
A GENTLE INTRODUCTION TO FOURIER ANALYSIS ON
POLYTOPES - EXERCISES FROM CHAPTER 2

FABRÍCIO C. MACHADO

Exercises from the book: Robins, S., “A friendly introduction to Fourier analysis on poly-

topes”, available at https://arxiv.org/abs/2104.06407. This solution sheet is available

at https://www.ime.usp.br/~fabcm/33coloquio-impa/.

2.2. Show that the Fourier transform of the unit cube C := [0, 1]d ⊂ Rd is:

1̂C(ξ) =
1

(2πi)d

d�

k=1

1− e−2πiξk

ξk
,

valid for all ξ ∈ Rd, except for the union of hyperplanes defined by

H := {x ∈ Rd | ξ1 = 0 or ξ2 = 0, . . . or ξd = 0}.

2.4. To gain some facility with generating functions, show by a brute-force computation

with Taylor series that the coefficients on the right-hand-side of equation (2.13)1,

which are called Bn(x) by definition, must in fact be polynomials in x.

In fact, your direct computations will show that for all n ≥ 1, we have

Bn(x) =

n�

k=0

�
n

k

�
Bn−k xk,

where Bj is the j’th Bernoulli number.

2.6. Show that for all n ≥ 1, we have

Bn(x+ 1)−Bn(x) = nxn−1.

2.8. Prove that:
n−1�

k=1

kd−1 =
Bd(n)−Bd

d
,

for all integers d ≥ 1 and n ≥ 2.
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text

et − 1
=

∞�

k=0

Bk(x)
tk

k!
. (2.13)
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2.9. Show that the periodic Bernoulli polynomials Pn(x) := Bn({x}), for all n ≥ 2,

have the following Fourier series:

Pn(x) = − n!

(2πi)n

�

k �=0

e2πikx

kn
, (1)

valid for all x ∈ R. For n ≥ 2, these series are absolutely convergent. We note that

from the definition above, Bn(x) = Pn(x) when x ∈ (0, 1).

2.12. Here we give a different method for defining the Bernoulli polynomials, based on

the following three properties that they enjoy:

(a) B0(x) = 1.

(b) For all n ≥ 1, d
dxBn(x) = nBn−1(x).

(c) For all n ≥ 1, we have
� 1
0 Bn(x)dx = 0.

Show that the latter three properties imply the original defining property of the

Bernoulli polynomials (2.13).
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Lecture 1

• Fourier transform of an interval

1̂[a,b](ξ) =

� b

a
e−2πiξxdx =

e−2πiξb − e−2πiξa

−2πiξ
.

If I ⊂ R is an interval and f ∈ I → C, then f(x) = Re(f)(x) + iIm(f)(x),

with Re(f), Im(f) : I → R and
�

I
f(x)dx :=

�

I
Re(f)(x)dx+ i

�

I
Im(f)(x)dx.

f(x) = e−2πiξx = cos(−2πξx) + i sin(−2πξx)

f : C → C, f(z) = e−2πiξz, F (z) = e−2πiξz

(−2πiξ) , F
�(z) = f(z) for all z ∈ C.

• Euler formula and series definitions for the exponential, sine, and cossine

• The sawtooth function and its Fourier series

x− [x]− 1

2
= − 1

2πi

�

n∈Z\{0}

e2πinx

n
.

• Fourier transform as an extension to the volume of an object

1̂P (0) = vol(P ).

lim
t→0

e−2πitb − e−2πita

−2πit
= lim

t→0

(−2πi)be−2πitb − (−2πi)ae−2πita

−2πi
= b− a.

• Tiling of nice retangles
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From: Remmert, R., “Theory of Complex Functions”, Springer-Verlag, New York
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From: Remmert, R., “Theory of Complex Functions”, Springer-Verlag, New York
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Lecture 2

• Polytopes (facet description, simplex)

P =
�
(x1, . . . , xd) ∈ Rd : aj1x1 + · · ·+ ajdxd ≤ bj , j ∈ J

�
,

with aji, bj ∈ R, |J | < ∞ and we assume P is bounded.

• The sinc function

1̂[− 1
2
, 1
2
](ξ) =

� 1
2

− 1
2

e−2πixξdx =
sin(πξ)

πξ
=: sinc(ξ)

• Fourier transform of a parallelepiped

• The stretch lemma

(�f ◦M)(ξ) =
1

| det(M)| f̂
�
M−Tξ

�
.

(�f ◦M)(ξ) =

�

Rd

f(Mx)e−2πi�x,ξ�dx =
1

| det(M)|

�

Rd

f(y)e−2πi�M−1y,ξ�dx

=
1

| det(M)|

�

Rd

f(y)e−2πi�y,M−Tξ�dx,

where we use the change of variables y = Mx.

