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Diophantine approximations: the Markov and Lagrange spectra

Let α ∈ R \Q.

Dirichlet: The inequality |α− p
q | <

1
q2 has infinitely many rational

solutions p
q .

Hurwitz, Markov: |α− p
q | <

1√
5q2 also has infinitely many

rational solutions p
q for any irrational α. Moreover,

√
5 is the

largest constant for which such a result is true for any α ∈ R \Q.
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We will consider the set

L = {k(α) | α ∈ R \Q, k(α) < +∞}.

This set is called the Lagrange spectrum.

Hurwitz-Markov theorem determines the smallest element of L,
which is

√
5. This set L encodes many diophantine properties

of real numbers. It is a classical subject the study of the
geometric structure of L.



Markov (1879)

L ∩ (−∞,3) = {k1 =
√

5 < k2 = 2
√

2 < k3 =

√
221
5

< . . . }

where kn is a sequence (of irrational numbers whose squares
are rational) converging to 3

This means that the “beginning” of the set L is discrete. As we
will see, this is not true for the whole set L.



The elements of the Lagrange spectrum which are smaller than

3 are exactly the numbers of the form
√

9− 4
z2 where z is a

positive integer for which there are other positive integers x , y
such that 1 ≤ x ≤ y ≤ z and (x , y , z) is a solution of the
Markov equation x2 + y2 + z2 = 3xyz.
•(x , y , z) solution =⇒ (y , z,3yz − x), (x , z,3xz − y) solutions.

(1,1,1)

(1,1,2)

(1,2,5)

(1,5,13)

(1,13,34) (5,13,194)

(2,5,29)

(2,29,169) (5,29,433)



An important open problem related to Markov’s equation is the
Unicity Problem, formulated by Frobenius about 100 years ago:
for any positive integers x1, x2, y1, y2, z with x1 ≤ y1 ≤ z and
x2 ≤ y2 ≤ z such that (x1, y1, z) and (x2, y2, z) are solutions of
Markov’s equation we always have (x1, y1) = (x2, y2)?
If the Unicity Problem has an affirmative answer then, for every
real t < 3, its pre-image k−1(t) by the function k above consists
of a single GL2(Z)-equivalence class (this equivalence relation
is such that

α ∼ aα + b
cα + d

,∀a,b, c,d ∈ Z, |ad − bc| = 1.)



M. Hall proved in 1947 that if C(4) is the regular Cantor set
formed by the numbers in [0,1] whose coefficients in the
continued fractions expansion are bounded by 4, then one has

C(4) + C(4) = {x + y ; x , y ∈ C4} = [
√

2− 1,4(
√

2− 1)].

This implies that L contains a whole half line (for instance
[6,+∞)).



G. Freiman determined in 1975 the biggest half line that is
contained in L, which is [c,+∞), with

c =
2221564096 + 283748

√
462

491993569
∼= 4,52782956616 . . . .

These last two results are based on the study of sums of
regular Cantor sets, whose relationship with the Lagrange
spectrum will be explained below.
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If the continued fraction of α is

α = [a0; a1,a2, . . . ]
def
= a0 +

1

a1 +
1

a2 + . . .

.

then we have the following formula for k(α):

k(α) = lim sup
n→∞

(αn + βn),

where αn = [an; an+1,an+2, . . . ] and

βn = [0; an−1,an−2, . . . ,a1].



The previous formula follows from the equality

|α− pn

qn
| =

1
(αn+1 + βn+1)q2

n
, ∀n ∈ N,

where pn/qn = [a0; a1,a2, . . . ,an],n ∈ N are the convergents of
the continued fraction of α.

Remark: If
∣∣α− p

q

∣∣ < 1
2q2 then p

q is a convergent pn
qn

of the
continued fraction of α.



This formula for k(α) implies that we have the following
alternative (dynamical) definition of the Lagrange spectrum L:

Let Σ = (N∗)Z be the set of all bi-infinite sequences of positive
integers. If θ = (an)n∈Z ∈ Σ, we define
f (θ) = α0 + β0 = [a0; a1,a2, . . . ] + [0; a−1,a−2, . . . ]. We have

L = {lim supn→∞ f (σnθ), θ ∈ Σ}

where σ : Σ→ Σ is the shift defined by σ((an)n∈Z) = (an+1)n∈Z.



The Markov spectrum M is the set

M = {sup
n∈Z

f (σnθ), θ ∈ Σ}.

It also has an arithmetical interpretation, namely

M = {( inf
(x ,y)∈Z2\(0,0)

|f (x , y)|)−1,

f (x , y) = ax2 + bxy + cy2, b2 − 4ac = 1}.

It follows from the dynamical characterization above that M and
L are closed sets of the real line and L ⊂ M.



