SOME RESULTS ON THE ARITHMETIC BEHAVIOR OF TRANSCENDENTAL FUNCTIONS

Diego Marques

University of Brasilia

October 25, 2018

My first transcendental steps

In 2005, in an undergraduate course of Abstract Algebra, the professor (G.Gurgel) defined transcendental numbers and asked about the algebraic independence of e and π.

My first transcendental steps

In 2005, in an undergraduate course of Abstract Algebra, the professor (G.Gurgel) defined transcendental numbers and asked about the algebraic independence of e and π.

After I found the famous Ribenboim's book (Chapter 10: What kind of number is $\sqrt{2}^{\sqrt{2}}$?):

Kurt Mahler (Germany, 1903-Australia, 1988)

- Mahler's works focus in transcendental number theory, Diophantine approximation, Diophantine equations, etc

Kurt Mahler (Germany, 1903-Australia, 1988)

- Mahler's works focus in transcendental number theory, Diophantine approximation, Diophantine equations, etc
- In 1976, Mahler wrote a book entitled "Lectures on Transcendental Numbers".

Kurt Mahler (Germany, 1903-Australia, 1988)

- Mahler's works focus in transcendental number theory, Diophantine approximation, Diophantine equations, etc
- In 1976, Mahler wrote a book entitled "Lectures on Transcendental Numbers". In its chapter 3, he left three problems, called A,B, and C.

Kurt Mahler (Germany, 1903-Australia, 1988)

- Mahler's works focus in transcendental number theory, Diophantine approximation, Diophantine equations, etc
- In 1976, Mahler wrote a book entitled "Lectures on Transcendental Numbers". In its chapter 3, he left three problems, called A,B, and C.
- The goal of this lecture is to talk about these problems...

Algebraic and transcendental numbers

Algebraic $(\overline{\mathbb{Q}})$: A complex number which is root of a nonzero polynomial with integer coefficients.

A number which is not algebraic is called Transcendental (Euler and Leibniz, XVIII Century).

The first examples of transcendental numbers

In 1844, Liouville proved that

Theorem (Liouville)

If α is an algebraic number of degree $n>1$, then there exists a constant $A>0$, such that

$$
\left|\alpha-\frac{p}{q}\right|>\frac{A}{q^{n}},
$$

for all $p / q \in \mathbb{Q}$

The first examples of transcendental numbers

In 1844, Liouville proved that

Theorem (Liouville)

If α is an algebraic number of degree $n>1$, then there exists a constant $A>0$, such that

$$
\left|\alpha-\frac{p}{q}\right|>\frac{A}{q^{n}}
$$

for all $p / q \in \mathbb{Q}$

The number

$$
\sum_{n=1}^{\infty} 10^{-n!}=0.110001000000000000000001000000 \ldots
$$

is transcendental.

Transcendence of some constants

- 1874, Charles Hermite: transcendence of e.
- 1882, Ferdinand Lindemann: transcendence of π.
- 1934, Aleksandr Gelfond: transcendence of

$$
e^{\pi}=23.1406926327792690057290863679 \ldots
$$

- 1996, Yuri Nesterenko: transcendence of

$$
\pi+e^{\pi}=26.282285286369062244 \ldots
$$

Hermite-Lindemann Theorem

Theorem (Hermite-Lindemann)

If $\alpha \in \overline{\mathbb{Q}}$ is nonzero, then e^{α} is transcendental.
Consequences: For all $\alpha \in \overline{\mathbb{Q}}$, nonzero, $\cos \alpha, \sin \alpha, \log \alpha(\alpha \neq 1)$ are transcendental (Euler formula: $e^{i \alpha}=\cos \alpha+i \sin \alpha$)

The Gelfond-Schneider Theorem

At the 1900 International Congress of Mathematicians in Paris, as the seventh in his famous list of 23 problems, Hilbert gave a big push to transcendental number theory with his question of the arithmetic nature of the power α^{β} of two algebraic numbers α and β. In 1934, Gelfond and Schneider, independently, completely solved the problem

