Conference dedicated to the 90th anniversary of Prof. Paulo Ribenboim São Paulo, October 24-27, 2018
 Ivan P. Shestakov

Automorphisms of polynomials and of free algebras

1. Elementary and tame automorphisms

F, a field of characteristic 0 .
$A_{n}=F\left[x_{1}, \ldots, x_{n}\right]$, a polynomial algebra,
$G A_{n}=A u t A_{n}$,
$\varphi \in G A_{n} \longrightarrow \varphi=\left(f_{1}, \ldots, f_{n}\right)$,
$f_{i}=\varphi\left(x_{i}\right) \in A_{n}$.

Elementary automorphisms:

$$
\begin{gathered}
\sigma(i, \alpha, f):=\left(x_{1}, \ldots, \alpha x_{i}+f, \ldots, x_{n}\right) \\
0 \neq \alpha \in F, f \in F\left[x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n}\right] .
\end{gathered}
$$

Tame automorphisms group:

$$
T A_{n}:=\operatorname{group}\langle\sigma(i, \alpha, f)\rangle
$$

elements of the group $T A_{n}$ are called tame automorphisms.
H. W. E. Jung, (1942), Van der Kulk (1953) $G A_{2}=T A_{2}$
$n>3$????Tame Generators Problem

Nagata automorphism (1972):

$$
\begin{aligned}
& \sigma=\sigma_{\alpha}=\left(x+\alpha z, y+2 \alpha x+\alpha^{2} z, z\right) \\
& \alpha=y z-x^{2}, \quad \sigma(\alpha)=\alpha, \sigma^{-1}=\sigma_{-\alpha}
\end{aligned}
$$

$\sigma \notin T A_{3} \quad$ (I.Sh. - U.Umirbaev, 2002)

Van den Essen:
$1942-1972-2002 \ldots-2032$ - ? ? ?

2. Elementary reductions.

$\varphi \in G A_{3}, \varphi=(f, g, h)$,
$\operatorname{deg} \varphi=\operatorname{deg} f+\operatorname{deg} g+\operatorname{deg} h$.
It is natural to use induction on $\operatorname{deg} \varphi$.

Assume that there exists $f_{1} \in F[g, h]$ such that $\bar{f}_{1}=\bar{f}$, where \bar{f} denotes the leading term of f. Consider the automorphism $\varphi_{1}=\left(f-f_{1}, g, h\right)=\varepsilon \circ \varphi \in G A_{3}$,
Then $\operatorname{deg} \varphi_{1}<\operatorname{deg} \varphi$ and by induction $\varphi_{1} \in$ $T A_{3}$, hence $\varphi=\varepsilon^{-1} \circ \varphi_{1} \in T A_{3}$.

We will say in this case that φ admits an elementary reduction, that is, there exists an elementary automorphism ε such that $\operatorname{deg}(\varepsilon \circ \varphi)<\operatorname{deg} \varphi$.

Example 1: $n=2$. Van der Kulk:

Every automorphism $\varphi=(f, g) \in G A_{2}$ admits an elementary reduction, therefore $G A_{2}=$ $T A_{2}$. In this case either $\bar{f}=\alpha \bar{g}^{k}$ or $\bar{g}=$ $\beta \bar{f}^{m}$.

In general case, an automorphism $\left(f_{1}, \ldots, f_{n}\right)$ admits an elementary reduction if and only if there exists a coordinate f_{i} such that

$$
\overline{f_{i}} \in \overline{F\left[f_{1}, \ldots, f_{i-1}, f_{i+1}, \ldots, f_{n}\right]}
$$

where \bar{A} denotes the subalgebra generated by the leading terms of elements from the subalgebra A.

Lemma. If $\bar{g}_{1}, \ldots, \bar{g}_{k}$ are algebraically independent over F then $\overline{F\left[g_{1}, \ldots, g_{k}\right]}=F\left[\bar{g}_{1}, \ldots, \bar{g}_{k}\right]$.

Examle 2: The Nagata automorphism σ does not admit elementary reductions.

