A GENTLE INTRODUCTION TO FOURIER ANALYSIS ON POLYTOPES - EXERCISES FROM CHAPTER 3

FABRÍCIO C. MACHADO

Exercises from the book: Robins, S., "A friendly introduction to Fourier analysis on polytopes", available at https://arxiv.org/abs/2104.06407. This solution sheet is available at https://www.ime.usp.br/~fabcm/33coloquio-impa/.
3.1. Recalling that the L^{2}-norm is defined by $\|x\|_{2}:=\sqrt{x_{1}^{2}+\cdots+x_{d}^{2}}$, and the L^{1} norm is defined by $\|x\|_{1}:=\left|x_{1}\right|+\cdots+\left|x_{d}\right|$, we have the following elementary norm relations.
(a) Show that $\|x\|_{2} \leq\|x\|_{1}$, for all $x \in \mathbb{R}^{d}$.
(b) On the other hand, show that we have $\|x\|_{1} \leq \sqrt{d}\|x\|_{2}$, for all $x \in \mathbb{R}^{d}$.
3.3. We know that the functions $u(t):=\cos t=\frac{e^{i t}+e^{-i t}}{2}$ and $v(t):=\sin t=\frac{e^{i t}-e^{-i t}}{2 i}$ are natural, partly because they parametrize the unit circle: $u^{2}+v^{2}=1$. Here we see that there are other similarly natural functions, parametrizing the hyperbola.
(a) Show that the following functions parametrize the hyperbola $u^{2}-v^{2}=1$:

$$
u(t):=\frac{e^{t}+e^{-t}}{2}, \quad v(t):=\frac{e^{t}-e^{-t}}{2}
$$

(This is the reason that the function $\cosh t:=\frac{e^{t}+e^{-t}}{2}$ is called the hyperbolic cosine, and the function $\sinh t:=\frac{e^{t}-e^{-t}}{2}$ is called the hyperbolic sine)
(b) The hyperbolic cotangent is defined as coth $t:=\frac{\cosh t}{\sinh t}=\frac{e^{t}+e^{-t}}{e^{t}-e^{-t}}$. Using Bernoulli numbers, show that $t \operatorname{coth} t$ has the Taylor series:

$$
t \operatorname{coth} t=\sum_{n=0}^{\infty} \frac{2^{2 n}}{(2 n)!} B_{2 n} t^{2 n} .
$$

3.5. We continue with the same function as in the previous exercise, $f(x):=e^{-2 \pi t|x|}$.
(a) Show that $\hat{f}(\xi)=\frac{t}{\pi} \frac{1}{\xi^{2}+t^{2}}$, for all $\xi \in \mathbb{R}$.
(b) Using Poisson summation, show that:

$$
\frac{t}{\pi} \sum_{n \in \mathbb{Z}} \frac{1}{n^{2}+t^{2}}=\sum_{m \in \mathbb{Z}} e^{-2 \pi t|m|} .
$$

3.6. Here we evaluate the Riemann zeta function at the positive even integers.
(a) Show that

$$
\sum_{n \in \mathbb{Z}} e^{-2 \pi t|n|}=\frac{1+e^{-2 \pi t}}{1-e^{-2 \pi t}}:=\operatorname{coth}(\pi t)
$$

for all $t>0$.
(b) Show that the cotangent function has the following (well-known) partial fraction expansion:

$$
\pi \cot (\pi x)=\frac{1}{x}+2 x \sum_{n=1}^{\infty} \frac{1}{x^{2}-n^{2}}
$$

valid for any $x \in \mathbb{R}-\mathbb{Z}$.
(c) Let $0<t<1$. Show that

$$
\frac{t}{\pi} \sum_{n \in \mathbb{Z}} \frac{1}{n^{2}+t^{2}}=\frac{1}{\pi t}+\frac{2}{\pi} \sum_{m=1}^{\infty}(-1)^{m+1} \zeta(2 m) t^{2 m-1}
$$

where $\zeta(s):=\sum_{n=1}^{\infty} \frac{1}{n^{s}}$ is the Riemann zeta function, initially defined by the latter series, which is valid for all $s \in \mathbb{C}$ with $\operatorname{Re}(s)>1$.
(d) Here we show that we may quickly evaluate the Riemann zeta function at all even integers, as follows. We recall the definition of the Bernoulli numbers, namely:

$$
\frac{z}{e^{z}-1}=1-\frac{z}{2}+\sum_{m \geq 1} \frac{B_{2 m}}{2 m!} z^{2 m}
$$

