A GENTLE INTRODUCTION TO FOURIER ANALYSIS ON POLYTOPES - EXERCISES FROM CHAPTER 1

FABRÍCIO C. MACHADO

Exercises from the book: Robins, S., "A friendly introduction to Fourier analysis on polytopes", available at https://arxiv.org/abs/2104.06407. This solution sheet is available at https://www.ime.usp.br/~fabcm/33coloquio-impa/.
1.1. Show that if $x \in \mathbb{C}$, then $e^{2 \pi i x}=1$ if and only if $x \in \mathbb{Z}$.
1.3. Here we prove the orthogonality relations for the exponential functions defined by $e_{n}(x):=e^{2 \pi i n x}$ for each integer n. Recall that the complex conjugate of any complex number $x+i y$ is defined by $\overline{x+i y}:=x-i y$, so that $\overline{e^{i \theta}}=e^{-i \theta}$ for real θ. Prove that for all integers a, b :

$$
\int_{0}^{1} e_{a}(x) \overline{e_{b}(x)} d x= \begin{cases}1 & \text { if } a=b \\ 0 & \text { if not. }\end{cases}
$$

1.5. We recall that the N^{\prime} th roots of unity are by definition the set of N complex solutions to $z^{N}=1$, and are given by the set $\left\{e^{2 \pi i k / N}: k=0,1,2, \ldots, N-1\right\}$ of points on the unit circle. Prove that the sum of all of the N 'th roots of unity vanishes. Precisely, fix any positive integer $N \geq 2$, and show that

$$
\sum_{k=0}^{N-1} e^{\frac{2 \pi i k}{N}}=0
$$

1.6. Prove that, given positive integers M, N, we have

$$
\frac{1}{N} \sum_{k=0}^{N-1} e^{\frac{2 \pi i k M}{N}}= \begin{cases}1 & \text { if } N \mid M \\ 0 & \text { if not. }\end{cases}
$$

Notes. This result is sometimes referred to as "the harmonic detector" for detecting when a rational number $\frac{M}{N}$ is an integer; that is, it assigns a value of 1 to the sum if $\frac{M}{N} \in \mathbb{Z}$, and it assigns a value of 0 to the sum if $\frac{M}{N} \notin \mathbb{Z}$.
1.8. Show that for any positive integer n, we have

$$
n=\prod_{k=1}^{n-1}\left(1-\zeta^{k}\right)
$$

where $\zeta:=e^{2 \pi i / n}$.
1.13. Thinking of the function $\sin (\pi z)$ as a function of a complex variable $z \in \mathbb{C}$, show that its zeros are precisely the set of integers \mathbb{Z}.

In this course we assume that we know

- Trigonometry,
- Calculus,
- Arithmetic with complex numbers, but not much from complex analysis.

The Fourier transform of a function $f: \mathbb{R}^{d} \rightarrow \mathbb{C}$ is the function $\hat{f}: \mathbb{R}^{d} \rightarrow \mathbb{C}$ defined as

$$
\hat{f}(\xi)=\int_{\mathbb{R}^{d}} f(x) e^{-2 \pi i\langle x, \xi\rangle} d x
$$

If $P \subset \mathbb{R}^{d}$ is bounded and 1_{P} is the indicator funtion of P,

$$
1_{P}(x)= \begin{cases}1, & \text { if } x \in P \\ 0, & \text { otherwise }\end{cases}
$$

we are interested in the function $\hat{1}_{P}$ and in how we can retrieve properties of P from $\hat{1}_{P}$.

Exercise 1.1. Show that if $x \in \mathbb{C}$, then $e^{2 \pi i x}=1$ if and only if $x \in \mathbb{Z}$.
Solution: First, lets assume that $x \in \mathbb{R}$.

$$
e^{2 \pi i x}=\cos (2 \pi x)+i \sin (2 \pi x)
$$

$e^{2 \pi i x}=1 \Longleftrightarrow \cos (2 \pi x)=1$ and $\sin (2 \pi x)=0$.
$\cos (2 \pi x)=1 \Longleftrightarrow x \in \mathbb{Z}$, while $\sin (2 \pi x)=0 \Longleftrightarrow 2 x \in \mathbb{Z}$.
$\therefore e^{2 \pi i x}=1 \Longleftrightarrow x \in \mathbb{Z}$.

