A survey on simple derivations and their isotropy groups

Daniel Levcovitz

Universidade de São Paulo, USP
e-mail: lev@icmc.usp.br

90th Ribenboim Birthday, October, 2018.

Summary

(1) d-simplicity

- Applications to Commutative Algebra
(2) The result of Shamsuddin

3 The isotropy group of a derivations

- Simple Shamsuddin derivations

4. Derivations of the polynomial ring $K[X, Y]$
(5) References

d-simplicity

Let K be a field of characteristic zero A be a K-algebra and d a K-derivation of A.
$(d(a+b)=d(a)+d(b) ; d(a b)=d(a) b+a d(b) ; d(K)=0)$.

An ideal I of A is a d-ideal (or d-stable) if $d(I) \subseteq I$. The algebra A is d-simple if (0) e A are the only d-ideals of A.

d-simplicity

Let K be a field of characteristic zero A be a K-algebra and d a K-derivation of A. $(d(a+b)=d(a)+d(b) ; d(a b)=d(a) b+a d(b) ; d(K)=0)$.

An ideal I of A is a d-ideal (or d-stable) if $d(I) \subseteq I$. The algebra A is d-simple if (0) e A are the only d-ideals of A.

d-simplicity

Let K be a field of characteristic zero A be a K-algebra and d a K-derivation of A. $(d(a+b)=d(a)+d(b) ; d(a b)=d(a) b+a d(b) ; d(K)=0)$.

An ideal I of A is a d-ideal (or d-stable) if $d(I) \subseteq I$. The algebra A is d-simple if (0) e A are the only d-ideals of A.

D-simplicity

Let $\emptyset \neq \mathcal{D} \subset \operatorname{Der}(A)$ be a family (finite or not) of derivations de A. The ring A is \mathcal{D}-simple (or \mathcal{D}-stable) if it is d-simple for all derivation $d \in \mathcal{D}$. Finally, A is differentially simple when it is \mathcal{D}-simple for $\mathcal{D}=\operatorname{Der}(A)$.

D-simplicity

Let $\emptyset \neq \mathcal{D} \subset \operatorname{Der}(A)$ be a family (finite or not) of derivations de A. The ring A is \mathcal{D}-simple (or \mathcal{D}-stable) if it is d-simple for all derivation $d \in \mathcal{D}$.
\mathcal{D}-simple for $\mathcal{D}=\operatorname{Der}(A)$.

D-simplicity

Let $\emptyset \neq \mathcal{D} \subset \operatorname{Der}(A)$ be a family (finite or not) of derivations de A. The ring A is \mathcal{D}-simple (or \mathcal{D}-stable) if it is d-simple for all derivation $d \in \mathcal{D}$. Finally, A is differentially simple when it is \mathcal{D}-simple for $\mathcal{D}=\operatorname{Der}(A)$.

Example 1

$$
\begin{aligned}
A & :=K[X] \\
d & =\frac{\partial}{\partial X}
\end{aligned}
$$

Example 1

$$
\begin{aligned}
A & :=K[X] \\
d & =\frac{\partial}{\partial X}
\end{aligned}
$$

$K[X]$ is $\frac{\partial}{\partial X}$ - simple.

Example 2

$$
\begin{aligned}
A & :=K[X] \\
d^{\prime} & =X \frac{\partial}{\partial X}
\end{aligned}
$$

$\mathrm{K}[\mathrm{X}]$ is NOT d^{\prime}-simple.
In fact, (X) is a d^{\prime}-ideal, since

Example 2

$$
\begin{aligned}
A & :=K[X] \\
d^{\prime} & =X \frac{\partial}{\partial X}
\end{aligned}
$$

$\mathrm{K}[\mathrm{X}]$ is NOT d^{\prime}-simple.
In fact, (X) is a $d^{\prime \prime}$-ideal, since

$$
d^{\prime}(X)=X \frac{\partial}{\partial X}(X)=X \in(X)
$$

Example 2

$$
\begin{aligned}
A & :=K[X] \\
d^{\prime} & =X \frac{\partial}{\partial X}
\end{aligned}
$$

$\mathrm{K}[\mathrm{X}]$ is NOT d^{\prime}-simple.
In fact, (X) is a d^{\prime}-ideal, since

$$
d^{\prime}(X)=X \frac{\partial}{\partial X}(X)=X \in(X)
$$

Example 3

$$
\begin{aligned}
A & :=K[X, Y] \\
d & =\frac{\partial}{\partial X}
\end{aligned}
$$

(Y) is a d-ideal.