Regular Cantor sets
Regular Cantor sets on the line are one-dimensional hyperbolic
sets, defined by expanding maps and have some kind of
self-similarity property: small parts of them are diffeomorphic to
big parts with uniformly bounded distortion. Sets of real
numbers whose continued fraction representation has bounded
coefficients with some combinatorial constraints are often
regular Cantor sets, which we call Gauss-Cantor sets (since
they are defined by the Gauss map g(x) = {1/x} from (0,1) to
[0,1)).



We represent below the graphics of the Gauss map
g(x) = { 1

x }.

y = g(x) =
{ 1

x

}



Remark:
In general, we say that a set X ⊂ R is a Cantor set if X is
compact, without isolated points and with empty interior. Cantor
sets in R are homeomorphic to the classical ternary Cantor set
K1/3 of the elements of [0,1] which can be written in base 3
using only digits 0 and 2. The set K1/3 is itself a regular Cantor
set, defined by the map ψ : [0,1/3] ∪ [2/3,1]→ R given by
ψ(x) = 3x for x ∈ [0,1/3] and ψ(x) = 3x − 2 for x ∈ [2/3,1].

The usual ternary Cantor set is a regular Cantor set:

ψ:

0 2/3 11/3

1
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We have the following result about the Markov and Lagrange
spectra:

Theorem
Given t ∈ R we have

HD(L ∩ (−∞, t)) = HD(M ∩ (−∞, t)) =: d(t)

and d(t) is a continuous surjective function from R to [0,1].
Moreover:
i) d(t) = min{1,2D(t)}, where
D(t) := HD(k−1(−∞, t)) = HD(k−1(−∞, t ]) is a continuous
function from R to [0,1).
ii) max{t ∈ R | d(t) = 0} = 3.
iii) There is δ > 0 such that d(

√
12− δ) = 1.



In this work we also proved that:

• limt→+∞HD(k−1(t)) = 1

• L′ is a perfect set, i.e., L′ = L′′.

In collaboration with C. Matheus, we proved that
0.53 < HD(M \ L) < 0.888.
We also found the currently largest known element in M,
namely
[3; 2,2,2,1,2,3,3,2,2,2,1,2,2,1,2,1,2,1,1,2] +
[0; 3,2,1,2,2,2,3,3] =

=
7940451225305−

√
3

2326589591051
+
−483 +

√
330629

310
= 3.70969985975 . . . .
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A fundamental tool in the proof of this results is related to the
techniques of the proof, in collaboration with Jean-Christophe
Yoccoz, of a conjecture by J. Palis on arithmetic sums and
differences of regular Cantor sets.

Jean-Christophe Yoccoz



Given two subsets K ,K ′ of the real line, we define

K − K ′ = {x − y | x ∈ K , y ∈ K ′} = {t ∈ R|K ∩ (K ′ + t) 6= ∅}

(the arithmetic difference between K and K ′).

The conjecture by J. Palis, stated in 1983, is the following:

Conjecture (Palis)
For typical pairs of regular Cantor sets (K ,K ′),
HD(K ) + HD(K ′) > 1⇒ int(K − K ′) 6= ∅.







We say that a C2-regular Cantor set on the real line is
essentially affine if there is a C2 change of coordinates for
which the dynamics that defines the corresponding Cantor set
has zero second derivative on all points of that Cantor set.
Typical C2-regular Cantor sets are not essentially affine.
The scale recurrence lemma, which is the main technical
lemma of the work with Yoccoz on Palis’ conjecture, can be
used in order to prove the following

Theorem

If K and K ′ are regular Cantor sets of class C2 and K is non
essentially affine, then HD(K + K ′) = min{HD(K ) + HD(K ′),1}.

A version of this result was also proved by Hochman and
Shmerkin.



As we have seen, the sets M and L can be defined in terms of
symbolic dynamics. Inspired by these characterizations, we
may associate to a dynamical system together with a real
function generalizations of the Markov and Lagrange spectra as
follows:

Definition
Given a map ψ : X → X and a function f : X → R, we define
the associated dynamical Markov and Lagrange spectra as
M(f , ψ) = {supn∈Nf (ψn(x)), x ∈ X} and
L(f , ψ) = {limsupn→∞f (ψn(x)), x ∈ X}, respectively.
Given a flow (ϕt )t∈R in a manifold X , we define the associated
dynamical Markov and Lagrange spectra as
M(f , (ϕt )) = {supt∈Rf (ϕt (x)), x ∈ X} and
L(f , (ϕt )) = {limsupt→∞f (ϕt (x)), x ∈ X}, respectively.
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We will describe some results obtained in collaboration with S.
Romaña, C. Matheus and A. Cerqueira.

