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1. Elementary and tame automorphisms

F , a field of characteristic 0.

An = F [x1, . . . , xn], a polynomial algebra,

GAn = AutAn,

φ ∈ GAn −→ φ = (f1, . . . , fn),

fi = φ(xi) ∈ An.

Elementary automorphisms:

σ(i, α, f) := (x1, . . . , αxi + f, . . . , xn),

0 ̸= α ∈ F, f ∈ F [x1, . . . , xi−1, xi+1, . . . , xn].

Tame automorphisms group:

TAn := group ⟨σ(i, α, f) ⟩.

elements of the group TAn are called tame

automorphisms.

H.W. E. Jung, (1942), Van der Kulk (1953)

GA2 = TA2

n > 3 ????Tame Generators Problem



Nagata automorphism (1972):

σ = σα = (x+ αz, y +2αx+ α2z, z),

α = yz − x2, σ(α) = α, σ−1 = σ−α.

σ /∈ TA3 (I.Sh. - U.Umirbaev, 2002)

Van den Essen:

1942 – 1972 – 2002... – 2032 - ???



2. Elementary reductions.

φ ∈ GA3, φ = (f, g, h),

degφ = deg f +deg g +degh.

It is natural to use induction on degφ.

Assume that there exists f1 ∈ F [g, h] such

that f̄1 = f̄ , where f̄ denotes the leading

term of f . Consider the automorphism

φ1 = (f − f1, g, h) = ε ◦ φ ∈ GA3,

Then degφ1 < degφ and by induction φ1 ∈
TA3, hence φ = ε−1 ◦ φ1 ∈ TA3.

We will say in this case that φ admits

an elementary reduction, that is, there ex-

ists an elementary automorphism ε such

that deg(ε ◦ φ) < degφ.

Example 1: n = 2. Van der Kulk:

Every automorphism φ = (f, g) ∈ GA2 ad-

mits an elementary reduction, therefore GA2 =

TA2. In this case either f̄ = αḡk or ḡ =

βf̄m.



In general case, an automorphism (f1, . . . , fn)

admits an elementary reduction if and only

if there exists a coordinate fi such that

f̄i ∈ F [f1, . . . , fi−1, fi+1, . . . , fn],

where Ā denotes the subalgebra generated

by the leading terms of elements from the

subalgebra A.

Lemma. If ḡ1, . . . , ḡk are algebraically indepen-

dent over F then F [g1, . . . , gk] = F [ḡ1, . . . , ḡk].

Examle 2: The Nagata automorphism σ

does not admit elementary reductions.

The leading terms of the components of

the Nagata automorphism αz, α2z, z are pair-

wise algebraically independent, and no one

of them lies in the subalgebra generated by

the other two. Therefore σ does not admit

elementary reductions.

“Conjecture”. Every tame automorphism

is elementary reducible.



I.Sh. - U.Umirbaev:

• Elementary reducibility is algorithmically

recognizable in A3.

The proof is based on the study of the

structure of the subalgebra of leading terms

F [f, g] for algebraically independent elements

f, g. A certain analogue of Groebner basis

is constructed for the subalgebra F [f, g]. In

particular, an estimate N(f, g, h) is found

such that if h̄ = G(f, g) for some G(x, y)

then degG < N(f, g, h).

In fact, the estimate N(f, g, h) depends only

on degrees deg f,deg g,degh, and deg[f, g],

where [f, g] denotes the Poisson bracket of

the polynomials f, g. For this, we include

the polynomial algebra F [x, y, z] into the

free Poisson algebra P [x, y, z].

In fact, only the degree deg[f, g] is impor-

tant for calculations, which can be calcu-

lated as

deg[f, g] = max{deg(( ∂f
∂xi

∂g
∂xj

− ∂f
∂xj

∂g
∂xi

)xixj) |1 ≤
i < j ≤ n}.



Example 3:

There exists a tame automorphism φ of

multi-degree (9,6,8) which does not admit

elementary reductions.

2. Nonelementary reductions.

Therefore, in order to reduce degree of an

automorphism from TA3, we need

non-elementary reductions.

We define four type of reductions (types

I, II, III and IV) which are compositions

of k ≤ 4 elementary automorphisms of the

form:

r1 = ε ◦ l,

r2 = ε ◦ l2 ◦ l1,

r3 = ε ◦ q ◦ l,

r4 = ε ◦ q2 ◦ q1 ◦ l,

where l, li q, qi are linear and quadratic au-

tomorphisms of types

(x, y − αz, z), (x, y − βz − γz2, z),

and ε is an elementary automorphism.



The exact definitions of reductions r1 −
−r4 are rather tecnical and used Poisson

brackets.

