A GENTLE INTRODUCTION TO FOURIER ANALYSIS ON
POLYTOPES - EXERCISES FROM CHAPTER 3

FABRICIO C. MACHADO

Exercises from the book: Robins, S.; “A friendly introduction to Fourier analysis on poly-

77
topes”,

available at https://arxiv.org/abs/2104.06407. This solution sheet is available

at https://www.ime.usp.br/ " fabcm/33coloquio-impa/.

3.1.

3.3.

3.5.

3.6.

Recalling that the L?-norm is defined by |z|l2 := y/2? + - + 2%, and the L!-

norm is defined by ||z||; := |x1|+- - -+ |zq|, we have the following elementary norm
relations.

(a) Show that ||z|s < ||z|1, for all 2 € RY.

(b) On the other hand, show that we have ||z||; < V/d ||z||2, for all z € RY.

We know that the functions u(t) := cost = # and v(t) :=sint = % are
natural, partly because they parametrize the unit circle: u? +v? = 1. Here we see
that there are other similarly natural functions, parametrizing the hyperbola.

(a) Show that the following functions parametrize the hyperbola u? — v? = 1:

el +et el —et
u(t) := — v(t) == ———

(This is the reason that the function cosht := et*';ft is called the hyperbolic

et—e”t
2

cosine, and the function sinht := is called the hyperbolic sine)

(b) The hyperbolic cotangent is defined as coth ¢ := ‘;l%}}:f = %fz—:z Using Bernoulli
numbers, show that ¢ coth ¢ has the Taylor series:

o 2n

2
tcotht = Z mBQntQTL.
n).

n=0

We continue with the same function as in the previous exercise, f(z) := e~27l,
(a) Show that f(&) = :?E_}rt?’ for all £ € R.
(b) Using Poisson summation, show that:

t 1 _ —27t|m)|
=D Dl s il) DI
nez

meZ

Here we evaluate the Riemann zeta function at the positive even integers.
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(a) Show that

1 —27t
Z 6—27rt|n| — % = COth(ﬂ't),
nez

for all ¢ > 0.

(b) Show that the cotangent function has the following (well-known) partial frac-

tion expansion:
1 > 1
meot(rx) = — + 2z G
(ra) = 20 s

valid for any x € R — Z.

(c) Let 0 <t < 1. Show that

E Z ; — i + 2 i (_1)m+1<(2 ) t2m71
7r n2+t2 wt 7w m ’
neZ m=

—_

where ((s) := >.°° L is the Riemann zeta function, initially defined by the

n=1n°
latter series, which is valid for all s € C with Re(s) > 1.
(d) Here we show that we may quickly evaluate the Riemann zeta function at all
even integers, as follows. We recall the definition of the Bernoulli numbers,

namely:

z z Bom o

=1-= .

e —1 2+22m!2
m>1

Prove that for all m > 1,

(_1)m+1 (27T)2m

(@m) = —5 @t D

Thus, for example, using the first 3 Bernoulli numbers, we have: ((2) = %2,

6

((4) = I3, and ((6) = .

3.8. The hyperbolic secant is defined by

2
Sech(wx) = m, for z € R.
(& e

Show that sech(mx) is its own Fourier inverse:

F(sech)(&) = sech(§),

for all £ € R (Hard! May require complex analysis)

3.21. For all f,g € S(R%), show that (f,g) = (f,§).



A GENTLE INTRODUCTION TO FOURIER ANALYSIS ON POLYTOPES - EXERCISES FROM CHAPTER 3

Lecture 3
o L'Y(RY), L2(RY).
LY(RY) = {f: R? - C: / \f(2)|dz < oo}.
Rd
(see Lebesgue’s Dominated Convergence Theorem)
L2(RY) := {f: RY 5 C: / \f(2)[dz < oo}.
R4

Examples:

1 - 1.
ﬂ@={?ﬁx29 m@:{vaﬂ0<xéh

0, otherwise. 0, otherwise.

We have f € L2(R), but f ¢ L'(R).

1 -1
de = | —do=—| =1.
/’f fde = / 2T T e

While g € L'(R), but g ¢ L2(R).