Prove that for all $m \geq 1$,

$$
\zeta(2 m)=\frac{(-1)^{m+1}}{2} \frac{(2 \pi)^{2 m}}{(2 m)!} B_{2 m}
$$

Thus, for example, using the first 3 Bernoulli numbers, we have: $\zeta(2)=\frac{\pi^{2}}{6}$, $\zeta(4)=\frac{\pi^{4}}{90}$, and $\zeta(6)=\frac{\pi^{6}}{945}$.
3.8. The hyperbolic secant is defined by

$$
\operatorname{sech}(\pi x):=\frac{2}{e^{\pi x}+e^{-\pi x}}, \text { for } x \in \mathbb{R}
$$

Show that $\operatorname{sech}(\pi x)$ is its own Fourier inverse:

$$
\mathcal{F}(\operatorname{sech})(\xi)=\operatorname{sech}(\xi)
$$

for all $\xi \in \mathbb{R}$.
(Hard! May require complex analysis)
3.21. For all $f, g \in S\left(\mathbb{R}^{d}\right)$, show that $\langle f, g\rangle=\langle\hat{f}, \hat{g}\rangle$.

Lecture 3

- $L^{1}\left(\mathbb{R}^{d}\right), L^{2}\left(\mathbb{R}^{d}\right)$.

$$
L^{1}\left(\mathbb{R}^{d}\right):=\left\{f: \mathbb{R}^{d} \rightarrow \mathbb{C}: \int_{\mathbb{R}^{d}}|f(x)| d x<\infty\right\} .
$$

(see Lebesgue's Dominated Convergence Theorem)

$$
L^{2}\left(\mathbb{R}^{d}\right):=\left\{f: \mathbb{R}^{d} \rightarrow \mathbb{C}: \int_{\mathbb{R}^{d}}|f(x)|^{2} d x<\infty\right\} .
$$

Examples:

$$
f(x)=\left\{\begin{array}{l}
\frac{1}{x}, \text { if } x \geq 1, \\
0, \text { otherwise. }
\end{array} \quad g(x)=\left\{\begin{array}{l}
\frac{1}{\sqrt{x}}, \text { if } 0<x \leq 1, \\
0, \text { otherwise } .
\end{array}\right.\right.
$$

We have $f \in L^{2}(\mathbb{R})$, but $f \notin L^{1}(\mathbb{R})$.

$$
\int_{\mathbb{R}}|f(x)|^{2} d x=\int_{1}^{\infty} \frac{1}{x^{2}} d x=\left.\frac{-1}{x}\right|_{x=1} ^{\infty}=1 .
$$

While $g \in L^{1}(\mathbb{R})$, but $g \notin L^{2}(\mathbb{R})$.

$$
\int_{\mathbb{R}}|g(x)| d x=\int_{0}^{1} \frac{1}{\sqrt{x}} d x=\left.2 \sqrt{x}\right|_{x=0} ^{1}=2 .
$$

If we replace \mathbb{R}^{d} by a bounded domain X, then $L^{2}(X) \subset L^{1}(X)$. If we assume that a function $f \in L^{1}\left(\mathbb{R}^{d}\right)$ is bounded, then $f \in L^{2}\left(\mathbb{R}^{d}\right)$.

- Inverse Fourier transform.

If $f \in L^{1}\left(\mathbb{R}^{d}\right)$ and $\hat{f} \in L^{1}\left(\mathbb{R}^{d}\right)$, then f is almost everywhere equal to a continuous function and, assuming that f is this continuous function,

$$
f(x)=\int_{\mathbb{R}^{d}} \hat{f}(\xi) e^{2 \pi i\langle x, \xi\rangle} d \xi
$$

for all $x \in \mathbb{R}^{d}$.
Another inversion theorem is: If $f \in L^{2}\left(\mathbb{R}^{d}\right)$, then $\hat{f}(\xi)$ is well-defined for almost every $\xi \in \mathbb{R}^{d}, \hat{f} \in L^{2}\left(\mathbb{R}^{d}\right)$ and, letting

$$
\tilde{f}(x):=\int_{\mathbb{R}^{d}} \hat{f}(\xi) e^{2 \pi i\langle x, \xi\rangle} d \xi,
$$

then

$$
\int_{\mathbb{R}^{d}}|f(x)-\tilde{f}(x)|^{2} d x=0 .
$$

- The Fourier transform of a compact body is infinitely smooth.

$$
\frac{\partial}{\partial x_{k}} \hat{f}(\xi)=\frac{\partial}{\partial \xi_{k}} \int_{P} e^{-2 \pi i\langle x, \xi\rangle} d x=\int_{P} \frac{\partial}{\partial \xi_{k}} e^{-2 \pi i\langle x, \xi\rangle} d x=(-2 \pi i) \int_{P} x_{k} e^{-2 \pi i\langle x, \xi\rangle} d x .
$$

(The dominated convergence theorem justifies the exchange between the derivative and the integral. Since P is compact and $x_{k} e^{-2 \pi i\langle x, \xi\rangle}$ is continuous, it is in $L^{1}\left(\mathbb{R}^{d}\right)$.)

- Fourier series, intuition and examples.