If an automorphism φ = (f1, f2, f3) admits

a non-elementary reduction r then

deg(r ◦ φ) < degφ,

deg fi > 1, i = 1,2,3.

I.Sh. - U.Umirbaev.:

φ ∈ TA3, degφ > 3 ⇒

φ admits either

elementary reduction

or one of reductions

r1 − r4.



The proof is performed by a double induc-

tion: by degree degφ of a tame automor-

phism φ and by the minimal possible num-

ber m of elementary automorphisms in the

representation φ = ε1 ◦ · · · ◦ εm. By induc-

tion, the automorphism φ1 = ε1◦ · · ·◦εm−1

admits either elementary reduction or one

of reductions r1− r4. We consider all pos-

sible cases and prove that in every case φ

satisfies the conlcusion of the theorem as

well. The most difficult case here is when

φ1 admits an elementary reduction.

Corollary. The Nagata automorphism σ is

not tame.



For every φ ∈ TA3, the type i of the first

non-elementary reduction ri needed to re-

duce its degree is defined UNIQUELY, and

we say that such φ belongs to the class Ri.

Let E denotes the set of automorphisms

that can be reduced to linear only by el-

ementary reductions. Then we have the

disjoint union

TA3 = E ∪R1 ∪R2 ∪R3 ∪R4.

The mentioned above tame non-elementary

reducible automorphism with degrees (6,9,8)

is of type R1.

Sh. Kuroda:

• R4 = ∅

Kuroda’s Conjecture:

• R2 = R3 = ∅



3. The algorithm.

• I.Sh: - U.Umirbaev

Tame automorphisms are algorithmically

recognizable in A3.

Kuroda has essentially simplified the algo-

rithm by founding the following sufficient

condition for an automorphism to be wild:

• An automorphism (f1, f2, f3) ∈ GA3 is

wild if the following conditions are verified

for some monomial order in A3:

(1) The leading terms f̄1, f̄2, f̄3 are alge-

braically dependent over F and pairwise

algebraically independent,

(2) f̄i /∈ F [f̄j | j ̸= i] for i = 1,2,3.

A concrete algorithm was implemented in

Magma by S. Uchiyama et al. (Tokyo

Metropolitan University).



4. Wild coordinates.

U.Umirbaev - J.Yu:
If φ = (f1, f2, f3) is wild then at least two
of its coordinates are wild. In particular,
coordinates f1, f2 of the Nagata automor-
phism are wild.

Kuroda:
A coordinate f is called totally wild if φ(f) ̸=
f for any nontrivial tame automorphism φ,
and f is called quasi-totally wild if φ(f) = f

only for finite number of tame automor-
phisms φ,

∅ ̸= {totally wild coordinates inA3}
( {quasi-totally wild coordinates inA3}
( { wild coordinates in A3}

For example, let f(x) ∈ F [x]. deg f > 12, α =
f(x)− yz. Then the mapping
φ = (x+ αz, y + f(x+αz)−f(x)

z , z)
is a wild automorphism in GA3 with the
second coordinate quasi-totally wild. With
some additional conditions on f it is totally
wild. On the other hand, the first coordi-
nate of the Nagata automorphism is wild
but not quasi-totally wild.



5. Multi-degrees of tame automor-

phisms.

For an automorphism φ = (f1, f2, f3) ∈
GA3, define its multi-degree as mdeg φ =

(deg f1,deg f2,deg f3).

Problem: For which triples (d1, d2, d3) there

exists φ ∈ TA3 with mdeg φ = (d1, d2, d3)?

Let us write m ∈ ⟨m1, . . . ,mk⟩ if m = m1l1+

· · ·+mklk, li ≥ 0.

M. Karas’ et al.:

• Let dn ≥ dn−1 ≥ · · · ≥ d1. If di ∈ ⟨d1, . . . , di−1⟩
for some i > 1 then there exists φ ∈ TAn

with mdegφ = (d1, . . . ,dn).

• Let d3 ≥ d2 > d1 ≥ 3, (d1, d2) = 1 and

d1, d2 are odd. Then there exists φ ∈ TA3

with mdeg φ = (d1, d2, d3) if and only if

d3 ∈ ⟨d1, d2⟩.
• On the other hand, for any d ≥ 6 there

exists φ ∈ TA3 with mdegφ = (4,6,d).

For example, there exsts φ ∈ TA3 with

mdegφ = (4,6,7)but there are no φ ∈ TA3

with mdegφ = (3,5,7).



6. Exponential automorphisms

A derivation D of an algebra A is called lo-

cally nilpotent, if for any a ∈ A there exists

n such that Dn(a) = 0. For example, the

derivation ∂
∂xi

of the algebra An is locally

nilotent. For locally nilpotent derivation

D, one may define the automorphism

expD(f) = f +D(f) + D2(f)
2! + · · ·

• (Exponential Generators Conjecture)

The group GAn is generated by affine auto-

morphisms and exponential automorphisms.



