
A GENTLE INTRODUCTION TO FOURIER ANALYSIS ON
POLYTOPES - EXERCISES FROM CHAPTER 3

FABRÍCIO C. MACHADO

Exercises from the book: Robins, S., “A friendly introduction to Fourier analysis on poly-

topes”, available at https://arxiv.org/abs/2104.06407. This solution sheet is available

at https://www.ime.usp.br/~fabcm/33coloquio-impa/.

3.1. Recalling that the L2-norm is defined by �x�2 :=
�

x21 + · · ·+ x2d, and the L1-

norm is defined by �x�1 := |x1|+ · · ·+ |xd|, we have the following elementary norm

relations.

(a) Show that �x�2 ≤ �x�1, for all x ∈ Rd.

(b) On the other hand, show that we have �x�1 ≤
√
d �x�2, for all x ∈ Rd.

3.3. We know that the functions u(t) := cos t = eit+e−it

2 and v(t) := sin t = eit−e−it

2i are

natural, partly because they parametrize the unit circle: u2 + v2 = 1. Here we see

that there are other similarly natural functions, parametrizing the hyperbola.

(a) Show that the following functions parametrize the hyperbola u2 − v2 = 1:

u(t) :=
et + e−t

2
, v(t) :=

et − e−t

2
.

(This is the reason that the function cosh t := et+e−t

2 is called the hyperbolic

cosine, and the function sinh t := et−e−t

2 is called the hyperbolic sine)

(b) The hyperbolic cotangent is defined as coth t := cosh t
sinh t =

et+e−t

et−e−t . Using Bernoulli

numbers, show that t coth t has the Taylor series:

t coth t =
∞�

n=0

22n

(2n)!
B2nt

2n.

3.5. We continue with the same function as in the previous exercise, f(x) := e−2πt|x|.

(a) Show that f̂(ξ) = t
π

1
ξ2+t2

, for all ξ ∈ R.

(b) Using Poisson summation, show that:

t

π

�

n∈Z

1

n2 + t2
=

�

m∈Z
e−2πt|m|.

3.6. Here we evaluate the Riemann zeta function at the positive even integers.
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(a) Show that
�

n∈Z
e−2πt|n| =

1 + e−2πt

1− e−2πt
:= coth(πt),

for all t > 0.

(b) Show that the cotangent function has the following (well-known) partial frac-

tion expansion:

π cot(πx) =
1

x
+ 2x

∞�

n=1

1

x2 − n2
,

valid for any x ∈ R− Z.

(c) Let 0 < t < 1. Show that

t

π

�

n∈Z

1

n2 + t2
=

1

πt
+

2

π

∞�

m=1

(−1)m+1ζ(2m) t2m−1,

where ζ(s) :=
�∞

n=1
1
ns is the Riemann zeta function, initially defined by the

latter series, which is valid for all s ∈ C with Re(s) > 1.

(d) Here we show that we may quickly evaluate the Riemann zeta function at all

even integers, as follows. We recall the definition of the Bernoulli numbers,

namely:
z

ez − 1
= 1− z

2
+

�

m≥1

B2m

2m!
z2m.

Prove that for all m ≥ 1,

ζ(2m) =
(−1)m+1

2

(2π)2m

(2m)!
B2m.

Thus, for example, using the first 3 Bernoulli numbers, we have: ζ(2) = π2

6 ,

ζ(4) = π4

90 , and ζ(6) = π6

945 .

3.8. The hyperbolic secant is defined by

sech(πx) :=
2

eπx + e−πx
, for x ∈ R.

Show that sech(πx) is its own Fourier inverse:

F(sech)(ξ) = sech(ξ),

for all ξ ∈ R.

3.21. For all f, g ∈ S(Rd), show that �f, g� = �f̂ , ĝ�.

(Hard! May require complex analysis)
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• L1(Rd), L2(Rd).

L1(Rd) :=
�
f : Rd → C :

�

Rd

|f(x)|dx < ∞
�
.

(see Lebesgue’s Dominated Convergence Theorem)

L2(Rd) :=
�
f : Rd → C :

�

Rd

|f(x)|2dx < ∞
�
.

Examples:

f(x) =

�
1
x , if x ≥ 1,

0, otherwise.
g(x) =

�
1√
x
, if 0 < x ≤ 1,

0, otherwise.