Example 3

$$
\begin{gathered}
A:=K[X, Y] \\
d=\frac{\partial}{\partial X}
\end{gathered}
$$

$K[X, Y]$ is NOT d-simple.

(Y) is a d-ideal.

Example 3

$$
\begin{gathered}
A:=K[X, Y] \\
d=\frac{\partial}{\partial X}
\end{gathered}
$$

$K[X, Y]$ is NOT d-simple.
(Y) is a d-ideal.

Example 4 (Bergman e Lequain)

$$
\begin{gathered}
A:=K[X, Y] \\
d=\frac{\partial}{\partial X}+(1+X Y) \frac{\partial}{\partial Y}
\end{gathered}
$$

Example 4 (Bergman e Lequain)

$$
\begin{gathered}
A:=K[X, Y] \\
d=\frac{\partial}{\partial X}+(1+X Y) \frac{\partial}{\partial Y}
\end{gathered}
$$

$K[X, Y]$ is d-simple.

The result of Seidenberg

Let $A:=K\left[x_{1}, \ldots, x_{n}\right]$ be an affine domain.

Theorem

(Seidenberg, 1967)
A is differentially simple $\Leftrightarrow A$ is regular.

BUT, Hart (1975) showed that when $K\left[x_{1}, \cdots, x_{n}\right]$ is differentially simple, it may not exist a single derivation d such that $k\left[x_{1}, \cdots, x_{n}\right]$ is d-simple.
For example

The result of Seidenberg

Let $A:=K\left[x_{1}, \ldots, x_{n}\right]$ be an affine domain.

Theorem

(Seidenberg, 1967) A is differentially simple $\Leftrightarrow A$ is regular.

BUT, Hart (1975) showed that when $K\left[x_{1}, \cdots, x_{n}\right]$ is differentially simple, it may not exist a single derivation d such that $k\left[x_{1}, \cdots, x_{n}\right]$ is d-simple.
For example

The result of Seidenberg

Let $A:=K\left[x_{1}, \ldots, x_{n}\right]$ be an affine domain.

Theorem

(Seidenberg, 1967)
A is differentially simple $\Leftrightarrow A$ is regular.

BUT, Hart (1975) showed that when $K\left[x_{1}, \cdots, x_{n}\right]$ is differentially simple, it may not exist a single derivation d such that $k\left[x_{1}, \cdots, x_{n}\right]$ is d-simple.
For example

$$
A:=\frac{\mathbb{Q}[X, Y, Z]}{\left(X^{2}+Y^{2}+Z^{2}-1\right)}
$$

The result of Hart

Let $A:=S^{-1}\left(K\left[x_{1}, \ldots, x_{n}\right]\right)$ be a domain essentially of finite type.

Theorem

(Hart, 1975)
A admits a simple derivation $d \Leftrightarrow A$ is regular.

The result of Hart

Let $A:=S^{-1}\left(K\left[x_{1}, \ldots, x_{n}\right]\right)$ be a domain essentially of finite type.
Theorem
(Hart, 1975)
A admits a simple derivation $d \Leftrightarrow A$ is regular.

The result of Shamsuddin

Let A be any commutative ring that contains \mathbb{Q} and let d be a derivation of A. Given any polynomial $f(Y) \in A[Y]$, we can extend d to a derivation of $A[Y]$ putting:

$$
d(Y):=f(Y)
$$

We are interested when $f(Y)$ has degree one, that is:

The result of Shamsuddin

Let A be any commutative ring that contains \mathbb{Q} and let d be a derivation of A. Given any polynomial $f(Y) \in A[Y]$, we can extend d to a derivation of $A[Y]$ putting:

$$
d(Y):=f(Y)
$$

We are interested when $f(Y)$ has degree one, that is:

$$
d(Y)=a Y+b, a, b \in A, a \neq 0
$$

The result of Shamsuddin

Theorem (Shamsuddin, 1977)

Let d be a simple derivation of A. Put

$$
d(Y)=a Y+b, a, b \in A .
$$

Then,

$$
A[Y] \text { is d-simple }
$$

The diff. equation $d(r)=a r+b$ does not have a solution in A

This differential equation over A is called the ODE associated to the derivation d.