[ lote wm—/

If we replace R? by a bounded domain X, then LQ(X) C LY(X). If we assume
that a function f € L'(R%) is bounded, then f € L2(R%).

e Inverse Fourier transform.
If f € L'(RY) and fe LY(R%), then f is almost everywhere equal to a continuous

function and, assuming that f is this continuous function,

flz) = f@)%”@%

for all x € R?.
Another inversion theorem is: If f € L2(R%), then f(¢) is well-defined for almost
every £ € RY, f e L2 (RY) and, letting

f):= [ F©emne,

/\f (2)2d = 0.

e The Fourier transform of a compact body is infinitely smooth.

0 ; 3/—2'<5> /‘9—2«5) / ~2mile.g)
—_— = — [ 7Sy = —e TSy = (=271 zpe TS dg.
Oxy, f(E) 0 Jp P 08 ( ) P g

then
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(The dominated convergence theorem justifies the exchange between the derivative

and the integral. Since P is compact and ze2™4%<€) is continuous, it is in L'(R%).)

e Fourier series, intuition and examples.

Intuition: f: [0,1] — C, (+ assumptions)

flz) = Z fredmi@k) o — / f@)e 2@k gy

keZd [0»1]d

If f € L?([0,1]%), then

o

If f:]0,1] = C (d = 1) is piecewise smooth, then

f(z) — Z fk62m<x’k>’2dw =0.

kezd

S fedmiok — lim o f(z =€) +lime o flz+e)  fla7)+ fzh)

2 2
kezd

The sawtooth function f(z) =z — [z] -

DO

Using 4 terms

e The Schwartz space.

Functions f € R? — C infinitely differentiable and such that for all a,k € N‘éo,
|2% Dy, f ()| is bounded for all 2 € RY,

e Poisson summation

Intuition:

Z flx+n)= Z f(m)e?ritem),
meZzZ?

nezd
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26 REAL AND COMPLEX ANALYSIS

That (3) holds if « > 0 follows from Proposition 1.24(c). It is easy to
verify that (3) holds if « = —1, using relations like (—u)* = 4. The case
o =iis also easy: If f = u + iv, then

ofosfeasofen e

Combining these cases with (2), we obtain (3) for any complex a. /1]

1.33 Theorem Iff e I}(u), then

Lfdu‘SLlfldu.

PROOF Put z = [y fdu. Since z is a complex number, there is a complex
number a, with |a| = 1, such that az = | z|. Let u be the real part of af. Then
u<l|af|=|f|.Hence

=afod#=Lafdu=LudusL|fldu-

J fdu

X

The third of the above equalities holds since the preceding ones show that
| of du is real. 11/

We conclude this section with another important convergence theorem.

1.34 Lebesgue’s Dominated Convergence Theorem Suppose {f,} is a sequence
of complex measurable functions on X such that

f(x) = lim f,(x) (1)

e %]

exists for every x € X. If there is a function g € I}(y) such that

1) <gx) (=123 ..;x€eX), @)
then f € L'(u),
lim J \fi—f1du=0, 3)
n—o0 JX
and
lim | f, du = '[ fdp. 4
n-w JX X
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152 3 LIMITS AND CONTINUITY

(1) and (3.119,1), we have
I|f = hll, =sup{|P(z)| :2 € X } = |P(zo)| = B > |P(0)] = 1.

If h=0, then || f— Al|, = || f||, = 1. It follows that dist(f,4)=1,andso f& A"
If we require A4 to be closed under complex conjugation, then this difficulty
dissolves.

(3.121) Definition We say that a complex function algebra A is self-adjoint if
f € A whenever f € A.

(3.122) Stone-Weierstrass Theorem [compact-complex] Let X be a compact space
and let A be a self-adjoint subalgebra of C(X) that separates the points of X. Then the
uniform closure A~ of A satisfies either

(i) A" = C(X)
or

(ii) there is some p € X such that A~ = { f € C(X): f(p)=0}.