We have f ∈ L2(R), but f /∈ L1(R).
�

R
|f(x)|2dx =

� ∞

1

1

x2
dx =

−1

x

���
∞

x=1
= 1.

While g ∈ L1(R), but g /∈ L2(R).
�

R
|g(x)|dx =

� 1

0

1√
x
dx = 2

√
x
���
1

x=0
= 2.

If we replace Rd by a bounded domain X, then L2(X) ⊂ L1(X). If we assume
that a function f ∈ L1(Rd) is bounded, then f ∈ L2(Rd).

• Inverse Fourier transform.

If f ∈ L1(Rd) and f̂ ∈ L1(Rd), then f is almost everywhere equal to a continuous

function and, assuming that f is this continuous function,

f(x) =

�

Rd

f̂(ξ)e2πi�x,ξ�dξ

for all x ∈ Rd.

Another inversion theorem is: If f ∈ L2(Rd), then f̂(ξ) is well-defined for almost

every ξ ∈ Rd, f̂ ∈ L2(Rd) and, letting

f̃(x) :=

�

Rd

f̂(ξ)e2πi�x,ξ�dξ,

then �

Rd

|f(x)− f̃(x)|2dx = 0.

• The Fourier transform of a compact body is infinitely smooth.

∂

∂xk
f̂(ξ) =

∂

∂ξk

�

P
e−2πi�x,ξ�dx =

�

P

∂

∂ξk
e−2πi�x,ξ�dx = (−2πi)

�

P
xke

−2πi�x,ξ�dx.
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(The dominated convergence theorem justifies the exchange between the derivative

and the integral. Since P is compact and xke
−2πi�x,ξ� is continuous, it is in L1(Rd).)

• Fourier series, intuition and examples.

Intuition: f : [0, 1]d → C, (+ assumptions)

f(x) =
�

k∈Zd

fke
2πi�x,k�, fk =

�

[0,1]d
f(x)e−2πi�x,k�dx.

If f ∈ L2([0, 1]d), then
�

[0,1]d

���f(x)−
�

k∈Zd

fke
2πi�x,k�

���
2
dx = 0.

If f : [0, 1] → C (d = 1) is piecewise smooth, then

�

k∈Zd

fke
2πixk =

lim�→0+ f(x− �) + lim�→0+ f(x+ �)

2
=

f(x−) + f(x+)

2

• The Schwartz space.

Functions f ∈ Rd → C infinitely differentiable and such that for all a, k ∈ Nd
≥0,

|xaDkf(x)| is bounded for all x ∈ Rd.

• Poisson summation

Intuition:
�

n∈Zd

f(x+ n) =
�

m∈Zd

f̂(m)e2πi�x,m�.
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That (3) holds if C( > 0 follows from Proposition 1 .24(c). It is easy to 
verify that (3) holds if C( = - 1 , using relations like (- u) + = u - .  The case C( = i is also easy : Iff= u + iv, then 

fan = f (iu - v) = f ( - v) + i f u = - f v + i f u = {f u + i f v) 
= i f f 

Combining these cases with (2), we obtain (3) for any complex C(. /Ill 

1 .33 Theorem Iff E L1(Jl), then 
fxt dJ.L < l l / 1 dJ.L. 

PROOF Put z = Jx f dJl. Since z is a complex number, there is a complex 
number C(, with I C( I = 1 ,  such that C(Z = I z 1 . Let u be the real part of C(f Then u < I C(f I = I f I . Hence 

If dJl = oc If dJl = Locf dJ.L = l u dJl < l 1 f I dJl. 
The third of the above equalities holds since the preceding ones show that J C(f dJl is real. /Ill 

We conclude this section with another important convergence theorem. 

1 .34 Lebesgue's Dominated Convergence Theorem Suppose {fn} is a sequence of complex measurable functions on X such that 
f(x) = lim fn(x) 

exists for every x E X. If there is a function g E L1(Jl) such that 

and 

I fn(x) I < g(x) (n = 1 ,  2, 3, . . .  ; x E X), 

lim I f. -f l d11 = o, n -00 
lim f. dJ.L = f dJl. 