The result of Shamsuddin

Theorem (Shamsuddin, 1977)

Let d be a simple derivation of A. Put

$$
d(Y)=a Y+b, a, b \in A
$$

Then,
$A[Y]$ is d-simple
§
The diff. equation $d(r)=a r+b$ does not have a solution in A

This differential equation over A is called the ODE associated to the derivation d.

The result of Shamsuddin

Theorem (Shamsuddin, 1977)

Let d be a simple derivation of A. Put

$$
d(Y)=a Y+b, a, b \in A
$$

Then,

$$
A[Y] \text { is } d \text {-simple }
$$

§
The diff. equation $d(r)=a r+b$ does not have a solution in A
This differential equation over A is called the ODE associated to the derivation d.

The example of Bergam-Lequain, bis.

$$
\begin{aligned}
A & :=K[X] \\
d & =\frac{\partial}{\partial X}
\end{aligned}
$$

The example of Bergam-Lequain, bis.

$$
\begin{aligned}
A & :=K[X] \\
d & =\frac{\partial}{\partial X} \\
d(Y) & :=1+X Y
\end{aligned}
$$

$$
A[Y]=K[X, Y]
$$

The example of Bergam-Lequain, bis.

$$
\begin{aligned}
A & :=K[X] \\
d & =\frac{\partial}{\partial X} \\
d(Y) & :=1+X Y \\
A[Y] & =K[X, Y]
\end{aligned}
$$

The example of Bergam-Lequain, bis.

$$
\begin{gathered}
A:=K[X] \\
d=\frac{\partial}{\partial X} \\
d(Y):=1+X Y \\
A[Y]=K[X, Y] \\
d=\frac{\partial}{\partial X}+(1+X Y) \frac{\partial}{\partial Y}
\end{gathered}
$$

The example of Bergamn-Lequain, bis.

Shamsuddin:
$k[X, Y]$ is $\left(\frac{\partial}{\partial X}+(1+X Y) \frac{\partial}{\partial Y}\right)-$ simple

The ODE $r^{\prime}=X r+1$ has no solution in $k[X]$

The example of Bergamn-Lequain, bis.

Shamsuddin:

$$
k[X, Y] \text { is }\left(\frac{\partial}{\partial X}+(1+X Y) \frac{\partial}{\partial Y}\right)-\text { simple }
$$

The ODE $r^{\prime}=X r+1$ has no solution in $k[X]$

Other example of simple " Shamsuddin" derivations

Coutinho (Collier) (1999):

$$
R:=K[X, Y, Z]
$$

$$
d:=\frac{\partial}{\partial X}+(a(X) Y+b(X)) \frac{\partial}{\partial Y}+(c(X) Z+d(X)) \frac{\partial}{\partial Z}
$$

Shamsuddin derivations

A derivations of $K\left[X_{1}, \ldots, X_{n}\right]$ is a Shamsuddin derivation if it has the following form:
$d=\partial_{1}+\left(a_{2}\left(X_{1}\right) X_{2}+b_{2}\left(X_{1}\right)\right) \partial_{2}+\cdots+\left(a_{n}\left(X_{1}\right) X_{n}+b_{n}\left(X_{1}\right)\right) \partial_{n}$
where

$$
a_{i}\left(X_{1}\right), b_{i}\left(X_{1}\right) \in K\left[X_{1}\right], j=2
$$

Shamsuddin derivations

A derivations of $K\left[X_{1}, \ldots, X_{n}\right]$ is a Shamsuddin derivation if it has the following form:

$$
d=\partial_{1}+\left(a_{2}\left(X_{1}\right) X_{2}+b_{2}\left(X_{1}\right)\right) \partial_{2}+\cdots+\left(a_{n}\left(X_{1}\right) X_{n}+b_{n}\left(X_{1}\right)\right) \partial_{n}
$$

where

$$
a_{i}\left(X_{1}\right), b_{i}\left(X_{1}\right) \in K\left[X_{1}\right], j=2, \ldots, n
$$