Intuition: $f:[0,1]^{d} \rightarrow \mathbb{C},(+$ assumptions $)$

$$
f(x)=\sum_{k \in \mathbb{Z}^{d}} f_{k} e^{2 \pi i\langle x, k\rangle}, \quad f_{k}=\int_{[0,1]^{d}} f(x) e^{-2 \pi i\langle x, k\rangle} d x
$$

If $f \in L^{2}\left([0,1]^{d}\right)$, then

$$
\int_{[0,1]^{d}}\left|f(x)-\sum_{k \in \mathbb{Z}^{d}} f_{k} e^{2 \pi i\langle x, k\rangle}\right|^{2} d x=0
$$

If $f:[0,1] \rightarrow \mathbb{C}(d=1)$ is piecewise smooth, then

$$
\sum_{k \in \mathbb{Z}^{d}} f_{k} e^{2 \pi i x k}=\frac{\lim _{\epsilon \rightarrow 0^{+}} f(x-\epsilon)+\lim _{\epsilon \rightarrow 0^{+}} f(x+\epsilon)}{2}=\frac{f\left(x^{-}\right)+f\left(x^{+}\right)}{2}
$$

The sawtooth function $f(x):=x-[x]-\frac{1}{2}$

Using 4 terms

- The Schwartz space.

Functions $f \in \mathbb{R}^{d} \rightarrow \mathbb{C}$ infinitely differentiable and such that for all $a, k \in \mathbb{N}_{\geq 0}^{d}$, $\left|x^{a} D_{k} f(x)\right|$ is bounded for all $x \in \mathbb{R}^{d}$.

- Poisson summation

Intuition:

$$
\sum_{n \in \mathbb{Z}^{d}} f(x+n)=\sum_{m \in \mathbb{Z}^{d}} \hat{f}(m) e^{2 \pi i\langle x, m\rangle}
$$

That (3) holds if $\alpha \geq 0$ follows from Proposition 1.24(c). It is easy to verify that (3) holds if $\alpha=-1$, using relations like $(-u)^{+}=u^{-}$. The case $\alpha=i$ is also easy: If $f=u+i v$, then

$$
\begin{aligned}
\int(i f) & =\int(i u-v)=\int(-v)+i \int u=-\int v+i \int u=i\left(\int u+i \int v\right) \\
& =i \int f
\end{aligned}
$$

Combining these cases with (2), we obtain (3) for any complex α.
1.33 Theorem If $f \in L^{1}(\mu)$, then

$$
\left|\int_{X} f d \mu\right| \leq \int_{X}|f| d \mu .
$$

Proof Put $z=\int_{X} f d \mu$. Since z is a complex number, there is a complex number α, with $|\alpha|=1$, such that $\alpha z=|z|$. Let u be the real part of αf. Then $u \leq|\alpha f|=|f|$. Hence

$$
\left|\int_{X} f d \mu\right|=\alpha \int_{X} f d \mu=\int_{X} \alpha f d \mu=\int_{X} u d \mu \leq \int_{X}|f| d \mu
$$

The third of the above equalities holds since the preceding ones show that $\int \alpha f d \mu$ is real.

We conclude this section with another important convergence theorem.
1.34 Lebesgue's Dominated Convergence Theorem Suppose $\left\{f_{n}\right\}$ is a sequence of complex measurable functions on X such that

$$
\begin{equation*}
f(x)=\lim _{n \rightarrow \infty} f_{n}(x) \tag{1}
\end{equation*}
$$

exists for every $x \in X$. If there is a function $g \in L^{1}(\mu)$ such that

$$
\begin{equation*}
\left|f_{n}(x)\right| \leq g(x) \quad(n=1,2,3, \ldots ; x \in X) \tag{2}
\end{equation*}
$$

then $f \in L^{1}(\mu)$,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{x}\left|f_{n}-f\right| d \mu=0 \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{x} f_{n} d \mu=\int_{x} f d \mu \tag{4}
\end{equation*}
$$

From: Stromberg, K., "An Introduction to Classical Real Analysis", American Mathematical Society

3 Limits and CONTINUITY

(1) and $(3.119, i)$, we have

$$
\|f-h\|_{u}=\sup \{|P(z)|: z \in X\}=\left|P\left(z_{0}\right)\right|=\beta>|P(0)|=1 .
$$

If $h=0$, then $\|f-h\|_{u}=\|f\|_{u}=1$. It follows that $\operatorname{dist}(f, A)=1$, and so $f \notin A^{-}$.
If we require \boldsymbol{A} to be closed under complex conjugation, then this difficulty dissolves.
(3.121) Definition We say that a complex function algebra A is self-adjoint if $\hat{f} \in A$ whenever $f \in A$.
(3.122) Stone-Weierstrass Theorem [compact-complex] Let X be a compact space and let A be a self-adjoint subalgebra of $C(X)$ that separates the points of X. Then the uniform closure A^{-}of A satisfies either
(i) $A^{-}=C(X)$
or
(ii) there is some $p \in X$ such that $A^{-}=\{f \in C(X): f(p)=0\}$.