(1 ) 

(2) 

(3) 

(4) 
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From: Rudin, W., “Real and complex analysis”, McGraw-Hill
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From: Stromberg, K., “An Introduction to Classical Real Analysis”, American Mathe-

matical Society
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From: Stromberg, K., “An Introduction to Classical Real Analysis”, American Mathe-
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Exercise 3.1. Recalling that the L2-norm is defined by �x�2 :=
�

x21 + · · ·+ x2d, and

the L1-norm is defined by �x�1 := |x1|+ · · ·+ |xd|, we have the following elementary norm

relations.

(a) Show that �x�2 ≤ �x�1, for all x ∈ Rd.

(b) On the other hand, show that we have �x�1 ≤
√
d �x�2, for all x ∈ Rd.

Solution:

�x�22 =
d�

k=1

x2k ≤
d�

k=1

x2k +
d�

k,l=1
k �=l

|xk||xl| =
d�

k=1

|xk|
d�

l=1

|xl| = �x�21

=⇒ �x�2 ≤ �x�1

�x�1 =
���(1, . . . , 1), (|x1|, . . . , |xd|)

��� ≤
√
d�x�2 (by Cauchy-Schwarz)

Exercise 3.3. We know that the functions u(t) := cos t = eit+e−it

2 and v(t) := sin t =

eit−e−it

2i are natural, partly because they parametrize the unit circle: u2 + v2 = 1. Here we

see that there are other similarly natural functions, parametrizing the hyperbola.

(a) Show that the following functions parametrize the hyperbola u2 − v2 = 1:

u(t) :=
et + e−t

2
, v(t) :=

et − e−t

2
.

(This is the reason that the function cosh t := et+e−t

2 is called the hyperbolic cosine,

and the function sinh t := et−e−t

2 is called the hyperbolic sine)

Solution: For any t ∈ R,

u(t)2 − v(t)2 =
�et + e−t

2

�2
−

�et − e−t

2

�2
=

e2t + 2 + e−2t − e2t + 2− e−2t

4
= 1.

Now if x, y ∈ R are such that x2 − y2 = 1, we must show that exists t such that

x = u(t) and y = v(t). Since u(t) ≥ 0, this will only happen if x ≥ 0. Note that v(t)

is bijective from R to R, hence invertible.

(b) The hyperbolic cotangent is defined as coth t := cosh t
sinh t = et+e−t

et−e−t . Using Bernoulli

numbers, show that t coth t has the Taylor series:

t coth t =

∞�

n=0

22n

(2n)!
B2nt

2n.

Solution: Recall
text

et − 1
=

∞�

k=0

Bk(x)
tk

k!
.
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Using x = 0 and summing the expression above with t and −t,

t

et − 1
+

−t

e−t − 1
=

∞�

k=0

Bk(0)
tk

k!
+

∞�

k=0

Bk(0)
(−t)k

k!

=

∞�

n=0

B2n(0)
2t2n

(2n)!

Replacing t by 2t,

2t

e2t − 1
+

−2t

e−2t − 1
=

∞�

n=0

B2n(0)
2(2t)2n

(2n)!
= 2

∞�

n=0

22n

(2n)!
B2nt

2n

t

e2t − 1
+

−t

e−2t − 1
=

te−t

et − e−t
+

−tet

e−t − et
= t

et + e−t

et − e−t
.

Exercise 3.5. We continue with the same function as in the previous exercise, f(x) :=

e−2πt|x|.

(a) Show that f̂(ξ) = t
π

1
ξ2+t2

, for all ξ ∈ R.

(b) Using Poisson summation, show that:

t

π

�

n∈Z

1

n2 + t2
=

�

m∈Z
e−2πt|m|.

Solution:

f̂(ξ) =

�

R
f(t)e−2πixξdx =

�

R
e−2πt|x|e−2πixξdx

=

� 0

−∞
e2πx(t−iξ)dx+

� ∞

0
e2πx(−t−iξ)dx

=
e2πx(t−iξ)

2π(t− iξ)

���
0

x=−∞
+

e2πx(−t−iξ)

2π(−t− iξ)

���
∞

x=0

=
1

2π(t− iξ)
+

1

2π(t+ iξ)
(we must assume t > 0)

=
t+ iξ + t− iξ

2π(t2 + ξ2)
=

t

π(t2 + ξ2)
.