Proof LetA’={f€ A: f(X) CR). Then f € A implies

ch-(f+f)/2€A’. lmf=(f—f)/(2i)eA’.
Also, for x # y in X, we can choose f € A such that f(x) # f( y), hence

Re f(x)#Re f(y) or Im f(x)#Im f(y),

and so A" separates the points of X. Obviously A" is a subalgebra of
C"(X). Therefore, either (3.117.1) or (3.117.ii) obtains for A"~. Thus, given
f € C(X) and € > 0 [if (3.117.ii) obtains for A"~, we suppose f(p) = 0], we
can choose h, h, € A” such that

IRe f—hy|l, <€/2, |llmf= hy|l, <€/2.
Writing h = h, + ih,, we have h€ A and || f— h||, <e. []

(3.123) Example This example shows that compactness is important in (3.117)
and (3.122). Let X be any noncompact metric space and let (x,);-., be a sequence
of distinct points of X having no convergent subsequence. Define A4 =

{fEC(X): _lj.q.laf(x,) exists). Plainly, 4 is a subalgebra of C’(X). Leta+ b in X.

Choose N € N such that @ # x, for all n > N. Write E= (b) U {x,:n > N). The
function f defined on X by

dist(x, E)
Jx)= dist(x, (a)) + dist(x, E)
satisfies f(a)= 1, f(b)=0, f € C"(X), and .‘1,'29 f(x,)=0; hence, fE A and so A
separates the points of X. Since A contains 1, 4 vanishes nowhere on X. However,
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Trigonometric Series and Fourier Series
(8.1) Definitions A trigonometric series is any series of the form
o0
(i) 329 + > (a, cos(kt) + by sin(kt)),
k=1

where (a,);"., and (b,); ., are sequences of complex numbers and ¢ € R. The nth
partial sum of (i) is the function s, defined on R by

(ii) ()= 2+ 3 (@ cos(kn) + by sin(kn)).
Because of Euler's Formulas (5.5) we also have
(i) W)= "3 e
ke —n

where, if we write by =0,

C,‘=(ak—ib‘)/2, C_k=(ak+ibk)/2,

(i) a=c +C_, by=i(¢cg, —c_y) fork=0.

We also write s4(1) = ¢y = ay/2. For this reason, we also write (i) in the form

(i) i cpe™

k= — a0

and we call s, the nth partial sum of this series. To say that (i) or (i") converges in
some sense [pointwise, a.c., uniformly, etc.] means that the sequence (s,); .o of
functions converges in that sense. Any function of the form (ii) or (ii") is called a
trigonometric polynomial.

If a function f: R - C is to be the pointwise sum of a trigonometric series or
the pointwise limit of a sequence (s,),., of trigonometric polynomials, then it must
be 2w-periodic. That is, f(t + 2w) = f(1) for all r € R. This is because every trigono-
metric polynomial is 2w-periodic. Thus, we isolatc for study some classes of
2w-periodic functions.

(8.2) Definitions Let f:R— C be 2x-periodic. For a positive real number p, we
write f € L (T) if f is Lebesgue measurable and

% f_"| f(n)Pdt< o.
In this case, we define the L, (T)-norm of f to be the number

1, = e = (25 [ o ar) .
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If fis continuous on R (and 2w-periodic), we write f € C(T) and we define the
uniform norm of f to be the number

WAl =Iflleny = f:g'f(’)l' sup | f(1)].

-wSISw

We denote the set of all trigonometric polynomials by TP(T).

Obviously, TP(T)C C(T) C L,(T) for all p > 0. Moreover, TP(T) is dense
in these spaces in the following sense.

(83) Theorem (i) If f € C(T)and € > 0, then there exists some P € TP(T) such
that || f—- P|, < e

(W If1Sp<oo, fE L,(T), and € > 0, then there exists some P € TP(T)
such that | f — Pl, <e

Proof (i) Let f€ C(T) and € > 0 be given. Write X = {z €C:|z| = 1)
and define F on X by F(z) = f(r), where z = " [by the periodicity of f and
(5.11), the definition of F is independent of the choice of t € R such that
e = z; we could take r = Argz). It is easy to see that F is continuous at
every z € X. In fact, F(z) = f(Argz), so continuity follows from (5.15) for
z# — 1, but Fis also contmuous at — | because f(w) = f(—=). Now apply
(3.129) to obtain (c,)Y. _ 5 C C such that