Shamsuddin derivations that are NOT simple

Not all Shamsuddin derivations are simple:
Exemple

The ideal (Y) is d-stable.
Example

The ideal $I=(Y-Z)$ is d-stable, $d(Y-Z)=X(Y-Z)$

Shamsuddin derivations that are NOT simple

Not all Shamsuddin derivations are simple:

Example

$$
\begin{gathered}
K[X, Y] \\
d=\frac{\partial}{\partial X}+(X Y) \frac{\partial}{\partial Y}
\end{gathered}
$$

The ideal (Y) is d-stable.

Example

$K[X, Y, Z]$

The ideal $I=(Y-Z)$ is d-stable, $d(Y-Z)=X(Y-Z)$

Shamsuddin derivations that are NOT simple

Not all Shamsuddin derivations are simple:

Example

$$
\begin{gathered}
K[X, Y] \\
d=\frac{\partial}{\partial X}+(X Y) \frac{\partial}{\partial Y}
\end{gathered}
$$

The ideal (Y) is d-stable.

Example

$$
\begin{gathered}
K[X, Y, Z] \\
d=\partial_{X}+(X Y+1) \partial_{Y}+(X Z+1) \partial_{Z}
\end{gathered}
$$

The ideal $I=(Y-Z)$ is d-stable, $d(Y-Z)=X(Y-Z)$

Questions

Question A: When a Shamsuddin derivation is simple?

Question B: Ate there simple derivations that are NOT Shamsuddin derivations?

Questions

Question A: When a Shamsuddin derivation is simple?

Question B: Ate there simple derivations that are NOT Shamsuddin derivations?

A result of Lequain, 2008

Theorem

It is possible do decide (effectively) when a Shamsuddin derivation

$$
d=\partial_{1}+\left(a_{2}\left(X_{1}\right) X_{2}+b_{2}\left(X_{1}\right)\right) \partial_{2}+\cdots+\left(a_{n}\left(X_{1}\right) X_{n}+b_{n}\left(X_{1}\right)\right) \partial_{n}
$$

is simple or not.
One has to compute some invariants of the polynomials
$a_{i}\left(X_{1}\right), b_{i}\left(X_{1}\right) \in K\left[X_{1}\right]$.

A result of Lequain, 2008

Theorem

It is possible do decide (effectively) when a Shamsuddin derivation

$$
d=\partial_{1}+\left(a_{2}\left(X_{1}\right) X_{2}+b_{2}\left(X_{1}\right)\right) \partial_{2}+\cdots+\left(a_{n}\left(X_{1}\right) X_{n}+b_{n}\left(X_{1}\right)\right) \partial_{n}
$$

is simple or not.
One has to compute some invariants of the polynomials $a_{i}\left(X_{1}\right), b_{i}\left(X_{1}\right) \in K\left[X_{1}\right]$.

Simple derivations that are not Shamsuddin

Example

(Maciejewski, Moulin-Ollagnier, Nowicki, 2001). They studied when a derivation of the form

$$
d=\partial X+\left(Y^{2}-p(X)\right) \partial Y
$$

Simple derivations that are not Shamsuddin

Example

(Archer, 1981) (based in Shamsuddin)

$$
\begin{gathered}
A=K\left[X_{1}, \ldots, X_{n}\right] \\
d=\partial_{1}+\sum_{i=2}^{n}\left(1+X_{i-1} X_{i}\right) \partial_{i}
\end{gathered}
$$

Example

(Maciejewski, Moulin-Ollagnier, Nowicki, 2001). They studied when a derivation of the form

Simple derivations that are not Shamsuddin

Example

(Archer, 1981) (based in Shamsuddin)

$$
\begin{gathered}
A=K\left[X_{1}, \ldots, X_{n}\right] \\
d=\partial_{1}+\sum_{i=2}^{n}\left(1+X_{i-1} X_{i}\right) \partial_{i}
\end{gathered}
$$

Example

(Maciejewski, Moulin-Ollagnier, Nowicki, 2001). They studied when a derivation of the form

$$
d=\partial X+\left(Y^{2}-p(X)\right) \partial Y
$$

Observation and Problem

Observation: Archer showed that there always exists a base of the free module of derivations

$$
\operatorname{Der}_{K}\left(K\left[X_{1}, \ldots, X_{n}\right]\right)
$$

formed by simple derivations.