Proof Let $A^{\prime}=\{f \in A: f(X) \subset \mathbb{R}\}$. Then $f \in A$ implies

$$
\operatorname{Re} f=(f+\bar{f}) / 2 \in A^{r}, \quad \operatorname{Im} f=(f-\bar{f}) /(2 i) \in A^{\prime}
$$

Also, for $x \neq y$ in X, we can choose $f \in A$ such that $f(x) \neq f(y)$, hence

$$
\operatorname{Re} f(x) \neq \operatorname{Re} f(y) \quad \text { or } \quad \operatorname{Im} f(x) \neq \operatorname{Im} f(y)
$$

and so A^{r} separates the points of X. Obviously A^{r} is a subalgebra of $C^{r}(X)$. Therefore, either (3.117.i) or (3.117.ii) obtains for A^{r-}. Thus, given $f \in C(X)$ and $\epsilon>0$ [if (3.117.ii) obtains for A^{r-}, we suppose $f(p)=0$], we can choose $h_{1}, h_{2} \in A^{r}$ such that

$$
\left\|\operatorname{Re} f-h_{1}\right\|_{u}<\epsilon / 2, \quad\left\|\operatorname{Im} f-h_{2}\right\|_{u}<\epsilon / 2
$$

Writing $h=h_{1}+i h_{2}$, we have $h \in A$ and $\|f-h\|_{u}<\epsilon$.
(3.123) Example This example shows that compactness is important in (3.117) and (3.122). Let X be any noncompact metric space and let $\left(x_{n}\right)_{n-1}^{\infty}$ be a sequence of distinct points of X having no convergent subsequence. Define $A=$ $\left\{f \in C^{r}(X): \lim _{n \rightarrow \infty} f\left(x_{n}\right)\right.$ exists $\}$. Plainly, A is a subalgebra of $C^{\prime}(X)$. Let $a \neq b$ in X. Choose $N \in \mathbb{N}$ such that $a \neq x_{n}$ for all $n>N$. Write $E=\{b\} \cup\left\{x_{n}: n>N\right\}$. The function f defined on X by

$$
f(x)=\frac{\operatorname{dist}(x, E)}{\operatorname{dist}(x,\{a\})+\operatorname{dist}(x, E)}
$$

satisfies $f(a)=1, f(b)=0, f \in C^{r}(X)$, and $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=0$; hence, $f \in A$ and so A separates the points of X. Since A contains 1, A vanishes nowhere on X. However,

From: Stromberg, K., "An Introduction to Classical Real Analysis", American Mathematical Society

TRIGONOMETRIC SERIES AND FOURIER SERIES

Trigonometric Series and Fourier Series

(8.1) Definitions A trigonometric series is any series of the form

$$
\begin{equation*}
\frac{a_{0}}{2}+\sum_{k=1}^{\infty}\left(a_{k} \cos (k t)+b_{k} \sin (k t)\right) \tag{i}
\end{equation*}
$$

where $\left(a_{k}\right)_{k=0}^{\infty}$ and $\left(b_{k}\right)_{k=1}^{\infty}$ are sequences of complex numbers and $t \in \mathbf{R}$. The nth partial sum of (i) is the function s_{n} defined on \mathbb{R} by

$$
\begin{equation*}
s_{n}(t)=\frac{a_{0}}{2}+\sum_{k=1}^{n}\left(a_{k} \cos (k t)+b_{k} \sin (k t)\right) \tag{ii}
\end{equation*}
$$

Because of Euler's Formulas (5.5) we also have

$$
\begin{equation*}
s_{n}(t)=\sum_{k=-n}^{n} c_{k} e^{i k t} \tag{ii'}
\end{equation*}
$$

where, if we write $b_{0}=0$,

$$
\begin{align*}
& c_{k}=\left(a_{k}-i b_{k}\right) / 2, \quad c_{-k}=\left(a_{k}+i b_{k}\right) / 2, \\
& a_{k}=c_{k}+c_{-k}, \quad b_{k}=i\left(c_{k}-c_{-k}\right) \quad \text { for } k \geqq 0 . \tag{iii}
\end{align*}
$$

We also write $s_{0}(t)=c_{0}=a_{0} / 2$. For this reason, we also write (i) in the form

$$
\begin{equation*}
\sum_{k=-\infty}^{\infty} c_{k} e^{i k t} \tag{i'}
\end{equation*}
$$

and we call s_{n} the nth partial sum of this series. To say that (i) or (i') converges in some sense [pointwise, a.e., uniformly, etc.] means that the sequence ($\left.s_{n}\right)_{n=0}^{\infty}$ of functions converges in that sense. Any function of the form (ii) or (ii') is called a trigonometric polynomial.

