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Two “discriminants”:

1. discriminant of a polynomial

2. discriminant of an algebraic number field

We are primarily interested in the latter one, but there are interesting
things to say about the other and about how the two notions are
connected. That is the focus of this talk.
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Dedekind and Algebraic Number Theory

The Tenth Supplement, which first appeared in the second
edition of 1871, created, at a single hammer-blow, modern
algebraic number theory. . .

(William Ewald, From Kant to Hilbert, vol II, p. 762.)

Perhaps we can find a little more about the process behind that
hammer-blow.
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The discriminant of a polynomial

Let

f (x) = (x− r1)(x− r2) . . . (x− rn)

= xn − s1x
n−1 + s2x

n−2 + · · · + (−1)nsn.

The discriminant of f is

disc(f ) =
∏
i<j

(ri − rj)2.

(If f (x) is not monic, multiply by the (2n− 2)th power of the leading
coefficient.)

Some authors define disc(f ) =
∏
i �=j

(ri − rj), which differs by a sign.
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Since permuting the roots does not change disc(f ), it is possible to
express it as a polynomial in the elementary symmetric functions si.

So we really want to think of disc(f ) as the polynomial in
s1, s2, . . . , sn which equals (one of) the product(s) above.
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For example, suppose f (x) = x2 + bx + c. Then we know the roots
are

r1 =
−b +

√
b2 − 4c

2
r2 =

−b−√
b2 − 4c

2
so

r1 − r2 =
√
b2 − 4c

and

disc(f ) = b2 − 4c.
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This quantity appears, without a name, in several bits of 18th
century mathematics.

For example, Lagrange looked at the polynomial whose roots are
(ri − rj)2 to study the number of “imaginary” roots of a polynomial.
The independent term of that polynomial is the discriminant.

Several similar examples, but nothing systematic until Gauss, who
introduced what he called the determinant of a polynomial.
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Gauss

1. Determinant of a quadratic form ax2 + 2bxy + cy2 is b2 − ac.
(Disquisitiones Arithmeticae, 1801)

2. Determinant of a ternary quadratic form

ax2 + a′x′x′ + a′′x′′x′′ + 2bx′x′′ + 2b′xx′′ + 2b′′xx′

is

ab2 + a′b′b′ + a′′b′′b′′ − aa′a′′ − 2bb′b′′.

(Also in the D.A.)

3. Determinant of a (monic) polynomial in general.
(Demonstratione Nova Altera Theorematis Omnem Functionem
Algebraicam Rationalem Integram Unius Variabilis in Factores
Reales Primi vel Secondi Gradus Resolvi Posse, 1815)
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More Gauss

In the 1815 paper:

• Proof that symmetric functions of the roots can be expressed as
polynomials in the coefficients.

• Definition of the “determinant.”

• Distinction between the function of the roots and the
polynomial in the coefficients.

• Proof of the main properties without assuming the polynomial
has roots.
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With the development of the theory of determinants (of n× n

arrays), it became clear that disc(f ) is (up to sign and a power of the
leading coefficient) the square of the Vandermonde determinant

det

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 . . . 1

r1 r2 r3 . . . rn

r2
1 r2

2 r2
3 . . . r2

n

. . . . . . . . . . . . . . .

rn−1
1 rn−1

2 rn−1
3 . . . rn−1

n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Enter Elimination Theory

Beginning with Bézout’s work in the late 1700s, much effort was put
into systematizing the process of eliminating a variable in a system
of several equations.

In the mid-1800s, J. J. Sylvester formalized the process, defining the
resultant of two polynomials.

If applied to two polynomials in one variable, the resultant is a
number (the variable is “eliminated”); it is zero if and only if the
polynomials have a common root.
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From the point of view of Elimination Theory, disc(f ) can also be
interpreted as the resultant of f (x) and f ′(x), which yields a
determinant formula for disc(f )

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 −s1 s2 ... ±sn−1 ±sn 0 ... 0

0 1 −s1 ... ±sn−2 ±sn−1 ±sn ... 0

... ... ... ... ... ... ... ... ...