Totally open problem: Classify simple derivations of polynomials rings.

Observation and Problem

Observation: Archer showed that there always exists a base of the free module of derivations

$$
\operatorname{Der}_{K}\left(K\left[X_{1}, \ldots, X_{n}\right]\right)
$$

formed by simple derivations.

Totally open problem: Classify simple derivations of polynomials rings.

Observation and Problem

Observation: Archer showed that there always exists a base of the free module of derivations

$$
\operatorname{Der}_{K}\left(K\left[X_{1}, \ldots, X_{n}\right]\right)
$$

formed by simple derivations.

Totally open problem: Classify simple derivations of polynomials rings.

Definition

Let d be a K-derivation of a K-algebra A. Consider the full group $\operatorname{Aut}_{K}(A)$ of K-automorphisms of A.
The isotropy group of d is the subgroup of $\operatorname{Aut}_{K}(A)$ defined by

$$
\operatorname{Aut}(A)_{d}=\left\{\rho \in \operatorname{Aut} t_{K}(A) \mid \rho d \rho^{-1}=d\right\}
$$

Note that the isotropy group is just de stabilizer subgroup of the action by conjugation:

$$
\operatorname{Aut}_{K}(A) \times \operatorname{Der}_{K}(A) \rightarrow \operatorname{Der}_{K}(A)
$$

Definition

Let d be a K-derivation of a K-algebra A. Consider the full group $\operatorname{Aut}_{K}(A)$ of K-automorphisms of A.
The isotropy group of d is the subgroup of $\operatorname{Aut}_{K}(A)$ defined by

$$
\operatorname{Aut}(A)_{d}=\left\{\rho \in \operatorname{Aut}_{K}(A) \mid \rho d \rho^{-1}=d\right\}
$$

Note that the isotropy group is just de stabilizer subgroup of the action by conjugation:

$$
\operatorname{Aut}_{k}(A) \times \operatorname{Der}_{k}(A) \rightarrow \operatorname{Der}_{k}(A)
$$

Definition

Let d be a K-derivation of a K-algebra A. Consider the full group $\operatorname{Aut}_{K}(A)$ of K-automorphisms of A.
The isotropy group of d is the subgroup of $\operatorname{Aut}_{K}(A)$ defined by

$$
\operatorname{Aut}(A)_{d}=\left\{\rho \in \operatorname{Aut}_{K}(A) \mid \rho d \rho^{-1}=d\right\}
$$

Note that the isotropy group is just de stabilizer subgroup of the action by conjugation:

$$
\begin{gathered}
\operatorname{Aut}_{K}(A) \times \operatorname{Der}_{K}(A) \rightarrow \operatorname{Der}_{K}(A) \\
(\rho, d) \mapsto \rho d \rho^{-1}
\end{gathered}
$$

Easy example

$$
\begin{gathered}
A=K[X] \\
d=\frac{\partial}{\partial X} \\
\operatorname{Aut}(K[X])_{d}=\{\rho: X \mapsto a+X, a \in K\}
\end{gathered}
$$

Easy example

$$
\begin{gathered}
A=K[X] \\
d=\frac{\partial}{\partial X} \\
\operatorname{Aut}(K[X])_{d}=\{\rho: X \mapsto a+X, a \in K\}
\end{gathered}
$$

This is an infinite group.

Baltazar's thesis

He considered the polynomial ring $K[X, Y]$.

Example

$$
\begin{gathered}
A=K[X, Y] \\
d=\frac{\partial}{\partial X}
\end{gathered}
$$

He computed:

$$
\text { Aut }\left(K[X, Y)_{d}=\{\rho:(X, Y) \mapsto(X+p(Y), a Y+b)\}\right.
$$

where $a, b \in K, a \neq 0$
This is an infinite group.

