(\xi)=\frac{1}{|\operatorname{det} M|} \hat{f}\left(M^{-\top} \xi\right)$.

- The convolution operation

$$
\begin{gathered}
(f * g)(x):=\int_{\mathbb{R}^{d}} f(x-y) g(y) d y . \\
(\widehat{f * g})(\xi)=\hat{f}(\xi) \hat{g}(\xi) .
\end{gathered}
$$

Let f_{1} be $1_{\left[-\frac{1}{2}, \frac{1}{2}\right]}$, the indicator function of the interval $\left[-\frac{1}{2}, \frac{1}{2}\right]$.

$$
\begin{gathered}
f_{2}(x):=\left(f_{1} * f_{1}\right)(x)=\int_{-\frac{1}{2}}^{\frac{1}{2}} 1_{\left[-\frac{1}{2}, \frac{1}{2}\right]}(x-t) d t= \begin{cases}-|x|+1 & \text { if }|x| \leq 1, \\
0 & \text { otherwise. }\end{cases} \\
f_{3}(x):=\left(f_{2} * f_{1}\right)(x)=\int_{-1}^{1} f_{2}(t) 1_{\left[-\frac{1}{2}, \frac{1}{2}\right]}(x-t) d t= \begin{cases}-x^{2}+\frac{3}{4} & \text { if }|x| \leq \frac{1}{2}, \\
\frac{1}{8}(2|x|-3)^{2} & \text { if } \frac{1}{2} \leq|x| \leq \frac{3}{2}, \\
0 & \text { otherwise. }\end{cases}
\end{gathered}
$$

Figure 1. Funcions $f_{1}, \ldots f_{4}$.

$$
f_{4}(x):=\left(f_{3} * f_{1}\right)(x)=\int_{-\frac{3}{2}}^{\frac{3}{2}} f_{3}(t) 1_{\left[-\frac{1}{2}, \frac{1}{2}\right]}(x-t) d t= \begin{cases}\frac{1}{2}|x|^{3}-x^{2}+\frac{2}{3} & \text { if }|x| \leq 1 \\ -\frac{1}{6}(|x|-2)^{3} & \text { if } 1 \leq|x| \leq 2 \\ 0 & \text { otherwise }\end{cases}
$$

- The geometry of numbers: Siegel's formula. Let $B \subset \mathbb{R}^{d}$ be a d-dimensional convex body, symmetric about the origin. If the only integer point in its interior is the origin, then

$$
2^{d}=\operatorname{vol} B+\frac{4^{d}}{\operatorname{vol} B} \sum_{\xi \in \mathbb{Z}^{d} \backslash\{0\}}\left|\hat{1}_{\frac{1}{2} B}(\xi)\right|^{2}
$$

(Poisson summation applied to $1_{\frac{1}{2} B} * 1_{-\frac{1}{2} B}$.)

- The geometry of numbers: Minkowski's first theorem. Let $B \subset \mathbb{R}^{d}$ be a d dimensional convex body, symmetric about the origin. If $\operatorname{vol} B>2^{d}$, then B must contain a nonzero integer point in its interior.

Exercise 4.2. Given a convex d-dimensional body $K \subset \mathbb{R}^{d}$, prove that $K-K$ is convex, and that $K-K$ is centrally symmetric.

Solution: Let $x, y \in K-K$, hence $x=x_{1}-x_{2}$ and $y=y_{1}-y_{2}$, with $x_{1}, x_{2}, y_{1}, y_{2} \in K$. For any $a \in[0,1]$,

$$
a x+(1-a) y=a\left(x_{1}-x_{2}\right)+(1-a)\left(y_{1}-y_{2}\right)=a x_{1}+(1-a) y_{1}-\left(a x_{2}+(1-a) y_{2}\right)
$$

Since K is convex, $a x_{1}+(1-a) y_{1} \in K$ and $a x_{2}+(1-a) y_{2} \in K$. Therefore $a x+(1-a) y \in$ $K-K$.

Tho show that $K-K$ is centrally symmetric, let $x \in K-K$, hence $x=x_{1}-x_{2}$ with $x_{1}, x_{2} \in K$. Since $-x=x_{2}-x_{1} \in K-K$, we conclude that $K-K$ is centrally symmetric.