0 0 0 ... 1 −s1 s2 ... ±sn

n −(n−1)s1 (n−2)s2 ... ±sn−1 0 0 ... 0

0 n −(n−1)s1 ... ±2sn−2 ±sn−1 0 ... 0

... ... ... ... ... ... ... ... ...

0 0 0 ... n −(n−1)s1 (n−2)s2 ... ±sn−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(I hope that is right!)
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The new name “discriminant” was proposed by Sylvester in 1851:

. . . where I denotes the determinant, or, as I shall in the
future call such function (in order the avoid the obscurity
and confusion arising from employing the same word in two
different senses) the Discriminant. . .

(On a Remarkable Discovery in the Theory of Canonical Forms and
Hyperdeterminants, 1851; Mathematical Papers, vol. 1, p. 280.)

He adds a footnote.
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“Discriminant,” because it affords the discrimen or test for
ascertaining whether or not equal factors enter into a function of
two variables, or more generally of the existence or otherwise of
multiple points in the locus represented or characterized by any
algebraical function, the most obvious and first observed species of
singularity in such function or locus. Progress in these researches is
impossible without the aid of clear expression; and the first
condition of a good nomenclature is that different things shall be
called by different names. The innovations in mathematical
language here and elsewhere (not without high sanction) introduced
by the author, have been never adopted except under actual
experience of the embarrassment arising from the want of them, and
will require no vindication to those who have reached that point,
where the necessity of some such additions becomes felt.
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A later comment:

The truth of the remark is not appreciably diminished by
the occurrence of the word “meso-catalecticism” in another
footnote two pages on.

Thomas Muir, The Theory of Determinants in the Historical Order
of Development, vol. 2, p. 63 (1911)
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Hermite was already using the new term in 1854, attributing it to
“les Géomètres anglais.” (Crelle 47; Œvres, vol. 1, p. 225.)

In 1857, we see Hermite saying “. . . le discriminant (déterminant de
Gauss). . . ” (Crelle 53; Œvres, vol. 1, p. 416.) So the term was not
yet in wide use.

When was it adopted in German? Dedekind used “discriminant” in
1871.
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Francesco Brioschi used the new term in his La teorica dei
determinanti e le sue principali applicazioni (1854). Brioschi is
clearly following Sylvester. Brioschi’s book was translated to
German in 1856.

George Salmon’s book on algebra was translated to German in
1863; Salmon, of course, used “discriminant.”

Both terms seem to coexist in German for a long time. Kronecker
was using “determinant” of a quadratic form well into the 1870s.
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One way to trace the acceptance of the new term in German:
Richard Baltzer, Theorie und Anwendung der Determinanten

• “determinant”: First edition (1857) to third edition (1870).

• “discriminant”: Fourth edition (1875) and after.

Bei dem jetzigen Sprachgebrauch ist der von Sylvester (Philos.
Mag, 1851. II p. 406) gebildete Name “Discriminante”
bezeichnender.

(Baltzer, 4th ed., footnote on p. 123)
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The discriminant matters

Kronecker, 1854: Let n be a positive integer, let Φn(x) be the nth
cyclotomic polynomial, and let α be a root of a monic polynomial
f (x) with integer coefficients. If gcd(n, disc(f )) = 1, then Φn(x)
remains irreducible over Q(α). (Notation and terminology
modernized—Kronecker uses “determinant.”)

Dedekind points to this result in 1871 as offering the “first hint”
(erste Spur) that discriminants played a role in understanding the
relationships between different number fields.
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Algebraic Numbers

Let θ be a root of an irreducible monic polynomial f (x) of degree n

with integer coefficients. Gauss, Dirichlet, Eisenstein, and Kummer
all studied the field Q(θ) consisting of all rational functions of θ.

Any element ω of Q(θ) can be written as

ω = a1 + a2θ + a3θ
2 + · · · + anθ

n−1

with ai ∈ Q.

The natural choice of “integers” will then be Z[θ], namely (the set
of) those ω for which all ai are integers. The desire is to study the
“arithmetic” of such “integers.”

