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Basic results

Definition

A ring R is called quasi-Frobenius (QF ring for short) if R is

right noetherian and right self-injective.

Theorem

Let R be a ring. Then, R is QF if and only if R is (2-sided) artinian

and the following conditions hold:

1 annr (annl(A)) = A for any right ideal A ⊆ R;

2 annl(annr (B)) = B for any left ideal B ⊆ R.
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Basic results

Proposition

For any QF ring R, we have

annl(J(R)) = soc(RR) = soc(RR) = annr (J(R)).

In the case of group rings, Nakayama and Connel proved the

following

Proposition

Let R be a ring and let G be a group. Then RG is QF if and only if

G is finite group and R is QF.
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Basic results

QF rings have been also used in coding theory. For instance, J.

Wood proved that a finite ring R has the extension property for

Hamming weight if and only if R is Frobenius.

Definition

Let R be a QF ring. We say that R is a Frobenius ring if

soc(RR) ∼=R (R/J(R)) as R-modules.
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Basic results

We are interested in studying the following equivalence: R is

Frobenius if and only if RG is Frobenius.

Group algebras FG of finite groups G over a field F are

Frobenius rings;

if R is commutative ring, G finite group, then RG is

Frobenius if and only if R is Frobenius;

if R is a finite Frobenius ring and G a finite group, then RG is

Frobenius. (J. Wood)
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New results

Let R be an artinian ring and G be a finite group.

J(R) is nilpotent ideal;

J(R)G =

∑
g∈G

agg | ag ∈ J(R)

 ⊆ J(RG );

Definition

Given a finite group G, we say that an artinian ring R is a

Jacobson ring for G if the equality J(R)G = J(RG ) holds.
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New results

Proposition

Given a finite group G, an artinian ring R is a Jacobson ring for G

if and only if |G | ∈ U (R/J(R)).

Corollary

Let R be an artinian local ring and G be a finite group such that

m = char(R) does not divide |G |k where k denotes the nilpotency

index of J(R). Then R is a Jacobson ring for G.
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New results

The next result shows that we can give a precise description of the

socle of RG if R is a Jacobson ring for G .

Proposition

Let G be a finite group and R a Jacobson ring for G. Then, the

following equality holds:

soc(RG ) = soc(R)G =

∑
g∈G

agg | ag ∈ soc(R)

.
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New results

Now, we are going to present the main result of this talk.

Theorem

Let G be a finite group and R be an artinian ring. If R is Frobenius

and a Jacobson ring for G, then RG is Frobenius.
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New results

Corollary

Let R be a commutative artinian ring with char(R)=0 and let G be a

finite group. The following conditions are equivalent:

(i) R is Frobenius;

(ii) RG is Frobenius.

Corollary

Let R be a commutative artinian ring with char(R)=0 and let G be a

finite group. The following conditions are equivalent:

(i) RG is QF;

(ii) RG is Frobenius.
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Thank you for your attention!!!
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