If a function $f: \mathrm{R} \rightarrow \mathrm{C}$ is to be the pointwise sum of a trigonometric series or the pointwise limit of a sequence $\left(s_{n}\right)_{n=0}^{\infty}$ of trigonometric polynomials, then it must be 2π-periodic. That is, $f(t+2 \pi)=f(t)$ for all $t \in \mathbb{R}$. This is because every trigonometric polynomial is 2π-periodic. Thus, we isolate for study some classes of 2π-periodic functions.
(8.2) Definitions Let $f: \mathbf{R} \rightarrow \mathrm{C}$ be 2π-periodic. For a positive real number p, we write $f \in L_{p}(\mathbb{T})$ if f is Lebesgue measurable and

$$
\frac{1}{2 \pi} \int_{-\pi}^{\pi}|f(t)|^{p} d t<\infty
$$

In this case, we define the $L_{p}(\mathbb{T})$-norm of f to be the number

$$
\|f\|_{p}=\|f\|_{L_{p}(\mathrm{~T})}=\left(\frac{1}{2 \pi} \int_{-\pi}^{\pi}|f(t)|^{p} d t\right)^{1 / p} .
$$

From: Stromberg, K., "An Introduction to Classical Real Analysis", American Mathematical Society

If f is continuous on \mathbb{R} (and 2π-periodic), we write $f \in C(\mathrm{~T})$ and we define the uniform norm of f to be the number

$$
\|f\|_{U}=\|f\|_{C(\mathrm{~T})}=\sup _{t \in \mathbb{R}}|f(t)|=\sup _{-\pi \leq t \leq \pi}|f(t)| .
$$

We denote the set of all trigonometric polynomials by $T P(\mathbb{T})$.
Obviously, $T P(\mathrm{~T}) \subset C(\mathrm{~T}) \subset L_{p}(\mathrm{~T})$ for all $p>0$. Moreover, $T P(\mathbb{T})$ is dense in these spaces in the following sense.
(8.3) Theorem (i) If $f \in C(\mathbb{T})$ and $\epsilon>0$, then there exists some $P \in T P(\mathbb{T})$ such that $\|f-P\|_{u}<\epsilon$.
(ii) If $1 \leqq p<\infty, f \in L_{p}(\mathbb{T})$, and $\epsilon>0$, then there exists some $P \in T P(\mathbb{T})$ such that $\|f-P\|_{p}<\boldsymbol{\epsilon}$.

Proof (i) Let $f \in C(\mathbb{T})$ and $\epsilon>0$ be given. Write $X=\{z \in \mathbb{C}:|z|=1\}$ and define F on X by $F(z)=f(t)$, where $z=e^{i t}$ [by the periodicity of f and (5.11), the definition of F is independent of the choice of $t \in \mathbb{R}$ such that $e^{i t}=z$; we could take $t=\operatorname{Arg} z$]. It is easy to see that F is continuous at every $z \in X$. In fact, $F(z)=f(\operatorname{Arg} z)$, so continuity follows from (5.15) for $z \neq-1$, but F is also continuous at -1 because $f(\pi)=f(-\pi)$. Now apply (3.129) to obtain $\left(c_{n}\right)_{n=-N}^{N} \subset C$ such that

$$
\left|F(z)-\sum_{n=-N}^{N} c_{n} z^{n}\right|<\epsilon
$$

for all $z \in X$. Then (i) follows by taking $P(t)=\sum_{n=-N}^{N} c_{n} e^{i n t} .^{*}$
(ii) Let $1 \leqq p<\infty, f \in L_{p}(\mathbb{T})$, and $\epsilon>0$ be given. Use (6.111) to obtain $g \in C([-\pi, \pi])$ such that

$$
\begin{equation*}
\left(\frac{1}{2 \pi} \int_{-\pi}^{\pi}|f-g|^{p}\right)^{1 / p}<\frac{\epsilon}{3} \tag{1}
\end{equation*}
$$

Choose $0<\beta<\infty$ such that $|g(t)| \leqq \beta$ for $t \in[-\pi, \pi]$. Write δ $=2 \pi(\epsilon /(6 \beta))^{\rho}$. We may suppose $\delta<2 \pi$. Now alter g on $[\pi-\delta, \pi]$ to obtain $h \in C([-\pi, \pi])$ such that $|h| \leqq \beta, \quad h=g$ on $[-\pi, \pi-\delta]$, and $h(\pi)$ $=h(-\pi)$. For instance, one can define h on $[\pi-\delta, \pi]$ by the rule

$$
h(t)=\delta^{-1}[(\pi-t) g(\pi-\delta)+(t-\pi+\delta) g(-\pi)]
$$

Then

$$
\begin{equation*}
\frac{1}{2 \pi} \int_{-\pi}^{\pi}|g-h|^{p}=\frac{1}{2 \pi} \int_{v-\delta}^{\pi}|g-h|^{p} \leqq \frac{(2 \beta)^{p} \delta}{2 \pi}=\left(\frac{\epsilon}{3}\right)^{p} \tag{2}
\end{equation*}
$$