F(z) - 2 2| < €

nw—-N

N
for all z € X. Then (i) follows by taking P(1)= > «¢,e™.*

nwm - N

() Let I=Sp<oo, fE L,(T), and € > 0 be given. Use (6.111) to
obtain g € C([ -~ =, x]) such that

(3 S r-sr) <5 U

Choose 0 < B < o such that |g(n)| =8 for t€[—m, 7). Write 8§
=2w(¢/(6B8)Y. We may suppose 8 < 2w. Now alter g on [# — §,7] to
obtain h € C([—m,v]) such that |h|= B, h=gon[—ax — 8], and h(m)
= h(— =). For instance, one can define & on [w — §,7] by the rule

h(ry=38""'[(m—n)g(z = 8) + (1 — 7+ 8)g(~m)].
Then

P
e he e =S (5 @

* A proof of (8.3.i) that does not depend on the Stone-Weierstrass Theorem (or on
(8.3.1)) is given in (8.30).
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Next, extend h to be 2w-periodic on R so that h € C(T). We can apply part
(i) to obtain P € TP(T) such that |k — P||, < ¢/3. Then

(25 10~ PI’) <£. (3)

Finally, (1), (2), (3), and Minkowski’s Inequality (6.107) complete the proof
of (i)). []

(84) Remark Restated, (8.3.i) says that if f € C(T), then there exists a sequence
(P,)r=i C TP(T) such that P, — f uniformly on R. However, it is not clear (or even
true in general) that these P,’s can be taken to be the partial sums s, of some fixed
trigonometric series. If such a series could be found, then it is unique, as the
following theorem shows.

(85) Theorem Consider any trigonometric series >, c.e™ with partial sums s,
L

as in (8.1.ii"). Suppose there exists some subsequence (s, )/~ and some function [ such

that either (i) f€ C(T) and || f— s ||,—>0 asj—)oo or (i) f€ Ly(T) for some

I1Sp<oand|f-s ||’-->0as;—>oo Then, for every integer n, we have

(ii) €= 5 f_‘" f(eye™" dt.

Proof If (i) obtains, then f € L (T) for all p and Nf = syllp S I1f = 5qlla
for all j, and so (ii) also obtains. Now suppose that (ii) does obtam Letn bc
any fixed integer. Choose j, € N such that n; > |n| for j > j,. The crucial,
but obvious, fact here is that, for integers k,

A (7 ke i g LT itk g
3 | eMemar 2wf_.’ dt=0or 1

according as k # n or k = n. Thus, for all j > j, we have

2l1r ,,(t)e " dt = 2 c,‘ f e 5 =" gt ¢,

It follows that
1 [~ - . 1 (* — int
¢, - ﬂf_'f(t)e ""'dtl-/l_l’m Iz—f [ (1) = sy(1)])e " at
S lim 5 = [ 10 = syl
S lim |1/~ 5,1, =0

where the second inequality follows from Hélder’s Inequality (6.106). []
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The problem of recognizing whether or not a trigonometric series is a
Fourier series by inspecting its coefficients is unsolved and seems to be extremely
difficult. Equivalently, the problem is to determine the range of the mapping f— f
of L\(T) into coy(Z). The preceding theorem provides a necessary condition. Theo-
rem (8.5) and the following two theorems furnish sufficient conditions.

(8.17) Riesz-Fischer Theorem Suppose that (c,);.. _ ., C C satisfies
0 P

> lelf=lim 3 |l < co.

n= - oo

prm nw= ~p

Then there exists a function [ € L,(T) such that f(n)= c, for every integer n.
Moreover, || f = s,(f)ll,—0 as p > .

P
Proof Write 5,(1) = > c,e™ for p=0. Then ¢ > p = 0 implies

nw=—p

Isy = 518 = 55 [ Isy(0) = s, ()P

=L '( ce“")( c_e“"’)dt
2’J‘" p<§$q " p(%ﬁq k
= 3 Saf 5 [ Ma= 3 |l

P:mg? - p<inl=q
P N

By hypothesis, the last sum has limit 0 as p, g — co. It follows from (6.110)
that there exists f € L,(T) such that || f— s,/[, >0 as p—> co. Now (8.5.ii)

P
shows that f(n) = ¢, for all n. Finally, (0= > f(n)e™ = s,(f,0. [
n=—p

The next theorem has very special hypotheses, but it is often useful for
producing Fourier series. Also, its proof is instructive.