Theorem

If $\alpha \in \overline{\mathbb{Q}} \backslash\{0,1\}$, and $\beta \in \overline{\mathbb{Q}} \backslash \mathbb{Q}$, then α^{β} is transcendental.
Consequences: The numbers $2^{\sqrt{2}}, 2^{i}$ and e^{π} are transcendental. $\left(e^{\pi}=(-1)^{-i}\right)$

Baker's Theorem

Theorem (Baker (Fields Medal - 1970))

Let $\alpha_{1}, \ldots, \alpha_{n}$ be nonzero algebraic numbers and let $\beta_{1}, \ldots, \beta_{n}$ be algebraic numbers, then

$$
\Lambda=\beta_{1} \log \alpha_{1}+\cdots+\beta_{n} \log \alpha_{n} \neq 0
$$

is a transcendental number.
Consequences: The numbers $\log 2+\sqrt{3} \log 3$ and $\pi+\log 2$ are transcendental. $(-i \log (-1)=\pi)$

Algebraic and transcendental functions

A function $f: \Omega \rightarrow \mathbb{C}$ is called algebraic (over \mathbb{C}), if there exists $P(x, y) \in \mathbb{C}[x, y]$, nonzero, such that

$$
P(z, f(z))=0, \text { for all } z \in \Omega
$$

On the contrary f is said to be transcendental.

Algebraic and transcendental functions

A function $f: \Omega \rightarrow \mathbb{C}$ is called algebraic (over \mathbb{C}), if there exists $P(x, y) \in \mathbb{C}[x, y]$, nonzero, such that

$$
P(z, f(z))=0, \text { for all } z \in \Omega
$$

On the contrary f is said to be transcendental.
Example: The functions $e^{z}, \cos z, \sin z, \log z$ are transcendental.

Algebraic and transcendental functions

A function $f: \Omega \rightarrow \mathbb{C}$ is called algebraic (over \mathbb{C}), if there exists $P(x, y) \in \mathbb{C}[x, y]$, nonzero, such that

$$
P(z, f(z))=0, \text { for all } z \in \Omega .
$$

On the contrary f is said to be transcendental.
Example: The functions $e^{z}, \cos z, \sin z, \log z$ are transcendental.
An entire function f is transcendental if and only if it is not a polynomial.

A brief history

- In 1886, Strauss tried to prove that an analytic transcendental function cannot be rational at all rational points in its domain.

A brief history

- In 1886, Strauss tried to prove that an analytic transcendental function cannot be rational at all rational points in its domain.
- In 1886, Weierstrass supplied him with a counter-example and also stated that there are transcendental entire functions which assume algebraic values at all algebraic points.

A brief history

- In 1886, Strauss tried to prove that an analytic transcendental function cannot be rational at all rational points in its domain.
- In 1886, Weierstrass supplied him with a counter-example and also stated that there are transcendental entire functions which assume algebraic values at all algebraic points.
- In 1896, Stäckel proved that for each countable subset $\Sigma \subseteq \mathbb{C}$ and each dense subset $T \subseteq \mathbb{C}$, there exists a transcendental entire function f such that $f(\Sigma) \subseteq T$

A brief history

- In 1886, Strauss tried to prove that an analytic transcendental function cannot be rational at all rational points in its domain.
- In 1886, Weierstrass supplied him with a counter-example and also stated that there are transcendental entire functions which assume algebraic values at all algebraic points.
- In 1896, Stäckel proved that for each countable subset $\Sigma \subseteq \mathbb{C}$ and each dense subset $T \subseteq \mathbb{C}$, there exists a transcendental entire function f such that $f(\Sigma) \subseteq T$ (Weiestrass assertion: $\Sigma=T=\overline{\mathbb{Q}}$).

