A GENTLE INTRODUCTION TO FOURIER ANALYSIS ON
POLYTOPES - EXERCISES FROM CHAPTER 2

FABRICIO C. MACHADO

Exercises from the book: Robins, S., “A friendly introduction to Fourier analysis on poly-
topes”, available at https://arxiv.org/abs/2104.06407. This solution sheet is available

at https://www.ime.usp.br/ " fabcm/33coloquio-impa/.

2.2. Show that the Fourier transform of the unit cube C := [0,1]¢ c R? is:
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valid for all ¢ € RY, except for the union of hyperplanes defined by
H:={zecR'|&=00r& =0, ... or &g = 0}.

2.4. To gain some facility with generating functions, show by a brute-force computation
with Taylor series that the coefficients on the right-hand-side of equation (2.13)%,
which are called B,,(x) by definition, must in fact be polynomials in x.

In fact, your direct computations will show that for all n > 1, we have

By(z) = zn: (Z) By, 2",

k=0

where Bj is the j’th Bernoulli number.
2.6. Show that for all n > 1, we have

Bp(z 4 1) — By(x) = na™ 1.

2.8. Prove that:
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3 gt = Baln) — Ba
k=1 d
for all integers d > 1 and n > 2.
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2.12.
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Show that the periodic Bernoulli polynomials P,(z) := B,({z}), for all n > 2,

have the following Fourier series:

n! e2m‘kx
P, = — - , 1
)=~y 2 (1)

valid for all x € R. For n > 2, these series are absolutely convergent. We note that

from the definition above, B, (z) = P,(z) when z € (0,1).

Here we give a different method for defining the Bernoulli polynomials, based on
the following three properties that they enjoy:

(a) Bo(z) = 1.

(b) For all n > 1, ad;Bn(J?) =nBp_1(x).

(c) For all n > 1, we have fol B, (z)dz = 0.

Show that the latter three properties imply the original defining property of the
Bernoulli polynomials (2.13).
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Lecture 1

e Fourier transform of an interval
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If I C Ris an interval and f € I — C, then f(z) = Re(f)(z) + iIm(f)(x),
with Re(f), Im(f): I — R and

/f \dz —/Re(f)(:r)dx—i—i/IIm(f)(x)d:c.

f(z) = e 2% = cos(—2méx) + i sin(—2méx)

f: (C — C’ f(z) — 6*27‘(‘@’627 F(Z) _ e*?ﬂ'igz

(—2mi) ’ F'(2) = f(2) for all z € C.

Euler formula and series definitions for the exponential, sine, and cossine

The sawtooth function and its Fourier series

1 1 e?ﬂinz
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neZ\{0}

Fourier transform as an extension to the volume of an object

1p(0) = vol(P).
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e Tiling of nice retangles
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From: Remmert, R., “Theory of Complex Functions”, Springer-Verlag, New York
§0. INTEGRATION OVER REAL INTERVALS 169

complez-valued continuous functions, to the extent necessary for the needs
of function theory. I = [a,b], with @ < b will designate a compact interval
in R.

1. The integral concept. Rules of calculation and the standard
estimate. For every continuous function f : I — C the definition

[ f(t)dt := / "Rt +i / ‘@nwdtec

makes sense for any r, s € I because Rf and 3 f are real-valued continuous,
consequently integrable, functions. We have the following simple

Rules of calculation. For all f,g€C(I), allr,s€ I andallceC
W [+owa=[ o+ [ g, [ "ef(t)dt =c f F(t)dt,

@ [ 10w+ [ rou= [ 108 jorewnyzel,

(3) fhat=— [ f(t)dt  (reversal rule)

@ R / " f(tydt = / "Rf(d, @ / " f(t)dt = / "3t
The mapping C(I) — C, f ~ [ f(t)dt is thus in particular a comples-
linear form on the C-vector space C(I). We call [* f(t)dt the integral of f

along the (real) interval [a,b]. For real-valued functions f,g € C(I) there
isa

Monotonicity rule: [] f(t)dt < [} g(t)dt in case f(t) < g(t) for alit € I.

For complex-valued functions the appropriate analog of this rule is the

Standard estimate:

[2 (e < [2is@)de  for all fecC(D).

Proof. For real-valued f this follows at once from the monotonicity rule
and the inequalities —|f(t)] < f(t) < |f(t)]. The general case is reduced
to this one as follows: There is a complex number ¢ of modulus 1 such




A GENTLE INTRODUCTION TO FOURIER ANALYSIS ON POLYTOPES - EXERCISES FROM CHAPTER 8

From: Remmert, R., “Theory of Complex Functions”, Springer-Verlag, New York
184 6. COMPLEX INTEGRAL CALCULUS
Ezercise 2. For any polynomial p(z), any c € C, r € R*
/ p()d¢ = 2mir?p(c).
880-(6)
Ezercise S. Let v : [a,b] — C be a continuously differentiable path with

¥'(t) # 0 for all t € [a,b]. Then there is a path 5 : [a,5] — C which is
equivalent to vy and satisfies |7/(t)| = 1 for all ¢ € [a,5].

Ezercise 4 (Sharpened standard estimate). Let v be a path in C and
{l:nc(l‘vl)- If there exists ¢ € || such that |f(c)| < |f|y := maxcepy |£(C)],

< £l - L)

Ezercise 5. Let t,(z) := 1+ z + $2? + .-+ + Jz" be the nth Taylor
polynomial approximant to e*. Show that |e‘-¢,,(z)| < |z|™*! for all
n € Nand all z € C with Rz <0.

§3 Path independence of integrals.
Primitives.