19



Problem 1: Many different θ will define the same field. For example
Q(2θ) is the same as Q(θ), but Z[2θ] is much smaller than Z[θ].
What’s worse, the choice affects the arithmetic we want to study.

Problem 2: While one can factor elements of Z[θ] as products of
non-factorable elements (and units), these factorizations are usually
not unique.
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Prototype Example: take θ1 =
√−3 to be a root of x2 + 3 and

θ2 = (−1 +
√−3)/2 to be a root of x2 + x + 1. Then Q(θ1) = Q(θ2).

Eisenstein studied the arithmetic of Z[θ2], which has unique
factorization.

On the other hand, Z[θ1] = Z[
√−3] is a real mess:

(1 +
√−3)3 = −8 = −23

so no good factorization theory is possible!
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The equation

(1 +
√−3)3 = −8 = −23

contradicts any prime factorization theory for Z[
√−3]:

Let π be a prime, and write vπ(a) for the multiplicity of π in the
factorization of a. Then we gave 3vπ(1 +

√−3) = 3vπ(2) and hence
vπ(1 +

√−3) = vπ(2).

Since this holds for any π there must be an invertible element
u + v

√−3 such that 1 +
√−3 = 2(u + v

√−3) = 2u + 2v
√−3,

which is impossible because 2u and 2v are even.
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Key definition: an element ω ∈ Q(θ) is an algebraic integer if it is the
root of a monic polynomial with integer coefficients. (Seems to be
due independently to Dedekind and Kronecker.)

We can always take our field to be Q(θ), where θ is an algebraic
integer. Then every element of Z[θ] is an algebraic integer as well,
but there may be other algebraic integers in Q(θ).

Basic question: how bad can it be? Suppose ω is an algebraic integer
and

ω = a1 + a2θ + a3θ
2 + · · · + anθ

n−1

with ai ∈ Q. Can we control the size of the denominators of the ai?
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Theorem: Suppose ω is an algebraic integer. Write

ω =
1
d

(
a1 + a2θ + a3θ

2 + · · · + anθ
n−1)

with ai ∈ Z, gcd(a1, . . . , an) = 1. Then d2 is a divisor of disc(f ).

(First published by Dedekind, 1871.)

This seems to have been the key result. The proof given by Dedekind
also suggest how to generalize the notion of the discriminant.
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Suppose θ is a root of an irreducible monic polynomial f (x) with
integer coefficients. Then we write θ(1) = θ, θ(2), . . . , θ(n) for the roots
of f (x).

Define the i-th conjugate of

ω = a1 + a2θ + a3θ
2 + · · · + anθ

n−1

to be

ω(i) = a1 + a2θ
(i) + a3θ

(i)2
+ · · · + anθ

(i)n−1

It’s easy to check that conjugation respects field operations, and in
particular that the conjugate of an algebraic integer is also an
algebraic integer.
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Dedekind’s proof shows: if ω is an algebraic integer, then there exists
a basis {α1, α2, . . . , αn} of the field Q(θ), with all αi algebraic
integers, such that

disc(f ) = ±d2

⎛
⎜⎜⎜⎜⎜⎝

det

⎡
⎢⎢⎢⎢⎢⎣

α1 α2 . . . αn

α(2)
1 α(2)

2 . . . α(2)
n

. . . . . . . . . . . .

α(n)
1 α(n)

2 . . . α(n)
n

⎤
⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎠

2

.

This leads to defining the quantity on the left to be the discriminant
of the system of algebraic numbers {α1, α2, . . . , αn}.
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disc(α1, α2, . . . , αn) =

⎛
⎜⎜⎜⎜⎜⎝

det

⎡
⎢⎢⎢⎢⎢⎣

α1 α2 . . . αn

α(2)
1 α(2)

2 . . . α(2)
n

. . . . . . . . . . . .

α(n)
1 α(n)

2 . . . α(n)
n

⎤
⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎠

2

It is easy to see that it is a rational integer when the αi are algebraic
integers.