[^0]From: Stromberg, K., "An Introduction to Classical Real Analysis", American Mathematical Society

Next, extend h to be 2π-periodic on \mathbb{R} so that $h \in C(\mathbb{T})$. We can apply part (i) to obtain $P \in T P(\mathrm{~T})$ such that $\|h-P\|_{u}<\epsilon / 3$. Then

$$
\begin{equation*}
\left(\frac{1}{2 \pi} \int_{-\pi}^{\pi}|h-P|^{p}\right)^{1 / p}<\frac{\epsilon}{3} . \tag{3}
\end{equation*}
$$

Finally, (1), (2), (3), and Minkowski's Inequality (6.107) complete the proof of (ii).
(8.4) Remark Restated, $(8.3 . \mathrm{i})$ says that if $f \in C(\mathbb{T})$, then there exists a sequence $\left(P_{n}\right)_{n=1}^{\infty} \subset T P(\mathbb{T})$ such that $P_{n} \rightarrow f$ uniformly on \mathbb{R}. However, it is not clear (or even true in general) that these P_{n} 's can be taken to be the partial sums s_{n} of some fixed trigonometric series. If such a series could be found, then it is unique, as the following theorem shows.
(8.5) Theorem Consider any trigonometric series $\sum_{k=-\infty}^{\infty} c_{k} e^{i k t}$ with partial sums s_{n} as in (8.1.ii'). Suppose there exists some subsequence $\left(s_{n}\right)_{j=1}^{\infty}$ and some function f such that either (i) $f \in C(\mathbb{T})$ and $\left\|f-s_{n j}\right\|_{u} \rightarrow 0$ as $j \rightarrow \infty$ or (ii) $f \in L_{\rho}(\mathbb{T})$ for some $1 \leqq p<\infty$ and $\left\|f-s_{n}\right\|_{p} \rightarrow 0$ as $j \rightarrow \infty$. Then, for every integer n, we have

$$
\begin{equation*}
c_{n}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(t) e^{-i n t} d t \tag{iii}
\end{equation*}
$$

Proof If (i) obtains, then $f \in L_{p}(\mathbb{T})$ for all p and $\left\|f-s_{n}\right\|_{p} \leqq\left\|f-s_{n}\right\|_{\alpha}$ for all j, and so (ii) also obtains. Now suppose that (ii) does obtain. Let n be any fixed integer. Choose $j_{0} \in \mathbb{N}$ such that $n_{j}>|n|$ for $j>j_{0}$. The crucial, but obvious, fact here is that, for integers k,

$$
\frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{i k t} e^{-i n t} d t=\frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{i(k-n) t} d t=0 \text { or } 1
$$

according as $k \neq n$ or $k=n$. Thus, for all $j>j_{0}$ we have

$$
\frac{1}{2 \pi} \int_{-\pi}^{\pi} s_{n_{j}}(t) e^{-i m t} d t=\sum_{k=-n_{j}}^{n_{j}} c_{k} \cdot \frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{i(k-n) t} d t=c_{n} .
$$

It follows that

$$
\begin{aligned}
\left|c_{n}-\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(t) e^{-i n t} d t\right| & =\lim _{j \rightarrow \infty}\left|\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left[f(t)-s_{n}(t)\right] e^{-i n t} d t\right| \\
& \leqq \lim _{j \rightarrow \infty} \frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|f(t)-s_{n}(t)\right| d t \\
& \leqq \lim _{j \rightarrow \infty}\left\|f-s_{n}\right\|_{p}=0
\end{aligned}
$$

where the second inequality follows from Hölder's Inequality (6.106).

From: Stromberg, K., "An Introduction to Classical Real Analysis", American Mathematical Society

The problem of recognizing whether or not a trigonometric series is a Fourier series by inspecting its coefficients is unsolved and seems to be extremely difficult. Equivalently, the problem is to determine the range of the mapping $f \rightarrow \hat{f}$ of $L_{1}(T)$ into $c_{0}(\mathbf{Z})$. The preceding theorem provides a necessary condition. Theorem (8.5) and the following two theorems furnish sufficient conditions.
(8.17) Riesz-Fischer Theorem Suppose that $\left(c_{n}\right)_{n=-\infty}^{\infty} \subset$ C satisfies

$$
\sum_{n=-\infty}^{\infty}\left|c_{n}\right|^{2}=\lim _{p \rightarrow \infty} \sum_{n=-p}^{p}\left|c_{n}\right|^{2}<\infty
$$

Then there exists a function $f \in L_{2}(\mathbb{T})$ such that $\hat{f}(n)=c_{n}$ for every integer n. Moreover, $\left\|f-s_{p}(f)\right\|_{2} \rightarrow 0$ as $p \rightarrow \infty$.