The leading terms of the components of the Nagata automorphism $\alpha z, \alpha^{2} z, z$ are pairwise algebraically independent, and no one of them lies in the subalgebra generated by the other two. Therefore σ does not admit elementary reductions.
"Conjecture". Every tame automorphism is elementary reducible.

I.Sh. - U.Umirbaev:

- Elementary reducibility is algorithmically recognizable in A_{3}.

The proof is based on the study of the structure of the subalgebra of leading terms $\overline{F[f, g]}$ for algebraically independent elements f, g. A certain analogue of Groebner basis is constructed for the subalgebra $F[f, g]$. In particular, an estimate $N(f, g, h)$ is found such that if $\bar{h}=\overline{G(f, g)}$ for some $G(x, y)$ then $\operatorname{deg} G<N(f, g, h)$.

In fact, the estimate $N(f, g, h)$ depends only on degrees $\operatorname{deg} f, \operatorname{deg} g, \operatorname{deg} h$, and $\operatorname{deg}[f, g]$, where $[f, g]$ denotes the Poisson bracket of the polynomials f, g. For this, we include the polynomial algebra $F[x, y, z]$ into the free Poisson algebra $P[x, y, z]$.

In fact, only the degree $\operatorname{deg}[f, g]$ is important for calculations, which can be calculated as
$\operatorname{deg}[f, g]=\max \left\{\left.\operatorname{deg}\left(\left(\frac{\partial f}{\partial x_{i}} \frac{\partial g}{\partial x_{j}}-\frac{\partial f}{\partial x_{j}} \frac{\partial g}{\partial x_{i}}\right) x_{i} x_{j}\right) \right\rvert\, 1 \leq\right.$ $i<j \leq n\}$.

Example 3:

There exists a tame automorphism φ of multi-degree $(9,6,8)$ which does not admit elementary reductions.

2. Nonelementary reductions.

Therefore, in order to reduce degree of an automorphism from $T A_{3}$, we need non-elementary reductions.

We define four type of reductions (types I, II, III and IV) which are compositions of $k \leq 4$ elementary automorphisms of the form:

$$
\begin{aligned}
& r_{1}=\varepsilon \circ l, \\
& r_{2}=\varepsilon \circ l_{2} \circ l_{1}, \\
& r_{3}=\varepsilon \circ q \circ l, \\
& r_{4}=\varepsilon \circ q_{2} \circ q_{1} \circ l,
\end{aligned}
$$

where $l, l_{i} \quad q, q_{i}$ are linear and quadratic automorphisms of types

$$
(x, y-\alpha z, z),\left(x, y-\beta z-\gamma z^{2}, z\right),
$$

and ε is an elementary automorphism.

The exact definitions of reductions $r_{1}-$ $-r_{4}$ are rather tecnical and used Poisson brackets.

If an automorphism $\varphi=\left(f_{1}, f_{2}, f_{3}\right)$ admits a non-elementary reduction r then

$$
\begin{aligned}
& \operatorname{deg}(r \circ \varphi)<\operatorname{deg} \varphi, \\
& \operatorname{deg} f_{i}>1, \quad i=1,2,3 .
\end{aligned}
$$

I.Sh. - U.Umirbaev.:

$\varphi \in T A_{3}, \operatorname{deg} \varphi>3 \Rightarrow$| φ admits either |
| :--- |
| elementary reduction |
| or one of reductions |
| $r_{1}-r_{4}$. |

The proof is performed by a double induction: by degree deg φ of a tame automorphism φ and by the minimal possible number m of elementary automorphisms in the representation $\varphi=\varepsilon_{1} \circ \cdots \circ \varepsilon_{m}$. By induction, the automorphism $\varphi_{1}=\varepsilon_{1} \circ \cdots \circ \varepsilon_{m-1}$ admits either elementary reduction or one of reductions $r_{1}-r_{4}$. We consider all possible cases and prove that in every case φ satisfies the conlcusion of the theorem as well. The most difficult case here is when φ_{1} admits an elementary reduction.