Notice that

disc(f ) = ± disc(1, θ, θ2, . . . , θn−1).
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To do this Dedekind had to understand enough linear algebra to be
able to explain what a basis is, and also enough about “modules”
(in modern terms, torsion-free finitely-generated Z-modules) to
prove the desired result.

It’s possible to give a theory-free proof applying Cramer’s rule to the
system of equations giving ω and its conjugates in terms of θ and its
conjugates. Kronecker went that way in his 1881 Grundzüge.
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Look at the formula again: if ω is an algebraic integer whose
expression in terms of powers of θ has denominator d, then there
exists a basis {α1, α2, . . . , αn} of the field Q(θ), with all αi algebraic
integers, such that

disc(f ) = ±d2 disc(α1, α2, . . . , αn)

More generally, given any two bases of K, their discriminants differ
by a square factor �2.
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It then follows that

• There exists a basis of K = Q(θ) consisting of algebraic integers
whose discriminant has smallest possible absolute value.

• An element ω ∈ Q(θ) is an algebraic integer if and only if it is a
Z-linear combination of such a basis.

Dedekind calls this an integral basis of Q(θ) and calls its
discriminant the fundamental number (Grundzahl) or the
discriminant of the algebraic number field. We’ll use the modern
notation dK for this number.
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To summarize: if K = Q(θ) is a number field and {α1, α2, . . . , αn} is
an integral basis, then

dK =

⎛
⎜⎜⎜⎜⎜⎝

det

⎡
⎢⎢⎢⎢⎢⎣

α1 α2 . . . αn

α(2)
1 α(2)

2 . . . α(2)
n

. . . . . . . . . . . .

α(n)
1 α(n)

2 . . . α(n)
n

⎤
⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎠

2

.

We have dK ∈ Z. Notice that the determinant itself is not an integer,
so it is possible that d < 0.

Kronecker gave a different, but equivalent, definition.
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After the publication of the second edition of Dirichlet-Dedekind in
1871, Dedekind wrote an “Anziege”, a kind of book notice. The
description of ideals and factorization he gives there has already
evolved a little. In particular, he says that he had proved a
connection to “higher congruences” that did not appear in
Supplement X.

Suppose p is a rational prime, K is a number field of discriminant
disc(K). The question is to determine the factorization of p as an
algebraic integer in K.
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Let f (x) be a monic polynomial with integer coefficients whose root
θ is a primitive element for K, i.e., K = Q(θ). Then, as above,
disc(f ) = ±�2dK for some integer k.

Suppose p does not divide � and

f (x) ≡ P1(x)P2(x) . . . Pm(x) (mod p)

with Pi(x) irreducible modulo p.

Then there exist primes p1, p2, . . . , pm (explicitly given in terms of
the polynomials Pi(x)) such that

(p) = p1p2 . . . pm.
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In other words, if disc(f ) = ±�2dK and p does not divide �, we can
determine the factorization of p in K by factoring f (x) modulo p.

The natural question, then, is whether this suffices to determine the
factorizations of all rational primes. We could if this were true:

Let K be a number field. For each prime p one can find an algebraic
integer θ with irreducible polynomial f (x) such that K = Q(θ),
disc(f ) = ±�2dK , and p does not divide �.
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Conjecture: Let K be a number field. For each prime p one can find
an algebraic integer θ with irreducible polynomial f (x) such that
K = Q(θ), disc(f ) = ±�2dK , and p does not divide �.

Dedekind quickly realized that this is cannot be true!
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Dedekind’s Observation

Suppose we have a number field K of degree 3 in which 2 factors as
a product of three different primes: (2) = p1p2p3.

If we can find an algebraic integer θ with irreducible polynomial f (x)
(necessarily of degree 3) such that K = Q(θ), disc(f ) = ±�2 disc(K),
and � is odd (i.e., not divisible by 2), then we must have

f (x) = F1(x)F2(x)F3(x) (mod 2)

with F1, F2 and F3 distinct irreducible polynomials of degree one in
F2[x].
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Dedekind’s Observation

Suppose we have a number field K of degree 3 in which 2 factors as
a product of three different primes: (2) = p1p2p3.