Now we consider $z \in \mathbb{C}, z=x+i y, x, y \in \mathbb{R}$.

$$
\begin{array}{r}
e^{2 \pi i z}=e^{2 \pi i(x+i y)}=e^{2 \pi i x-2 \pi y}=e^{-2 \pi y} e^{2 \pi i x} \\
\left|e^{2 \pi i z}\right|=e^{-2 \pi y}, e^{2 \pi i z}=1 \Longrightarrow e^{-2 \pi y}=1 \Longrightarrow y=0 \Longrightarrow z \in \mathbb{R}
\end{array}
$$

Exercise 1.3. Prove that for all integers a, b :

$$
\int_{0}^{1} e_{a}(x) \overline{e_{b}(x)} d x= \begin{cases}1 & \text { if } a=b \\ 0 & \text { if not }\end{cases}
$$

Solution:

$$
\begin{aligned}
\int_{0}^{1} e_{a}(x) \overline{e_{b}(x)} d x & =\int_{0}^{1} e^{2 \pi i a x} e^{-2 \pi i b x} d x \\
& =\int_{0}^{1} e^{2 \pi i(a-b) x} d x \quad(=1 \text { if } a=b) \\
& =\left.\frac{1}{2 \pi i(a-b)} e^{2 \pi i(a-b) x}\right|_{x=0} ^{1} \\
& =0
\end{aligned}
$$

since $e^{2 \pi i(a-b) x}=1$ for every $x \in \mathbb{Z}$.

Exercise 1.5. Fix any positive integer $N \geq 2$, and show that

$$
\sum_{k=0}^{N-1} e^{\frac{2 \pi i k}{N}}=0
$$

Solution:

$$
\sum_{k=0}^{N-1} e^{\frac{2 \pi i k}{N}}=\frac{e^{\frac{2 \pi i N}{N}}-1}{e^{\frac{2 \pi i}{N}}-1}=0
$$

Where we have used

$$
\sum_{k=0}^{n-1} r^{k}=\frac{r^{n}-1}{r-1}, \quad \text { for } r \neq 1
$$

Exercise 1.8. Show that for any positive integer n, we have

$$
n=\prod_{k=1}^{n-1}\left(1-\zeta^{k}\right)
$$

where $\zeta:=e^{2 \pi i / n}$.
Solution:

$$
\begin{gathered}
x^{n}-1=(x-1) \sum_{k=0}^{n-1} x^{k}=(x-1) \prod_{k=1}^{n-1}\left(x-\zeta^{k}\right) \\
\Longrightarrow \sum_{k=0}^{n-1} x^{k}=\prod_{k=1}^{n-1}\left(x-\zeta^{k}\right) \Longrightarrow n=\sum_{k=0}^{n-1} 1=\prod_{k=1}^{n-1}\left(1-\zeta^{k}\right) .
\end{gathered}
$$

Exercise 1.13. Thinking of the function $\sin (\pi z)$ as a function of a complex variable $z \in \mathbb{C}$, show that its zeros are precisely the set of integers \mathbb{Z}.

Solution:

$$
\sin (\pi z):=\frac{e^{i \pi z}-e^{-i \pi z}}{2 i}
$$

$\sin (\pi z)=0 \Longleftrightarrow e^{\pi i z}-e^{-\pi i z}=0 \Longleftrightarrow e^{-\pi i z}\left(e^{2 \pi i z}-1\right)=0 \Longleftrightarrow e^{2 \pi i z}=1 \Longleftrightarrow z \in \mathbb{Z}$.