7. Generators and relations in TAn.

The following relations are true in any free

algebra:

σ(i, α, f)σ(i, βg) = σ(i, αβ, βf + g). (1)

If i ̸= j, f ∈ F [X\{xi, xj}] then

σ(i, α, f)−1σ(j, β, g)σ(i, α, f)

= σ(j, β, σ(i, α, f)−1(g)). (2)

Let (ks) : xk ↔ xs be a transposition auto-

morphism, permutting the variables xs and

xk. It is clear that it is tame and may

be written via elementary automorphisms.

Then

σ(i, α, f)(ks) = σ(j, α, (ks)(f)), (3)

where xj = (ks)(xi).

U.Umirbaev:

The defining relations of the group TA3

are given by (1), (2) and (3).

n > 3???...



8. Other open questions:

• The Nagata automorphism in positive

characteristics.

• Does the normal closure of TA3 in GA3

coincides with GA3? (TA3 5 GA3).

• GAn and TAn for n > 3.

• (Stable Tameness Conjecture). For any

φ = (f1, . . . , fn) ∈ GAn there exists k > 0

such that

φ̃ = (f1, . . . , fn, xn+1, . . . , xn+k) ∈ TAn+k.

• AutF (x, y, z) = TAutF (x, y, z)? (Cr3 =

TCr3?)



9. Nielsen-Schreier varieties.

GLien = TLien (P.Cohn, 1964.)

A variety M of linear algebras is called Niel-
sen-Schreier, if any subalgebra of a free
algebra of this variety is free, i.e. an analog
of the classical Nielsen-Schreier theorem is
true.

Nielsen-Schreier examples: All nonassocia-
tive algebras, commutative and anticom-
mutative algebras, Lie algebras, Akivis ale-
bras, Sabinin algebras.

Non-(Nielsen-Schreier) examples: polynomi-
als, associative and alternative algebras,
Jordan algebras, Malcev algebras, Poisson
algebras.

If M is Nielsen-Schreier then GMn = TMn.
(J.Lewin, 1968).

If M is Nielsen-Schreier then the group
GMn is generated by elementary automor-
phisms via relations (1) - (3) .
(U.Umirbaev, 2006).



10. Associative and Jordan algebras.

GAs2 = TAs2 = GA2

(Makar-Limanov – Czerniakiewicz) .

GJord2 = TJord2 = GA2.

GAlt2 = TAlt2 = GA2.

U.Umirbaev: The Anick automorphism

δ = φβ = (x+ zβ, y + βz, z),

where β = xz− zy, is wild in the free asso-

ciative algebra As[x, y, z].

I.Sh.: The automorphism

φ = φγ = (x+ γ · z2, y + γ · z, z),

where γ = x · z − y · z2, is wild in the free

Jordan algebra Jord[x, y, z].



10. Poisson algebras.

Poisson algebra ⟨P,+, ·, {, }⟩:
⟨P,+, ·, ⟩ is associative and commutative,

⟨P,+, {, }⟩ is a Lie algebra,

{a · b, c} = a · {b, c}+ {a, c} · b.

Lie Poisson algebra P (L):

L is a Lie algebra over a field F with mul-

tiplication [a, b] and a base x1, . . . , xn,

P (L) = F [x1, . . . , xn] is the algebra of poly-

nomials on L with the Poisson bracket

{f, g} =
∑
i<j

(f ′i · g
′
j − f ′j · g

′
i) · [xi, xj].

I.Sh., 1993: Let Lie[X] be a free Lie al-

gebra on X, then P [X] = P (Lie[X]) is a

free Poisson algebra on the set of genera-

tors X.

Free Poisson algebras are closely connected

with polynomial, free associative, and free

Lie algebras, and are useful in their study.



We have natural Poisson algebra epimor-

phisms:

Pn
π� An, Pn

τ� Lien,

which induce group epimorphisms

GPn
π∗
� GAn, GPn

τ∗� GLien = TLien,

TPn
π∗
� TAn, TPn

τ∗� TLien,

Makar-Limanov+Tursunbekova+Umirbaev,

2007:

GP2 = TP2
∼= GA2

∼= GB2.

It is not true if char F = p > 0!!!!

Since the Nagata automorphism σ can be

lifted to P3, we have GP3 ̸= TP3. It was

interesting to find a non-tame automor-

phism in P3 whose polynomial counterpart

is tame.



Shestakov (2017): The automorphism

φ = (x+{xz−{y, z}, z}, y+(xz−{y, z})z, z).

is wild.

Observe that the abelization of φ : {x, y+
xz2, z} is an elementary automorphism.