Corollary. The Nagata automorphism σ is not tame.

For every $\varphi \in T A_{3}$, the type i of the first non-elementary reduction r_{i} needed to reduce its degree is defined UNIQUELY, and we say that such φ belongs to the class R_{i}. Let E denotes the set of automorphisms that can be reduced to linear only by elementary reductions. Then we have the disjoint union

$$
T A_{3}=E \cup R_{1} \cup R_{2} \cup R_{3} \cup R_{4} .
$$

The mentioned above tame non-elementary reducible automorphism with degrees ($6,9,8$) is of type R_{1}.

Sh. Kuroda:

- $R_{4}=\emptyset$

Kuroda's Conjecture:

- $R_{2}=R_{3}=\emptyset$

3. The algorithm.

- I.Sh: - U.Umirbaev

Tame automorphisms are algorithmically recognizable in A_{3}.

Kuroda has essentially simplified the algorithm by founding the following sufficient condition for an automorphism to be wild: - An automorphism $\left(f_{1}, f_{2}, f_{3}\right) \in G A_{3}$ is wild if the following conditions are verified for some monomial order in A_{3} :
(1) The leading terms $\bar{f}_{1}, \bar{f}_{2}, \bar{f}_{3}$ are algebraically dependent over F and pairwise algebraically independent, (2) $\bar{f}_{i} \notin F\left[\bar{f}_{j} \mid j \neq i\right]$ for $i=1,2,3$.

A concrete algorithm was implemented in Magma by S. Uchiyama et al. (Tokyo Metropolitan University).

4. Wild coordinates.

U.Umirbaev - J.Yu:

If $\varphi=\left(f_{1}, f_{2}, f_{3}\right)$ is wild then at least two of its coordinates are wild. In particular, coordinates f_{1}, f_{2} of the Nagata automorphism are wild.

Kuroda:

A coordinate f is called totally wild if $\varphi(f) \neq$ f for any nontrivial tame automorphism φ, and f is called quasi-totally wild if $\varphi(f)=f$ only for finite number of tame automorphisms φ,

$\emptyset \neq$ \{totally wild coordinates in $\left.A_{3}\right\}$
 $\subsetneq \quad$ \{quasi-totally wild coordinates in $\left.A_{3}\right\}$
 $\subsetneq\left\{\right.$ wild coordinates in $\left.A_{3}\right\}$

For example, let $f(x) \in F[x]$. $\operatorname{deg} f>12, \alpha=$ $f(x)-y z$. Then the mapping
$\varphi=\left(x+\alpha z, y+\frac{f(x+\alpha z)-f(x)}{z}, z\right)$
is a wild automorphism in $G A_{3}$ with the second coordinate quasi-totally wild. With some additional conditions on f it is totally wild. On the other hand, the first coordinate of the Nagata automorphism is wild but not quasi-totally wild.

5. Multi-degrees of tame automorphisms.

For an automorphism $\varphi=\left(f_{1}, f_{2}, f_{3}\right) \in$ $G A_{3}$, define its multi-degree as mdeg $\varphi=$ ($\operatorname{deg} f_{1}, \operatorname{deg} f_{2}, \operatorname{deg}_{3}$).
Problem: For which triples $\left(d_{1}, d_{2}, d_{3}\right)$ there exists $\varphi \in T A_{3}$ with $m \operatorname{deg} \varphi=\left(d_{1}, d_{2}, d_{3}\right)$? Let us write $m \in\left\langle m_{1}, \ldots, m_{k}\right\rangle$ if $m=m_{1} l_{1}+$ $\cdots+m_{k} l_{k}, l_{i} \geq 0$.