If we can find an algebraic integer θ with irreducible polynomial f (x)
(necessarily of degree 3) such that K = Q(θ), disc(f ) = ±�2 disc(K),
and � is odd (i.e., not divisible by 2), then we must have

f (x) = F1(x)F2(x)F3(x) (mod 2)

with F1, F2 and F3 distinct irreducible polynomials of degree one in
F2[x].

But there are only two such polynomials!
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Dedekind found an explicit example, a cubic field K of discriminant
−503 in which 2 is a product of three distinct primes. Then for any
α with K = Q(α) and minimal polynomial f (x), we must have
disc(f ) divisible by 4.

For this field, the prime 2 is a common inessential discriminant
divisor: it divides the discriminants of all minimal polynomials of
generators of K, but it does not actually divide dK .

Natural question: when do CIDDs occur? This question was
considered by both Dedekind and Hensel, independently of each
other.
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Is it a Good Question?

It certainly has theoretical significance: Zolotarev’s first attempt at a
theory of algebraic numbers would have worked if CIDDs did not
exist. (This seems to have been Dedekind’s motivation for writing
the 1878 paper.)

The factorization theorem is very easy to use, so it is somewhat
frustrating when it cannot be used.

It would help us to compute dK .
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Dedekind’s observation is a sufficient condition: if in a field K we
know that

(p) = pe1
1 pe2

2 . . . pemm

with distinct prime ideals p1, p2, . . . , pm of degrees f1, f2, . . . , fm

and there do not exist m incongruent mod p monic irreducible
polynomials Pi of degree fi, then p is a common inessential
discriminant divisor.

This is very likely to happen when p is small enough!

So CIDDs are not uncommon.
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Is this the only reason? In other words, are CIDDs entirely a small
primes phenomenon?

Or might there be situations where CIDDs occur for a deeper, more
mysterious reason?
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Dedekind’s Answer

In 1878, Dedekind published Über der Zusammenhang zwischen
der Theorie der Ideale und der Theorie der höheren Kongruenzen, in
the Abhandlungen der Königschen Gesellschaft der Wissenschaften
zu Göttingen, volume 23, 1878, pages 1–23.

The first section gives a proof of the theorem giving the factorization
of p when it is not an index divisor.

The second and third sections give an explicit constructive way to
test whether a prime p divides the index of an algebraic integer θ.
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Dedekind’s Answer

In the fourth section, Dedekind shows that his initial observation is
in fact a necessary and sufficient condition:

Theorem: Let f1, f2, . . . , fm be the (residual) degrees of the prime
divisors p1, p2, . . . , pm dividing p. Suppose there exist m monic
irreducible polynomials Pi, pairwise incongruent mod p, with
deg(Pi) = fi. Then there exists an algebraic integer θ ∈ K whose
index is not divisible by p.
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Historiographical Note

In Hasse’s Number Theory, chapter 25, section 6 (p. 456 of the
English translation), this criterion is stated, and Hasse says:

“In deriving this criterion, Hensel gave the first demonstration of the
power of his new foundation of algebraic number theory.”

As we will see, Hensel did give such a proof, but 16 years after
Dedekind. And the first proof did not use the “new foundation” at
all!
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Does Dedekind’s Theorem Settle the Question?

In a way, yes. It shows that common inessential discriminant
divisors are a “small primes” phenomenon, depending entirely on a
combinatorial condition: are there sufficiently many irreducible
polynomials mod p?

On the other hand, to apply Dedekind’s criterion requires that we
know the factorization of p. Our initial goal was precisely to
determine that factorization!
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Kronecker and CIDDs

In his famous Grundzüge (1882), Kronecker tells us that he had
known about the problem of index divisors since 1858:

“I found a similar example in the thirteenth roots of unity when, in
1858, I was doing my first work on this theory. These examples
show that the introduction of forms is necessary even in the more
special theory of algebraic numbers. . . ”

Like Dedekind, Kronecker is arguing that a more sophisticated
approach was necessary.
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Kronecker and Hensel

Hensel was Kronecker’s student, and his first assignment (either
from Kronecker or chosen by himself) seems to have been to recreate
Kronecker’s example “in the 13th roots of unity.”