A brief history: Mahler's question B

- In 1902, Stäckel produced a transcendental function $f(z)$, analytic in a neighbourhood of the origin, and with the property that both $f(z)$ and its inverse function assume, in this neighbourhood, algebraic values at all algebraic points (his proof depends on the implicit function theorem)

A brief history: Mahler's question B

- In 1902, Stäckel produced a transcendental function $f(z)$, analytic in a neighbourhood of the origin, and with the property that both $f(z)$ and its inverse function assume, in this neighbourhood, algebraic values at all algebraic points (his proof depends on the implicit function theorem)
- Based on this result, in his 1976 book, Mahler suggested the following question

A brief history: Mahler's question B

- In 1902, Stäckel produced a transcendental function $f(z)$, analytic in a neighbourhood of the origin, and with the property that both $f(z)$ and its inverse function assume, in this neighbourhood, algebraic values at all algebraic points (his proof depends on the implicit function theorem)
- Based on this result, in his 1976 book, Mahler suggested the following question

Problem B

Does there exist a transcendental entire function

$$
f(z)=\sum_{n=0}^{\infty} f_{n} z^{n},
$$

where $f_{n} \in \mathbb{Q}$ and such that both $f(z)$ and its inverse function are algebraic at all algebraic points?

Algebra: celebrating Paulo Ribenboim's ninetieth birthday

00000000000000000000000

Some important theorems

The complete answer

In 2017, we solved completely this Mahler question by proving that

The complete answer

In 2017, we solved completely this Mahler question by proving that
Theorem (M., Moreira)
There are uncountable many transcendental entire functions

$$
f(z)=\sum_{n=0}^{\infty} a_{n} z^{n},
$$

with rational coefficients a_{n} and such that the $f(\overline{\mathbb{Q}}) \subseteq \overline{\mathbb{Q}}$ and $f^{-1}(\overline{\mathbb{Q}}) \subseteq \overline{\mathbb{Q}}$.

Algebra: celebrating Paulo Ribenboim's ninetieth birthday

00000000000000000000000

Some important theorems

A generalization

We also proved that

A generalization

We also proved that

Theorem (M., Moreira)

Let X and Y be countable subsets of \mathbb{C} that are dense and closed for complex conjugation. Suppose that either both $X \cap \mathbb{R}$ and $Y \cap \mathbb{R}$ are dense in \mathbb{R} or both intersections are the empty set and that if $0 \in X$, then $Y \cap \mathbb{Q} \neq \emptyset$. Then, there are uncountably many transcendental entire functions

$$
f(z)=\sum_{n=0}^{\infty} a_{n} z^{n},
$$

with rational coefficients a_{n} and such that $f(X)=Y, f^{-1}(Y)=X$ and $f^{\prime}(\alpha) \neq 0$, for all $\alpha \in X$.

Algebra: celebrating Paulo Ribenboim's ninetieth birthday

Exceptional sets

Definition

Let f be an entire function. The exceptional set of f is defined as

$$
S_{f}=\{\alpha \in \overline{\mathbb{Q}}: f(\alpha) \in \overline{\mathbb{Q}}\}
$$

Exceptional sets

Definition

Let f be an entire function. The exceptional set of f is defined as

$$
S_{f}=\{\alpha \in \overline{\mathbb{Q}}: f(\alpha) \in \overline{\mathbb{Q}}\}
$$

In 1886, Weierstrass proposed the following questions

Weierstrass questions:

(W1) Is there a transcendental entire function f such that $S_{f}=\overline{\mathbb{Q}}$? (W2) What are the possible S_{f}, for f entire and transcendental?

In 1895, Paul Sta̋ckel showed that the answer for (W1) is Yes.

Mahler and the question (W2)

A set $A \subseteq \overline{\mathbb{Q}}$ is closed related to $\overline{\mathbb{Q}}$, if for each $\alpha \in A$, the all its (algebraic) conjugates also become to A.

Mahler and the question (W2)

A set $A \subseteq \overline{\mathbb{Q}}$ is closed related to $\overline{\mathbb{Q}}$, if for each $\alpha \in A$, the all its (algebraic) conjugates also become to A.

In 1965, Kurt Mahler proved that

Theorem

If A is closed related to $\overline{\mathbb{Q}}$, then there exists a transcendental entire function $f \in \mathbb{Q}[[z]]$, such that $S_{f}=A$.