M. Karas' et al.:

- Let $d_{n} \geq d_{n-1} \geq \cdots \geq d_{1}$. If $d_{i} \in\left\langle d_{1}, \ldots, d_{i-1}\right\rangle$ for some $i>1$ then there exists $\varphi \in T A_{n}$ with mdeg $\varphi=\left(d_{1}, \ldots, d_{n}\right)$.
- Let $d_{3} \geq d_{2}>d_{1} \geq 3,\left(d_{1}, d_{2}\right)=1$ and d_{1}, d_{2} are odd. Then there exists $\varphi \in T A_{3}$ with $m \operatorname{deg} \varphi=\left(d_{1}, d_{2}, d_{3}\right)$ if and only if $d_{3} \in\left\langle d_{1}, d_{2}\right\rangle$.
- On the other hand, for any $d \geq 6$ there exists $\varphi \in T A_{3}$ with mdeg $\varphi=(4,6, \mathrm{~d})$.

For example, there exsts $\varphi \in T A_{3}$ with mdeg $\varphi=(4,6,7)$ but there are no $\varphi \in T A_{3}$ with $\operatorname{mdeg} \varphi=(3,5,7)$.

6. Exponential automorphisms

A derivation D of an algebra A is called locally nilpotent, if for any $a \in A$ there exists n such that $D^{n}(a)=0$. For example, the derivation $\frac{\partial}{\partial x_{i}}$ of the algebra A_{n} is locally nilotent. For locally nilpotent derivation D, one may define the automorphism

$$
\exp D(f)=f+D(f)+\frac{D^{2}(f)}{2!}+\cdots
$$

- (Exponential Generators Conjecture) The group $G A_{n}$ is generated by affine automorphisms and exponential automorphisms.

7. Generators and relations in TA_{n}.

The following relations are true in any free algebra:

$$
\begin{equation*}
\sigma(i, \alpha, f) \sigma(i, \beta g)=\sigma(i, \alpha \beta, \beta f+g) . \tag{1}
\end{equation*}
$$

If $i \neq j, f \in F\left[X \backslash\left\{x_{i}, x_{j}\right\}\right]$ then

$$
\begin{align*}
& \sigma(i, \alpha, f)^{-1} \sigma(j, \beta, g) \sigma(i, \alpha, f) \\
& \quad=\sigma\left(j, \beta, \sigma(i, \alpha, f)^{-1}(g)\right) . \tag{2}
\end{align*}
$$

Let (ks) : $x_{k} \leftrightarrow x_{s}$ be a transposition automorphism, permutting the variables x_{s} and x_{k}. It is clear that it is tame and may be written via elementary automorphisms. Then

$$
\begin{equation*}
\sigma(i, \alpha, f)^{(k s)}=\sigma(j, \alpha,(k s)(f)), \tag{3}
\end{equation*}
$$

where $x_{j}=(k s)\left(x_{i}\right)$.

U.Umirbaev:

The defining relations of the group $T A_{3}$ are given by (1), (2) and (3).
$n>3 ? ? ? \ldots$

8. Other open questions:

- The Nagata automorphism in positive characteristics.
- Does the normal closure of $T A_{3}$ in $G A_{3}$ coincides with $G A_{3}$? ($T A_{3} \notin G A_{3}$).
- $G A_{n}$ and $T A_{n}$ for $n>3$.
- (Stable Tameness Conjecture). For any $\varphi=\left(f_{1}, \ldots, f_{n}\right) \in G A_{n}$ there exists $k>0$ such that
$\tilde{\varphi}=\left(f_{1}, \ldots, f_{n}, x_{n+1}, \ldots, x_{n+k}\right) \in T A_{n+k}$.
- Aut $F(x, y, z)=\operatorname{TAut} F(x, y, z)$? $\left(C r_{3}=\right.$ TCr_{3} ?)

9. Nielsen-Schreier varieties.

$$
G L i e_{n}=T L i e_{n}(\mathrm{P} . \mathrm{Cohn}, 1964 .)
$$

A variety \mathfrak{M} of linear algebras is called Niel-sen-Schreier, if any subalgebra of a free algebra of this variety is free, i.e. an analog of the classical Nielsen-Schreier theorem is true.

Nielsen-Schreier examples: All nonassociative algebras, commutative and anticommutative algebras, Lie algebras, Akivis alebras, Sabinin algebras.