Proof Write $s_{p}(t)=\sum_{n=-p}^{p} c_{n} e^{i n t}$ for $p \geqq 0$. Then $q>p \geqq 0$ implies

$$
\begin{aligned}
\left\|s_{q}-s_{p}\right\|_{2}^{2} & =\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|s_{q}(t)-s_{p}(t)\right|^{2} d t \\
& =\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left(\sum_{p<|n| \leq q} c_{n} e^{i n t}\right)\left(\sum_{p<|k| \leq q} \overline{c_{k}} e^{-i k t}\right) d t \\
& =\sum_{\substack{p<|n| \leq q \\
p<|k| \leq q}} \sum_{n} c_{n} \overline{c_{k}} \frac{1}{2 \pi} \int_{-v}^{\pi} e^{i(n-k) t} d t=\sum_{p<|n| \leq q}\left|c_{n}\right|^{2} .
\end{aligned}
$$

By hypothesis, the last sum has limit 0 as $p, q \rightarrow \infty$. It follows from (6.110) that there exists $f \in L_{2}(\mathbb{T})$ such that $\left\|f-s_{p}\right\|_{2} \rightarrow 0$ as $p \rightarrow \infty$. Now (8.5.ii) shows that $\hat{f}(n)=c_{n}$ for all n. Finally, $s_{p}(t)=\sum_{n=-p}^{p} \hat{f}(n) e^{i n t}=s_{p}(f, t) . \quad \square$

The next theorem has very special hypotheses, but it is often useful for producing Fourier series. Also, its proof is instructive.
(8.18) Theorem Let $\left(a_{k}\right)_{k=0}^{\infty}$ be a nonincreasing sequence of nonnegative real numbers having limit 0 . Suppose also that this sequence is convex: $2 a_{k+1} \leqq a_{k}+a_{k+2}$ for all $k \geqq 0$. Then the function f defined on \mathbb{R} by

$$
\begin{equation*}
f(t)=\frac{a_{0}}{2}+\sum_{k=1}^{\infty} a_{k} \cos (k t) \tag{i}
\end{equation*}
$$

is in $L_{1}^{+}(\mathrm{T}) \quad[f \geqq 0]$ and the series (i) is the Fourier series of f. Moreover, this series converges uniformly on $[\delta, 2 \pi-\delta]$ whenever $0<\delta<\pi$, and so f is continuous except possibly at integral multiples of 2π.

Proof The last sentence, which does not require convexity, follows from (7.38), and so (i) defines a function f which is 2π-periodic and measurable

Exercise 3.1. Recalling that the L^{2}-norm is defined by $\|x\|_{2}:=\sqrt{x_{1}^{2}+\cdots+x_{d}^{2}}$, and the L^{1}-norm is defined by $\|x\|_{1}:=\left|x_{1}\right|+\cdots+\left|x_{d}\right|$, we have the following elementary norm relations.
(a) Show that $\|x\|_{2} \leq\|x\|_{1}$, for all $x \in \mathbb{R}^{d}$.
(b) On the other hand, show that we have $\|x\|_{1} \leq \sqrt{d}\|x\|_{2}$, for all $x \in \mathbb{R}^{d}$.

Solution:

$$
\begin{aligned}
& \quad\|x\|_{2}^{2}=\sum_{k=1}^{d} x_{k}^{2} \leq \sum_{k=1}^{d} x_{k}^{2}+\sum_{\substack{k, l=1 \\
k \neq l}}^{d}\left|x_{k}\right|\left|x_{l}\right|=\sum_{k=1}^{d}\left|x_{k}\right| \sum_{l=1}^{d}\left|x_{l}\right|=\|x\|_{1}^{2} \\
& \Longrightarrow\|x\|_{2} \leq\|x\|_{1} \\
& \|x\|_{1}=\left|\left\langle(1, \ldots, 1),\left(\left|x_{1}\right|, \ldots,\left|x_{d}\right|\right)\right\rangle\right| \leq \sqrt{d}\|x\|_{2} \quad \text { (by Cauchy-Schwarz) }
\end{aligned}
$$

Exercise 3.3. We know that the functions $u(t):=\cos t=\frac{e^{i t}+e^{-i t}}{2}$ and $v(t):=\sin t=$ $\frac{e^{i t}-e^{-i t}}{2 i}$ are natural, partly because they parametrize the unit circle: $u^{2}+v^{2}=1$. Here we see that there are other similarly natural functions, parametrizing the hyperbola.
(a) Show that the following functions parametrize the hyperbola $u^{2}-v^{2}=1$:

$$
u(t):=\frac{e^{t}+e^{-t}}{2}, \quad v(t):=\frac{e^{t}-e^{-t}}{2} .
$$

(This is the reason that the function $\cosh t:=\frac{e^{t}+e^{-t}}{2}$ is called the hyperbolic cosine, and the function $\sinh t:=\frac{e^{t}-e^{-t}}{2}$ is called the hyperbolic sine)