Since for the cyclotomic fields there is always a θ whose index is 1,
this must mean that K is a subfield of Q(μ13).

Hensel found that 3 was a CIDD in the (unique) quartic subfield.
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Generalizing, Hensel found a sufficient criterion for a subfield of a
cyclotomic Q(μp), with p prime, to have CIDDs. (In his Ph.D. thesis,
1884.)

Hensel’s criterion is not necessary, but he made a big effort to prove
that it was. Knowing Dedekind’s criterion and Kummer’s work on
cyclotomic fields, it is easy to construct an counterexample. Hensel
cites Dedekind’s paper, but apparently had not read it carefully!

Indeed, it seems that the only part of Dedekind’s 1878 paper that
Hensel really understood was the explicit example of a field where 2
was a CIDD.

48



Hensel’s 1894 Paper

“Arithmetische Untersuchungen über die gemeinsamen
ausserwesentlichen Discriminantentheiler einer Gattung” (Journal
für die Reine und Angewandte Mathematik, 113 (1894), 128–160

This paper seems to contain results from Hensel’s Habilitation
(1886), which was never published. (For details, see Petri’s Perioden,
Elementartheiler, Transzendenz: Kurt Hensels Weg zu den
p-adischen Zahlen.)

Hensel seems to have waited until after Kronecker’s death (late
1891) because he was under the impression that a proof might be
found among his teacher’s papers.
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Hensel’s 1894 Paper

First part: gives a proof of Dedekind’s condition. He cites Dedekind
for the sufficiency but seems to think the converse is new. His proof
is identical to Dedekind’s.

§2 opens with: “The result from the previous section can also be
expressed in another form that is remarkable in that to apply it we
do not need to know the decomposition of p. . . ”
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To give that criterion, we have to review some Kroneckerian ideas.

Given a number field K, first find an integral basis {α1, α2, . . . , αn}.
Now look at the “generic integer”

ω = u1α1 + u2α2 + · · · + unαn

where the ui are variables.

As before, let ω(1) = ω and write ωi) for the conjugates. The
fundamental equation of the field K is

F (t, u1, u2, . . . , un) = (t− ω(1))(t− ω(2)) . . . (t− ω(n)).

This is a polynomial in n + 1 variables with integer coefficients.
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Hensel’s idea was to compute the discriminant of the fundamental
equation as a polynomial in t. It is

D(u1, u2, . . . , un) =
∏
i<j

(ω(i) − ω(j))2

which is a polynomial in n variables with integer coefficients.

Hensel’s Theorem: the content of D(u1, u2, . . . , un) is exactly dK . In
other words,

D(u1, u2, . . . , un) = dKΔ(u1, u2, . . . , un)2

where Δ is a polynomial with integer coefficients that do not have
any common factors. It is sometimes called the index form.
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Now suppose

θ = a1α1 + a2α2 + · · · + anαn ∈ K,

where the ai are integers. Then the discriminant of θ can be
computed by taking D and plugging the ais in for the uis. So:

disc(θ) = dKΔ(a1, a2, . . . , an)2.

The upshot: if p is a CIDD for K, Δ will be a polynomial whose
coefficients are not all divisible by p, but whose values when we plug
in integers are always divisible by p.

Hensel then gave a constructive criterion for a polynomial to have
that property.
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Does that settle it?

Dedekind’s criterion requires us to know how to factor p in K.

Hensel’s criterion requires us to have an integral basis for K. (It is
also quite heavy in terms of computation.)

The missing piece was supplied by Hensel after 1897: his p-adic
numbers give us a way to find the factorization of p, and then one
can use Dedekind’s criterion. That story I will save for another time.
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So was the problem interesting?

The verdict seems to be “no”!
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