Theorem (M., Romaña)

Let Λ be a horseshoe associated to a C2-diffeomorphism ϕ
such that HD(Λ) > 1. Then there is, arbitrarily close to ϕ a
diffeomorphism ϕ0 and a C2-neighborhood W of ϕ0 such that,
if Λψ denotes the continuation of Λ associated to ψ ∈W, there
is an open and dense set Hψ ⊂ C1(M,R) such that for all
f ∈ Hψ, we have

int L(f ,Λψ) 6= ∅ and int M(f ,Λψ) 6= ∅,

where int A denotes the interior of A.



In a work in collaboration with A. Cerqueira and C. Matheus, we
prove:

Lemma

Let (ϕ, f ) be a generic pair, where ϕ : M2 → M2 is a
diffeomorphism with Λ ⊂ M2 a hyperbolic set for ϕ and
f : M → R is C2. Let πs, πu be the projections of the horseshoe
Λ to the stable and unstable regular Cantor sets K s,K u

associated to it (along the unstable and stable foliations of Λ).
Given t ∈ R, we define

Λt =
⋂

m∈Z
ϕm({p ∈ Λ|f (p) ≤ t}),

K s
t = πs(Λt ),K u

t = πu(Λt ).

Then the functions ds(t) = HD(K s
t ) and du(t) = HD(K u

t ) are
continuous and coincide with the corresponding box
dimensions.



The following result is a consequence of the scale recurrence
lemma:

Lemma

Let (ϕ, f ) be a generic pair, where ϕ : M2 → M2 is a
diffeomorphism with Λ ⊂ M2 a hyperbolic set for ϕ and
f : M → R is C2. Then

HD(f (Λ)) = min(HD(Λ),1).

Moreover, if HD(Λ) > 1 then f (Λ) has persistently non-empty
interior.

Using the previous lemmas we prove a generalization of the
results on dimensions of the dynamical spectra:



Theorem

Let (ϕ, f ) be a generic pair, where ϕ : M2 → M2 is a
conservative diffeomorphism with Λ ⊂ M2 a hyperbolic set for
ϕ and f : M → R is C2. Then

HD(L(f ,Λ) ∩ (−∞, t)) = HD(M(f ,Λ) ∩ (−∞, t)) =: d(t)

is a continuous real function whose image is [0,min(HD(Λ),1)].

It is also possible to prove ([M17]) the following: let (ϕ, f ) be a
generic pair, where ϕ : M2 → M2 is a diffeomorphism with
Λ ⊂ M2 a hyperbolic set for ϕ and f : M → R is C2. Then
min L(f ,Λψ) = min M(f ,Λψ) = f (p), for a periodic point p ∈ Λψ,
and is an isolated point in both L(f ,Λψ) and M(f ,Λψ).
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In this context, in collaboration with D. Lima, we proved the
following result on the topological structure of typical dynamical
Markov and Lagrange spectra:

Theorem (M., D. Lima)

Let Λ be a horseshoe associated to a conservative C2

diffeomorphism ϕ such that HD(Λ) > 1. Then there is,
arbitrarily close to ϕ a diffeomorphism ϕ0 and a residual set R
in a C2-neighborhood W of ϕ0 such that, if Λψ denotes the
continuation of Λ associated to ψ ∈ R, there is a residual set
Hψ ⊂ C1(M,R) such that for all f ∈ Hψ, we have

sup{t ∈ R|d(t) < 1} = inf int L(f ,Λψ) = inf int M(f ,Λψ) 6= ∅.



The classical Markov and Lagrange spectra can also be
characterized as sets of maximum heights and asymptotic
maximum heights, respectively, of geodesics in the modular
surface N = H2/PSL(2,Z).
A small movie by Pierre Arnoux and Edmund Harriss

We extend the fact that these spectra have non-empty interior
to the context of negative, non necessarily constant curvature
as follows:

Theorem (M., Romaña)
Let N provided with a metric g0 be a complete surface with
finite Gaussian volume and Gaussian curvature bounded
between two negative constants, i.e., if KN denotes the
Gaussian curvature, then there are constants a,b > 0 such that

−a2 ≤ KN ≤ −b2 < 0.

SN is its unitary tangent bundle and φ its geodesic flow.
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Theorem (M., Romaña, continuation)

Then there is a metric g close to g0 and a dense and C2-open
subset H ⊂ C2(SN,R) such that

int M(f , φg) 6= ∅ and int L(f , φg) 6= ∅

for any f ∈ H, where φg is the vector field defining the geodesic
flow of the metric g.
Moreover, if X is a vector field sufficiently close to φg then

int M(f ,X ) 6= ∅ and int L(f ,X ) 6= ∅

for any f ∈ H.

We proved analogous results for geometric Lorenz attractors in
collaboration with M. J. Pacífico and S. Romaña.