• The translation lemma (f ◦ Tv(x) := f(x+ v)):

(�f ◦ Tv)(ξ) = e2πiξvf̂(ξ).

a^t x <= b
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Exercise 2.2. Show that the Fourier transform of the unit cube C := [0, 1]d ⊂ Rd is:

1̂C(ξ) =
1

(2πi)d

d�

k=1

1− e−2πiξk

ξk
,

valid for all ξ ∈ Rd, except for the union of hyperplanes defined by

H := {x ∈ Rd | ξ1 = 0 or ξ2 = 0, . . . or ξd = 0}.
Solution:

1̂C(ξ) =

�

[0,1]d
e−2πi�x,ξ�dx =

d�

k=1

� 1

0
e−2πixkξkdxk =

d�

k=1

1

(−2πiξk)
e−2πixkξk

���
1

xk=0

=
d�

k=1

e−2πiξk − 1

(−2πiξk)
=

1

(2πi)d

d�

k=1

1− e−2πiξk

ξk
.

Exercise 2.4. To gain some facility with generating functions, show by a brute-force

computation with Taylor series that the coefficients on the right-hand-side of equation

text

et − 1
=

∞�

k=0

Bk(x)
tk

k!
, (2.13)

which are called Bn(x) by definition, must in fact be polynomials in x.

Solution:

text = (et − 1)

∞�

k=0

Bk(x)
tk

k!
,

∞�

n=0

xn

n!
tn+1 =

∞�

m=1

tm

m!

∞�

k=0

Bk(x)
tk

k!
, next we use n = k +m− 1,

∞�

n=0

xn

n!
tn =

∞�

n=0

n�

k=0

Bk(x)

k!(n− k + 1)!
tn,

Bn(x)

n!
+

n−1�

k=0

Bk(x)

k!(n− k + 1)!
=

xn

n!

Bn(x) = xn − 1

n+ 1

n−1�

k=0

�
n+ 1

k

�
Bk(x).

(This is not the formula asked, but also shows that Bn(x) is a polynomial of degree n in x.)

Exercise 2.6. Show that for all n ≥ 1, we have

Bn(x+ 1)−Bn(x) = nxn−1.
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Answer: Using Exercise 2.4,

Bn(x+ 1)−Bn(x) = (x+ 1)n − 1

n+ 1

n−1�

k=0

�
n+ 1

k

�
Bk(x+ 1)− xn +

1

n+ 1

n−1�

k=0

�
n+ 1

k

�
Bk(x)

= (x+ 1)n − xn − 1

n+ 1

n−1�

k=0

�
n+ 1

k

�
(Bk(x+ 1)−Bk(x)) (∗)

= (x+ 1)n − xn − 1

n+ 1

n−1�

k=1

(n+ 1)!

k!(n+ 1− k)!
kxk−1

= (x+ 1)n − xn −
n−2�

k=0

n!

k!(n− k)!
xk

= nxn−1

In (∗), we use that B0(x) = 1, recognize that the term k = 0 is 0 and apply induction for

the other terms. We also use

(x+ 1)n =
n�

k=0

�
n

k

�
xk.

Exercise 2.9. Show that the periodic Bernoulli polynomials Pn(x) := Bn({x}), for all

n ≥ 2, have the following Fourier series:

Pn(x) = − n!

(2πi)n

�

k �=0

e2πikx

kn
, (2)

valid for all x ∈ R. For n ≥ 2, these series are absolutely convergent. We note that from

the definition above, Bn(x) = Pn(x) when x ∈ (0, 1).

Answer: We use the orthogonality relations of the exponential functions and the fact

that Pn(x) has a Fourier series for x ∈ (0, 1):

Pn(x) =
�

k∈Z
fke

2πikx =⇒
� 1

0
Pn(x)e

−2πikxdx = fk.

We want to show that f0 = 0 and for all k ∈ Z \ {0}, n ∈ Z, n ≥ 2:

fk =
−n!

(2πi)nkn
.

If k = 0, we show that
� 1
0 Bn(x)dx = 0 for all n ≥ 1 using the generating function (2.13):

� 1

0

text

et − 1
dx =

∞�

n=0

� 1

0
Bn(x)dx

tn

n!

et − 1

et − 1
=

∞�

n=0

� 1

0
Bn(x)dx

tn

n!

1 =

∞�

n=0

� 1

0
Bn(x)dx

tn

n!
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If k �= 0 and n = 1,
� 1

0
B1(x)e

−2πikxdx =

� 1

0

�
x− 1

2

�
e−2πikxdx

=

� 1
2

− 1
2

xe−2πikxe−πikdx

= e−πik xe
−2πikx

(−2πik)

���
1
2

x=− 1
2

+
e−πik

2πik

� 1
2

− 1
2

e−2πikxdx

= e−πik eπik

(−2πik)
= − 1

2πik
.

Note that using Exercise 2.6 with x = 0, for n ≥ 2 we have Bn(1) = Bn(0).

We need the following identity:
∞�

k=1

B�
k(x)

tk

k!
=

t2ext

et − 1
=

∞�

k=0

Bk(x)
tk+1

k!
=

∞�

k=1

kBk−1(x)
tk

k!

B�
k(x) = kBk−1(x) (1)

Next we integrate by parts and use (1) (assume k �= 0 and n ≥ 2):
� 1

0
Bn(x)e

−2πikxdx = Bn(x)
e−2πikx

(−2πik)

���
1

x=0
+

� 1

0
B�

n(x)
e−2πikx

2πik
dx

=
n

2πik

� 1

0
Bn−1(x)e

−2πikxdx using induction,

=
n

2πik

−(n− 1)!

(2πi)n−1kn−1

=
−n!

(2πi)nkn
.


