
A GENTLE INTRODUCTION TO FOURIER ANALYSIS ON
POLYTOPES - EXERCISES FROM CHAPTER 1

FABRÍCIO C. MACHADO

Exercises from the book: Robins, S., “A friendly introduction to Fourier analysis on poly-

topes”, available at https://arxiv.org/abs/2104.06407. This solution sheet is available

at https://www.ime.usp.br/~fabcm/33coloquio-impa/.

1.1. Show that if x ∈ C, then e2πix = 1 if and only if x ∈ Z.

1.3. Here we prove the orthogonality relations for the exponential functions defined

by en(x) := e2πinx for each integer n. Recall that the complex conjugate of any

complex number x+ iy is defined by x+ iy := x− iy, so that eiθ = e−iθ for real θ.

Prove that for all integers a, b:∫ 1

0
ea(x)eb(x)dx =

{
1 if a = b

0 if not.

1.5. We recall that the N ’th roots of unity are by definition the set of N complex

solutions to zN = 1, and are given by the set {e2πik/N : k = 0, 1, 2, . . . , N − 1}

of points on the unit circle. Prove that the sum of all of the N ’th roots of unity

vanishes. Precisely, fix any positive integer N ≥ 2, and show that

N−1∑
k=0

e
2πik
N = 0.

1.6. Prove that, given positive integers M,N , we have

1

N

N−1∑
k=0

e
2πikM
N =

{
1 if N |M
0 if not.

Notes. This result is sometimes referred to as “the harmonic detector” for de-

tecting when a rational number M
N is an integer; that is, it assigns a value of 1 to

the sum if MN ∈ Z, and it assigns a value of 0 to the sum if MN 6∈ Z.

1.8. Show that for any positive integer n, we have

n =
n−1∏
k=1

(1− ζk),

where ζ := e2πi/n.

1.13. Thinking of the function sin(πz) as a function of a complex variable z ∈ C, show

that its zeros are precisely the set of integers Z.
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In this course we assume that we know

• Trigonometry,

• Calculus,

• Arithmetic with complex numbers,

but not much from complex analysis.

The Fourier transform of a function f : Rd → C is the function f̂ : Rd → C defined as

f̂(ξ) =

∫
Rd
f(x)e−2πi〈x,ξ〉dx.

If P ⊂ Rd is bounded and 1P is the indicator funtion of P ,

1P (x) =

{
1, if x ∈ P,
0, otherwise,

we are interested in the function 1̂P and in how we can retrieve properties of P from 1̂P .

Exercise 1.1. Show that if x ∈ C, then e2πix = 1 if and only if x ∈ Z.

Solution: First, lets assume that x ∈ R.

e2πix = cos(2πx) + i sin(2πx)

e2πix = 1 ⇐⇒ cos(2πx) = 1 and sin(2πx) = 0.

cos(2πx) = 1 ⇐⇒ x ∈ Z, while sin(2πx) = 0 ⇐⇒ 2x ∈ Z.

∴ e2πix = 1 ⇐⇒ x ∈ Z.

Now we consider z ∈ C, z = x+ iy, x, y ∈ R.

e2πiz = e2πi(x+iy) = e2πix−2πy = e−2πye2πix

|e2πiz| = e−2πy, e2πiz = 1 =⇒ e−2πy = 1 =⇒ y = 0 =⇒ z ∈ R.

Exercise 1.3. Prove that for all integers a, b:

∫ 1

0
ea(x)eb(x)dx =

{
1 if a = b

0 if not.
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Solution: ∫ 1

0
ea(x)eb(x)dx =

∫ 1

0
e2πiaxe−2πibxdx

=

∫ 1

0
e2πi(a−b)xdx (= 1 if a = b)

=
1

2πi(a− b)
e2πi(a−b)x

∣∣∣1
x=0

= 0.

since e2πi(a−b)x = 1 for every x ∈ Z.

Exercise 1.5. Fix any positive integer N ≥ 2, and show that

N−1∑
k=0

e
2πik
N = 0.

Solution:
N−1∑
k=0

e
2πik
N =

e
2πiN
N − 1

e
2πi
N − 1

= 0.

Where we have used
n−1∑
k=0

rk =
rn − 1

r − 1
, for r 6= 1.

Exercise 1.8. Show that for any positive integer n, we have

n =

n−1∏
k=1

(1− ζk),

where ζ := e2πi/n.

Solution:

xn − 1 = (x− 1)
n−1∑
k=0

xk = (x− 1)
n−1∏
k=1

(x− ζk)

=⇒
n−1∑
k=0

xk =

n−1∏
k=1

(x− ζk) =⇒ n =

n−1∑
k=0

1 =

n−1∏
k=1

(1− ζk).

Exercise 1.13. Thinking of the function sin(πz) as a function of a complex variable

z ∈ C, show that its zeros are precisely the set of integers Z.

Solution:

sin(πz) :=
eiπz − e−iπz

2i

sin(πz) = 0 ⇐⇒ eπiz − e−πiz = 0 ⇐⇒ e−πiz(e2πiz − 1) = 0 ⇐⇒ e2πiz = 1 ⇐⇒ z ∈ Z.