Baltazar's thesis

He considered the polynomial ring $K[X, Y]$.

Example

$$
\begin{gathered}
A=K[X, Y] \\
d=\frac{\partial}{\partial X}
\end{gathered}
$$

He computed:

$$
\operatorname{Aut}(K[X, Y])_{d}=\{\rho:(X, Y) \mapsto(X+p(Y), a Y+b)\}
$$

where $a, b \in K, a \neq 0$
This is an infinite group.

Baltazar's thesis

He considered the polynomial ring $K[X, Y]$.

Example

$$
\begin{gathered}
A=K[X, Y] \\
d=\frac{\partial}{\partial X}
\end{gathered}
$$

He computed:

$$
\operatorname{Aut}(K[X, Y])_{d}=\{\rho:(X, Y) \mapsto(X+p(Y), a Y+b)\}
$$

where $a, b \in K, a \neq 0$
This is an infinite group.

Baltazar's theorem

Theorem

(Baltazar, 2014) Let d be a Shamsuddin derivation of $K[X, Y]$. Suppose that d is simple. Then its isotropy group $\operatorname{Aut}(K[X, Y])_{d}$ is trivial.

Then Baltazar and Pan (his supervisor) conjectured:

Conjecture (Baltazar and Pan): If d is a simple derivation of
an affine K-algebra, then its isotropy group is finite.

Not true even for $K\left[X_{1}, \ldots, X_{n}\right]$ if $n \geq 3$.

Baltazar's theorem

Theorem

(Baltazar, 2014) Let d be a Shamsuddin derivation of $K[X, Y]$.
Suppose that d is simple. Then its isotropy group $\operatorname{Aut}(K[X, Y])_{d}$ is trivial.

Then Baltazar and Pan (his supervisor) conjectured:

Conjecture (Baltazar and Pan): If d is a simple derivation of an affine K-algebra, then its isotropy group is finite.

Not true even for $K\left[X_{1}, \ldots, X_{n}\right]$ if $n \geq 3$.

Mendes and Pan theorem

Theorem

(Mendes, Pan, 2018) If d be a simple derivation of $K[X, Y]$, then its isotropy group $\operatorname{Aut}(K[X, Y])_{d}$ is trivial.

Simple Shamsuddin derivations

Theorem

(Bertoncello,-, 2016.) Let d be a simple Shamsuddin derivation of $K\left[X_{1}, \ldots, X_{n}\right], n \geq 2$. Then its isotropy group $\operatorname{Aut}\left(K\left[X_{1}, \ldots, X_{n}\right]\right)_{d}$ is trivial.

Remark: The proof of this theorem is heavily based in Lequain's characterization of simple Shamsuddin derivations.

Simple Shamsuddin derivations

Theorem

(Bertoncello,-, 2016.) Let d be a simple Shamsuddin derivation of $K\left[X_{1}, \ldots, X_{n}\right], n \geq 2$. Then its isotropy group $\operatorname{Aut}\left(K\left[X_{1}, \ldots, X_{n}\right]\right)_{d}$ is trivial.

Remark: The proof of this theorem is heavily based in Lequain's characterization of simple Shamsuddin derivations.

A new conjecture

Conjecture (Baltazar, Bertoncello,-, Mendes, Pan): Let d be a Shamsuddin derivation of the polynomial ring

$$
K\left[X_{1}, \ldots, X_{n}\right], n \geq 2
$$

Then d is simple if, and only if, its isotropy group is trivial.

Definition

Let $K[X, Y]$ be the polynomial ring in two variables over a field K of characteristic zero.
Y-degree n if $d(X)=1$ and $d(Y)$ has degree n as a polynomial
in Y with coefficients in $K[X]$.

Notation: $d(Y)=h_{n} Y^{n}+h_{n-1} Y^{n-1}+\cdots+h_{1} Y+h_{0}$.
Then $d=\frac{\partial}{\partial x}+\left(h_{n} Y^{n}+h_{n-1} Y^{n-1}+\cdots+h_{1} Y+h_{0}\right) \frac{\partial}{\partial y}$, where
$h_{i}(X) \in K[X]$.