The path integral [. fd( is, for fixed f € C(D), a function of the path v in
D. Two points z;, 27 € D can be joined, if at all, by a multitude of paths v
in D. We saw in 1.3 that, even in the case of a holomorphic function f in D,
the integral f fd¢ in general depends not just on the initial point z; and
the terminal poantp;butonthewholeooumeofthepuh-y Here we will
discuss conditions which guarantee the path independence of the integral
[, fd¢, in the sense that its value is determined solely by the initial and
terminal points of the path.

1. Primitives. We want to generalize the concept of primitive (function)
introduced in 0.2. Fundamental here is the following

Theorem. If f is continuous in D, the following assertions about a func-
tion F : D — C are equsvalent:
i) F is holomorphic in D and satisfies F' = f.
ii) For every pair w,z € D and every path v in D with initial point w
and terminal point z

/ fd¢ = F(z) - F(w).
i
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Lecture 2

e Polytopes (facet description, simplex)
P = {({L‘l,...,.%'d) eRd:aj1x1+-~-+ajdxd < bj,j S J},
with aj;, bj € R, |J| < 0o and we assume P is bounded.

e The sinc function

a~tx<=b
K

1

iy © = [ emtar = 2 e

1 s
2
e Fourier transform of a parallelepiped

e The stretch lemma

—

1 A _
(foM)(§) = mf(M Tf)-

To M _ —2mi(z,€) 7. _ 1 —2mi(M—1y,£)
(f M)(é.) Rd f(M.%')@ dx |det(M)] Rd f(y)e Ysidx
1
~|det(M)] Jga

where we use the change of variables y = Mx.

fly)e 2w M8 gy

e The translation lemma (f o T,(x) := f(z +v)):

—

(f o To)(€) = T4V f(€).
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Exercise 2.2. Show that the Fourier transform of the unit cube C := [0,1]% c R? is:

valid for all ¢ € R?, except for the union of hyperplanes defined by
H:={zcR¥| & =00r& =0, ... or & = 0}.

Solution:
~ 1 . 1
1C 5 :/ 72771 (z,&) dr = / 727rw:k§kdxk 6*27”3%&
© [0,1]¢ H H ( 2mi&y) 2h=0
H —27rz£k -1 1 d 1— e—zﬂ’ifk
P (—2mi€&)  (2mi)d Pt &k '

Exercise 2.4. To gain some facility with generating functions, show by a brute-force
computation with Taylor series that the coefficients on the right-hand-side of equation

text
1= ZBk;(ﬂU)E, (2.13)
k

=0

which are called By, (z) by definition, must in fact be polynomials in z.

Solution:
te® = (ef — 1) ZBk(x)g,
k=0
Z—lt’”l: Z—'ZBk(:U)E, next we use n =k+m —1,
n=0 " m=1"" k=0 '
o0 o0 n
T By (z)
Dt =22 £
| I(n — [
il == Elln—k+1)
Bu(z) , ”z‘:l Bi(x)  a"
n! — El(n—k+1)!  nl

(This is not the formula asked, but also shows that By, (z) is a polynomial of degree n in z.)

Exercise 2.6. Show that for all n > 1, we have

Bp(z 4 1) — By(x) = na™ L.
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Answer: Using Exercise 2.4,

n—1 n—1
1 1 1 1
Bu(z 4+ 1) = Bu(z) = (z+ 1) — —— <“+ >Bk(x+1) n (“* >B
‘ n+1 k

nA41 = k =0
n—1
a1yt 3 (") Bl D - B ()
1 TL+1 k—1
1 k
(z+1) n+1;k“n+1— k)!

In (*), we use that By(z) = 1, recognize that the term k = 0 is 0 and apply induction for

the other terms. We also use

Exercise 2.9. Show that the periodic Bernoulli polynomials P, (z) := B, ({z}), for all

n > 2, have the following Fourier series:

n! e2m‘km
2mg)™ kn
(2mi)™ =

(2)

P,(z) =—

valid for all x € R. For n > 2, these series are absolutely convergent. We note that from
the definition above, By, (x) = P,(x) when z € (0, 1).
Answer: We use the orthogonality relations of the exponential functions and the fact
that P,(z) has a Fourier series for z € (0,1):
Zf o2mike / Ye~2mikT gy — £,
keZ
We want to show that fo =0 and for all k € Z\ {0}, n € Z, n > 2:

—n!

Je = G

If k = 0, we show that fo x)dx = 0 for all n > 1 using the generating function (2.13):
1 xt
te
/0 P 1 Z / dfc—
—1
¢ Z / da:—
tn
Z / dw—
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Ifk#0and n=1,

1 ) 1 1 )
/ By (x)e—szkwdx _ / <$ _ _) 6_27”kxd$
0 0 2

— / we—2mkace—mk:dx

1
2

(L

—2mikz | 1 —mik  ps
__—mik zre 2 e 2 _omika
=e —_— + — e dzx
(—2mik) la=—1 = 2mik J_ 1
2
ik eﬂ"ik 1

(—2mik) 2wk’
Note that using Exercise 2.6 with z = 0, for n > 2 we have B,,(1) = B,(0).
We need the following identity:

o , tk' thxt 0 tk+1 oo tk
ZBk(x)E = ol 1 — ZB’“(@T — ZkBk_l(x)E
k=1 k=0 k=1

B,lg(m) = kBk,1($)
Next we integrate by parts and use (1) (assume k # 0 and n > 2):

1 i e 1 1 , e 2mikz
/0 Brlw)e™™ e = Ba(a) xo+/0 Bn(@) = de

(—2mik)
n 1 4
=3 k/ B _1(z)e 2"y using induction,
i

—2mikx

0 n
n —(n-=1)
 2mik (2mi)n1gn—1

—n!

(2mi)nkn