Consequences: Every subset of \mathbb{Q} (e.g., the prime numbers) and every normal extension of $\mathbb{Q}($ e.g., $\mathbb{Q}(\sqrt{2}))$ are exceptional sets.

Our result: Exceptional sets are not exceptional!

In 2009, it was proved that

Theorem (Huang-M.-Mereb, 2009)

For any $A \subseteq \overline{\mathbb{Q}}$, there exist uncountable many transcendental entire functions f, such that

$$
S_{f}=A
$$

Mahler's problem C

In his 1976 book, Mahler suggested the following question

Problem C

Does there exist for any choice of $\rho \in(0, \infty]$ and $S \subseteq \overline{\mathbb{Q}}$ (closed under complex conjugation) a transcendental function $f \in \mathbb{Q}[[z]]$ for which $S_{f}=S$ and with convergence radius ρ ?

Algebra: celebrating Paulo Ribenboim's ninetieth birthday

00000000000000000000000
The Mahler contribution

Solution for $\rho=\infty$

The case $\rho=\infty$ was solved in

Solution for $\rho=\infty$

The case $\rho=\infty$ was solved in
Theorem (M., Ramirez, 2016)
For any $A \subseteq \overline{\mathbb{Q}}$ (closed under complex multiplication with $0 \in A$), there exist uncountable many transcendental entire functions $f \in \mathbb{Q}[[z]]$, such that

$$
S_{f}=A
$$

The general case

Theorem (M., Moreira, 2018)
There exist for any choice of $\rho \in(0, \infty]$ and $S \subseteq \mathbb{Q}$ (closed under complex conjugation) a transcendental function $f \in \mathbb{Q}[[z]]$ for which $S_{f}=S$ and such that its convergence radius ρ

Current research

In a recent paper, jointly with Gugu, we proved that
Theorem (M., Moreira)
For any $A \subseteq \overline{\mathbb{Q}} \cap B(0,1)$ (closed under complex multiplication with $0 \in A$), there exist uncountable many transcendental functions $f \in \mathbb{Z}[[z]]$ analytic inside the unit ball, such that

$$
S_{f}=A
$$

"The last Mahler's question": Problem A

Mahler still raised the following problem:

"The last Mahler's question": Problem A

Mahler still raised the following problem:

Problem A

Is there a transcendental function $f(z)=\sum_{k \geq 0} a_{k} z^{k} \in \mathbb{Z}[[z]]$ analytic in $B(0: 1)$ with bounded coefficients and such that $f(\overline{\mathbb{Q}} \cap B(0: 1)) \subseteq \overline{\mathbb{Q}}$?

"The last Mahler's question": Problem A

Mahler still raised the following problem:

Problem A

Is there a transcendental function $f(z)=\sum_{k \geq 0} a_{k} z^{k} \in \mathbb{Z}[[z]]$ analytic in $B(0: 1)$ with bounded coefficients and such that $f(\overline{\mathbb{Q}} \cap B(0: 1)) \subseteq \overline{\mathbb{Q}}$?

Mahler conjectured that the answer is No, and he showed the following evidence.

Algebra: celebrating Paulo Ribenboim's ninetieth birthday

00000000000000000000000
The Mahler contribution

A result of Mahler

Theorem (Mahler, 1965)

Let $f \in \mathbb{Z}[[z]]$ be a strongly lacunary power series with bounded coefficients, then $f(\overline{\mathbb{Q}} \cap B(0: 1)) \nsubseteq \overline{\mathbb{Q}}$.

A recent result

Let $P(n)$ the largest prime factor of n. Very recently, with Gugu, we prove that

Theorem (M., Moreira)

There exists $f(z)=\sum_{k \geq 0} a_{k} z^{k} \in \mathbb{Z}[[z]]$ analytic in $B(0: 1)$ with $P\left(a_{k}\right) \leq 3$ and such that $f(\overline{\mathbb{Q}} \cap B(0: 1)) \subseteq \overline{\mathbb{Q}}$.
"May his theorems live forever!"
Paul Erdös, remembering Mahler in one of his works
"May his theorems live forever!"
Paul Erdös, remembering Mahler in one of his works

Thank you for your attention!