Non-(Nielsen-Schreier) examples: polynomials, associative and alternative algebras, Jordan algebras, Malcev algebras, Poisson algebras.

If \mathfrak{M} is Nielsen-Schreier then $G \mathfrak{M}_{n}=T \mathfrak{M}_{n}$. (J.Lewin, 1968).

If \mathfrak{M} is Nielsen-Schreier then the group $G \mathfrak{M}_{n}$ is generated by elementary automorphisms via relations (1) - (3).
(U.Umirbaev, 2006).

10. Associative and Jordan algebras.

$G A s_{2}=T A s_{2}=G A_{2}$
(Makar-Limanov - Czerniakiewicz).
GJord $_{2}=$ TJord $_{2}=G A_{2}$.
$G A l t_{2}=T A l t_{2}=G A_{2}$.
U.Umirbaev: The Anick automorphism

$$
\delta=\varphi_{\beta}=(x+z \beta, y+\beta z, z),
$$

where $\beta=x z-z y$, is wild in the free associative algebra $A s[x, y, z]$.

I.Sh.: The automorphism

$$
\varphi=\varphi_{\gamma}=\left(x+\gamma \cdot z^{2}, y+\gamma \cdot z, z\right)
$$

where $\gamma=x \cdot z-y \cdot z^{2}$, is wild in the free Jordan algebra Jord $[x, y, z]$.

10. Poisson algebras.

Poisson algebra $\langle P,+, \cdot,\{\}$,$\rangle :$
$\langle P,+, \cdot$,$\rangle is associative and commutative,$ $\langle P,+,\{\}$,$\rangle is a Lie algebra,$
$\{a \cdot b, c\}=a \cdot\{b, c\}+\{a, c\} \cdot b$.

Lie Poisson algebra $P(L)$:
L is a Lie algebra over a field F with multiplication $[a, b]$ and a base x_{1}, \ldots, x_{n}, $P(L)=F\left[x_{1}, \ldots, x_{n}\right]$ is the algebra of polynomials on L with the Poisson bracket

$$
\{f, g\}=\sum_{i<j}\left(f_{i}^{\prime} \cdot g_{j}^{\prime}-f_{j}^{\prime} \cdot g_{i}^{\prime}\right) \cdot\left[x_{i}, x_{j}\right]
$$

I.Sh., 1993: Let $L i e[X]$ be a free Lie algebra on X, then $P[X]=P(\operatorname{Lie}[X])$ is a free Poisson algebra on the set of generators X.

Free Poisson algebras are closely connected with polynomial, free associative, and free Lie algebras, and are useful in their study.

We have natural Poisson algebra epimorphisms:

$$
P_{n} \xrightarrow{\pi} A_{n}, \quad P_{n} \xrightarrow{\tau} \text { Lie }_{n},
$$

which induce group epimorphisms

$$
\begin{aligned}
& G P_{n} \xrightarrow{\pi^{*}} G A_{n}, \quad G P_{n} \xrightarrow{\tau^{*}} G L i e_{n}=T L i e_{n}, \\
& T P_{n} \xrightarrow{\pi^{*}} T A_{n}, \quad T P_{n} \xrightarrow{\tau^{*}} T L i e_{n},
\end{aligned}
$$

Makar-Limanov+Tursunbekova+Umirbaev, 2007:
 $G P_{2}=T P_{2} \cong G A_{2} \cong G B_{2}$.

It is not true if char $F=p>0!!!!$

Since the Nagata automorphism σ can be lifted to P_{3}, we have $G P_{3} \neq T P_{3}$. It was interesting to find a non-tame automorphism in P_{3} whose polynomial counterpart is tame.

Shestakov (2017): The automorphism
$\varphi=(x+\{x z-\{y, z\}, z\}, y+(x z-\{y, z\}) z, z)$. is wild.

Observe that the abelization of φ : $\{x, y+$ $\left.x z^{2}, z\right\}$ is an elementary automorphism.