A. Cerqueira, C. Matheus and C. G. Moreira Continuity of
Hausdorff dimension across generic dynamical Lagrange
and Markov spectra. https://arxiv.org/abs/1602.04649

T.W. Cusick and M.E. Flahive, The Markoff and Lagrange
spectra, Math. Surveys and Monographs, no. 30, A.M.S.
(1989).

S. Crovisier and E. Pujals Essential hyperbolicity and
homoclinic bifurcations: a dichotomy
phenomenon/mechanism for diffeomorphisms. Invent.
Math. 201 (2015), no. 2, pp. 385–517.

G.A. Freiman, Diophantine approximation and geometry of
numbers (The Markoff spectrum), Kalininskii
Gosudarstvennyi Universitet, Moscow, 1975.

M. Hall, On the sum and product of continued fractions,
Annals of Math., Vol. 48, (1947), pp. 966–993.



S. Hayashi. Connecting invariant manifolds and the
solution of the C1 stability and Ω-stability conjectures for
flows. Annals of Math., Vol. 145 (1997), pp. 81–137.

M. Hochman and P. Shmerkin, Local entropy averages and
projections of fractal measures. Annals of Math.
175(3):1001-1059 (2012).

A. Markov, Sur les formes quadratiques binaires indf́inies,
Math. Ann. v. 15, p. 381-406, 1879.

R. Mañé, A proof of the C1 stability conjecture. Publ. Math.
I.H.E.S. 66 (1988), pp. 161–210.

J.M. Marstrand, Some fundamental geometrical properties
of plane sets of fractional dimensions, Proceedings of the
London Mathematical Society 3 (1954), vol. 4, 257-302.

C. Matheus and C.G. Moreira, 0.353 < HD(M \ L).
https://arxiv.org/abs/1703.04302



C.G. Moreira, Stable intersections of Cantor sets and
homoclinic bifurcations, Ann. Inst. H. Poincaré Anal. Non
Linéaire 13 (1996), no. 6, pp. 741–781.

C.G. Moreira, Geometric properties of the Markov and
Lagrange spectra, Annals of Math 188 (2018), no. 1,
145–170.

C.G. Moreira, Geometric properties of images of cartesian
products of regular Cantor sets by differentiable real maps.
https://arxiv.org/abs/1611.00933

C.G. Moreira, On the minima of Markov and Lagrange
Dynamical Spectra. https://arxiv.org/abs/1711.01565

C.G. Moreira, S. Romaña, On the Lagrange and Markov
Dynamical Spectra. , Ergodic Theory and Dynamical
Systems, , pp. 1–22. doi: 10.1017/etds.2015.121.



C.G. Moreira, S. Romaña, On the Lagrange and Markov
Dynamical Spectra for Geodesic Flows in Surfaces with
Negative Curvature. http://arxiv.org/abs/1505.05178

C.G. Moreira, M. J. Pacífico, S. Romaña, Hausdorff
Dimension, Lagrange and Markov Dynamical Spectra for
Geometric Lorenz Attractors.
https://arxiv.org/abs/1611.01174

L. Mora and M. Viana, Abundance of strange attractors.
Acta Math. 171 (1993), no. 1, pp. 1–71.

C.G. Moreira, J.-C. Yoccoz Stable intersections of regular
Cantor sets with large Hausdorff dimensions. Annals Of
Mathematics, v. 154, n. 1, p. 45-96, 2001.

C.G. Moreira, J.-C. Yoccoz Tangences homoclines stables
pour des ensembles hyperboliques de grande dimension



fractale. Annales Scientifiques de l’École Normale
Supérieure, 43, fascicule 1, p. 1-68, 2010.

S. Newhouse, Non density of Axiom A(a) on S2, Proc.
A.M.S. Symp. Pure Math., Vol. 14, (1970), pp. 191–202.

S. Newhouse, Diffeomorphisms with infinitely many sinks,
Topology, Vol. 13, (1974), pp. 9–18.

S. Newhouse, The abundance of wild hyperbolic sets and
nonsmooth stable sets for diffeomorphisms, Publ. Math.
IHES, Vol. 50, (1979), pp. 101–151.

J. Palis, Homoclinic orbits, hyperbolic dynamics and
fractional dimension of Cantor sets, Contemporary
Mathematics 58, (1987), pp. 203–216.

J. Palis and F. Takens, Hyperbolicity and sensitive chaotic
dynamics at homoclinic bifurcations: fractal dimensions and
infinitely many attractors, Cambridge Univ. Press, 1992.



E. Pujals and M. Sambarino, Homoclinic tangencies and
hyperbolicity for surface diffeomorphisms. Annals of Math.
(2) 151 (2000), no. 3, pp. 961–1023.

P. Shmerkin, Moreira’s Theorem on the arithmetic sum of
dynamically defined Cantor sets,
http://arxiv.org/abs/0807.3709



Muito obrigado!
Muchas gracias!

Thank you very much!
Merci beaucoup!

(. . . )