Solution: For any $t \in \mathbb{R}$,

$$
u(t)^{2}-v(t)^{2}=\left(\frac{e^{t}+e^{-t}}{2}\right)^{2}-\left(\frac{e^{t}-e^{-t}}{2}\right)^{2}=\frac{e^{2 t}+2+e^{-2 t}-e^{2 t}+2-e^{-2 t}}{4}=1 .
$$

Now if $x, y \in \mathbb{R}$ are such that $x^{2}-y^{2}=1$, we must show that exists t such that $x=u(t)$ and $y=v(t)$. Since $u(t) \geq 0$, this will only happen if $x \geq 0$. Note that $v(t)$ is bijective from \mathbb{R} to \mathbb{R}, hence invertible.
(b) The hyperbolic cotangent is defined as $\operatorname{coth} t:=\frac{\cosh t}{\sinh t}=\frac{e^{t}+e^{-t}}{e^{t}-e^{-t}}$. Using Bernoulli numbers, show that $t \operatorname{coth} t$ has the Taylor series:

$$
t \operatorname{coth} t=\sum_{n=0}^{\infty} \frac{2^{2 n}}{(2 n)!} B_{2 n} t^{2 n} .
$$

Solution: Recall

$$
\frac{t e^{x t}}{e^{t}-1}=\sum_{k=0}^{\infty} B_{k}(x) \frac{t^{k}}{k!}
$$

Using $x=0$ and summing the expression above with t and $-t$,

$$
\begin{aligned}
\frac{t}{e^{t}-1}+\frac{-t}{e^{-t}-1} & =\sum_{k=0}^{\infty} B_{k}(0) \frac{t^{k}}{k!}+\sum_{k=0}^{\infty} B_{k}(0) \frac{(-t)^{k}}{k!} \\
& =\sum_{n=0}^{\infty} B_{2 n}(0) \frac{2 t^{2 n}}{(2 n)!}
\end{aligned}
$$

Replacing t by $2 t$,

$$
\begin{aligned}
& \frac{2 t}{e^{2 t}-1}+\frac{-2 t}{e^{-2 t}-1}=\sum_{n=0}^{\infty} B_{2 n}(0) \frac{2(2 t)^{2 n}}{(2 n)!}=2 \sum_{n=0}^{\infty} \frac{2^{2 n}}{(2 n)!} B_{2 n} t^{2 n} \\
& \frac{t}{e^{2 t}-1}+\frac{-t}{e^{-2 t}-1}=\frac{t e^{-t}}{e^{t}-e^{-t}}+\frac{-t e^{t}}{e^{-t}-e^{t}}=t \frac{e^{t}+e^{-t}}{e^{t}-e^{-t}}
\end{aligned}
$$

Exercise 3.5. We continue with the same function as in the previous exercise, $f(x):=$ $e^{-2 \pi t|x|}$.
(a) Show that $\hat{f}(\xi)=\frac{t}{\pi} \frac{1}{\xi^{2}+t^{2}}$, for all $\xi \in \mathbb{R}$.
(b) Using Poisson summation, show that:

$$
\frac{t}{\pi} \sum_{n \in \mathbb{Z}} \frac{1}{n^{2}+t^{2}}=\sum_{m \in \mathbb{Z}} e^{-2 \pi t|m|}
$$

Solution:

$$
\begin{aligned}
\hat{f}(\xi) & =\int_{\mathbb{R}} f(t) e^{-2 \pi i x \xi} d x=\int_{\mathbb{R}} e^{-2 \pi t|x|} e^{-2 \pi i x \xi} d x \\
& =\int_{-\infty}^{0} e^{2 \pi x(t-i \xi)} d x+\int_{0}^{\infty} e^{2 \pi x(-t-i \xi)} d x \\
& =\left.\frac{e^{2 \pi x(t-i \xi)}}{2 \pi(t-i \xi)}\right|_{x=-\infty} ^{0}+\left.\frac{e^{2 \pi x(-t-i \xi)}}{2 \pi(-t-i \xi)}\right|_{x=0} ^{\infty} \\
& \left.=\frac{1}{2 \pi(t-i \xi)}+\frac{1}{2 \pi(t+i \xi)} \quad \text { (we must assume } t>0\right) \\
& =\frac{t+i \xi+t-i \xi}{2 \pi\left(t^{2}+\xi^{2}\right)}=\frac{t}{\pi\left(t^{2}+\xi^{2}\right)} .
\end{aligned}
$$

[^0]: *A proof of (8.3.i) that does not depend on the Stone-Weierstrass Theorem (or on (8.3.i)) is given in (8.30).