(8.18) Theorem Let (a,);"., be a nonincreasing sequence of nonnegative real
numbers having limit 0. Suppose also that this sequence is convex: 2a, ., = a, + a .,
for all k =0. Then the function f defined on R by

(i) f(y="2+ 3 a,cos(ki)
k=1

is in L' (T) [f = 0] and the series (i) is the Fourier series of f. Moreover, this series
converges uniformly on [8,2w — 8) whenever 0 < 8 < w, and so f is continuous except
possibly at integral multiples of 2w.
Proof The last sentence, which does not require convexity, follows from
(7.38), and so (i) defines a function f which is 2#-periodic and measurable
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Exercise 3.1. Recalling that the L?-norm is defined by ||z := /2% + - + 22, and

the L'-norm is defined by ||z||; := |z1| + - - + |74], we have the following elementary norm
relations.

(a) Show that ||z|]s < ||z||1, for all 2 € RY.
(b) On the other hand, show that we have ||z]|; < Vd |||z, for all z € RY.

Solution:
d d d d d
)5 = "af <> ap+ > Jaelled =) lakl Y ol = |}
=1 k=1 k=1 k=1 =1
kel
= [lz]2 < |zl
x|l = ‘<(1, )y (e, |xd|)>‘ < \/EHxHQ (by Cauchy-Schwarz)

Exercise 3.3. We know that the functions u(t) := cost = L’f-ge;” and v(t) := sint =

elt_e—zt

>— are natural, partly because they parametrize the unit circle: u? +v% = 1. Here we

see that there are other similarly natural functions, parametrizing the hyperbola.

(a) Show that the following functions parametrize the hyperbola u? — v? = 1:

et 4 et et — ot
u t = —_———, v t = —
(=" ()= 5
(This is the reason that the function cosht := et'z—e_t is called the hyperbolic cosine,
et_e—t

and the function sinht := is called the hyperbolic sine)

2
Solution: For any t € R,

= =1
2 2 4

Now if 2,y € R are such that 22 — 32 = 1, we must show that exists ¢ such that
x = u(t) and y = v(t). Since u(t) > 0, this will only happen if x > 0. Note that v(t)

is bijective from R to R, hence invertible.

(b) The hyperbolic cotangent is defined as cotht := bt — i‘“e—j Using Bernoulli

sinht et—e—

numbers, show that ¢ coth ¢ has the Taylor series:

oo 2n

2
tcotht = Z WBQntQ".
n)!

n=0

Solution: Recall

tel‘t tk



12 FABRICIO C. MACHADO

Using z = 0 and summing the expression above with ¢ and —¢,

t —t = th & (—t)F
et —1 + et —1 ZBk(O)E + ZBk(O) k!
k=0 k=0
oo
267"
=2_Bu(0) G
|
= (2n)!
Replacing t by 2t,
2t —2t R 2(2t)%" =, 2% )
et —1 + e 2t —1 Z 20(0) (2n)! Z (2n)! n
n=0 n=0
t —t tet —tet eh+et
€2t_1+6—2t_1 - et_e—t+e—t_et :tet_e—t'

Exercise 3.5. We continue with the same function as in the previous exercise, f(z) :=
6727rt\:1:|.
(a) Show that f(&) = 7%57%5’ for all £ € R.
(b) Using Poisson summation, show that:

t 1 _ —27t|m)|
=D D sl DL
nez

meZ

Solution:

f(é‘):/Rf(t)e27riac£dx:/Re27rtx|€27rix§dx

0 oo
_ / e27‘raz(t—i§)dx + / e?ﬂ':{:(—t—i{)dx
—o0 0

e27ra:(t—i§) 0 627”6(_75_2.5) -
"I le=oe | 2R 8) o0
1 1
- 27T(t _ if) + 27T(t T if) (We must assume t > 0)
CttaEt—iE ot

2m(t2 + €2)  w(t2 4 £2)°