Exercise 4.6. Show that in \mathbb{R}^{d}, an integer simplex Δ is unimodular if and only if $\operatorname{vol}(\Delta)=\frac{1}{d!}$.

Solution: Let $S \subset \mathbb{R}^{d}$ be the standard simplex:

$$
\begin{aligned}
S & =\operatorname{conv}\left(\left\{0, \mathrm{e}_{1}, \ldots, \mathrm{e}_{\mathrm{d}}\right\}\right) \\
& =\left\{x \in \mathbb{R}^{d}: x_{1}+\cdots+x_{d} \leq 1, x_{1}, \ldots, x_{d} \geq 0\right\}
\end{aligned}
$$

Next we proof by induction in d that $\operatorname{vol}(S)=\frac{1}{d!}$:

$$
\begin{aligned}
\operatorname{vol}(S) & =\int_{0}^{1} \int_{0}^{1-x_{1}} \cdots \int_{0}^{1-x_{1}-\ldots-x_{d-1}} d x_{d} \ldots d x_{2} d x_{1} \\
& =\int_{0}^{1} \int_{0}^{1-x_{1}} \cdots \int_{0}^{1-x_{1}-\ldots-x_{d-2}}\left(1-x_{1}-\ldots-x_{d-1}\right) d x_{d-1} \ldots d x_{2} d x_{1} \\
& =\int_{0}^{1} \frac{\left(1-x_{1}\right)^{d-1}}{(d-1)!} d x_{1}=\frac{1}{d!}
\end{aligned}
$$

In the second to last equality we used induction in d (verify the case $d=2$) and, denoting the $(d-1)$-dimensional standard simplex in the coordinates $x_{2}, \ldots x_{d}$ by S^{\prime}, notice that $\left(1-x_{1}\right) S^{\prime}=\left\{\left(x_{2}, \ldots, x_{d}\right) \in \mathbb{R}^{d-1}: x_{2}+\cdots+x_{d} \leq 1-x_{1}, x_{2}, \ldots, x_{d} \geq 0\right\}$.

If $\Delta=\operatorname{conv}\left(\mathrm{v}_{0}, \ldots, \mathrm{v}_{\mathrm{d}}\right)$, then $M=\left(v_{1}-v_{0}, \ldots, v_{d}-v_{0}\right) \in \mathbb{Z}^{d \times d}$ and

$$
\begin{aligned}
\operatorname{vol}(\Delta) & =\int_{\Delta} d x=\int_{M S} d x=|\operatorname{det} M| \int_{S} d x \\
& =|\operatorname{det} M| \operatorname{vol}(S)=|\operatorname{det} M| \frac{1}{d!}
\end{aligned}
$$

We say that Δ is unimodular if $M=\left(v_{1}-v_{0}, \ldots, v_{d}-v_{0}\right) \in \mathbb{Z}^{d \times d}$ and $|\operatorname{det} M|=1$. By the above equation we see that Δ is unimodular if and only if $\operatorname{vol}(\Delta)=\frac{1}{d!}$.

Exercise 4.7. Find in \mathbb{R}^{3}, an integer simplex Δ that has no other integer points inside or on its boundary (other than its vertices of course), but such that Δ is not a unimodular simplex.

Solution: Consider Δ as the convex hull of $(0,0,0),(1,1,0),(1,0,1)$, and $(0,1,1)$. Computing the determinant of the matrix with its vertices, we get $\operatorname{vol}(\Delta)=\frac{1}{3}$. If Δ has an integer point v other than its vertices, then there is $x, y, z \geq 0$ with $x+y+z \leq 1$ such that

$$
v=\left(\begin{array}{ccc}
1 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) \in \mathbb{Z}^{3}
$$

From the first line, we get either $x+y=1$ or $x+y=0$. If $x+y=0$, then $z=0$ or $z=1$, but both cases are not possible since $v \neq(0,0,0)$ and $v \neq(0,1,1)$. So $x+y=1$ and $z=0$. From the second line, $x+z=0$ or $x+z=1$, but neither case is possible, since if $x=0$, $y=1$ we get $v=(1,0,1)$ and from $x=1, y=0$ we get $v=(1,1,0)$. Therefore Δ has no integer points other than its vertices.