Definition

Let $K[X, Y]$ be the polynomial ring in two variables over a field K of characteristic zero. A derivation d of $K[X, Y]$ has Y-degree n if $d(X)=1$ and $d(Y)$ has degree n as a polynomial in Y with coefficients in $K[X]$.

Definition

Let $K[X, Y]$ be the polynomial ring in two variables over a field K of characteristic zero. A derivation d of $K[X, Y]$ has Y-degree n if $d(X)=1$ and $d(Y)$ has degree n as a polynomial in Y with coefficients in $K[X]$.

Notation: $d(Y)=h_{n} Y^{n}+h_{n-1} Y^{n-1}+\cdots+h_{1} Y+h_{0}$.

Definition

Let $K[X, Y]$ be the polynomial ring in two variables over a field K of characteristic zero. A derivation d of $K[X, Y]$ has Y-degree n if $d(X)=1$ and $d(Y)$ has degree n as a polynomial in Y with coefficients in $K[X]$.

Notation: $d(Y)=h_{n} Y^{n}+h_{n-1} Y^{n-1}+\cdots+h_{1} Y+h_{0}$. Then $d=\frac{\partial}{\partial X}+\left(h_{n} Y^{n}+h_{n-1} Y^{n-1}+\cdots+h_{1} Y+h_{0}\right) \frac{\partial}{\partial Y}$, where $h_{i}(X) \in K[X]$.

Definition

A quadratic derivation has Y-degree 2:
$d=\frac{\partial}{\partial X}+\left(h_{2} Y^{2}+h_{1} Y+h_{0}\right) \frac{\partial}{\partial Y}$.

A cubic derivation has Y-degree 3:
$d=\frac{\partial}{\partial X}+\left(h_{3} Y^{3}+h_{2} Y^{2}+h_{1} Y+h_{0}\right) \frac{\partial}{\partial Y}$.

Definition

A quadratic derivation has Y-degree 2:
$d=\frac{\partial}{\partial X}+\left(h_{2} Y^{2}+h_{1} Y+h_{0}\right) \frac{\partial}{\partial Y}$.

A cubic derivation has Y-degree 3:

$$
d=\frac{\partial}{\partial X}+\left(h_{3} Y^{3}+h_{2} Y^{2}+h_{1} Y+h_{0}\right) \frac{\partial}{\partial Y} .
$$

Theorem

Theorem

(Bertoncello,—, 2016.) Let d be a derivation of the polynomial ring in two variables $K[X, Y]$ of Y-degree $n \geq 2$. Let $\rho \in(K[X, Y])_{d}$ be in the isotropy group of d. Then,
(i) $\rho(X)=X+\alpha,(\alpha \in K)$ and $\rho(Y)=b_{0}+b_{1} Y$ with $b_{0} \in K[X], b_{1} \in K^{\star}$ and satisfies $b_{1}^{n-1}=1$.
(ii) If $h_{n}(X) \in K[X] \backslash K$ and $b_{1}=1$, then $b_{0}=0$. In this case $\rho=i d$.
(ii) If If $h(x) \in K[X] \backslash K, h_{0} \neq 0$ and $b_{0}=0$, then $b_{1}=1$. In this case $\rho=i d$.
(iv) If If $h_{n}(X) \in K[X] \backslash K, d$ is simple and $b_{0}=0$, then $b_{1}=1$ In this case $\rho=i d$.

Theorem

Theorem

(Bertoncello,-, 2016.) Let d be a derivation of the polynomial ring in two variables $K[X, Y]$ of Y-degree $n \geq 2$. Let $\rho \in(K[X, Y])_{d}$ be in the isotropy group of d. Then,
(i) $\rho(X)=X+\alpha,(\alpha \in K)$ and $\rho(Y)=b_{0}+b_{1} Y$ with $b_{0} \in K[X], b_{1} \in K^{\star}$ and satisfies $b_{1}^{n-1}=1$.
(ii) If $h_{n}(X) \in K[X] \backslash K$ and $b_{1}=1$, then $b_{0}=0$. In this case $\rho=i d$.

Theorem

Theorem

(Bertoncello,-, 2016.) Let d be a derivation of the polynomial ring in two variables $K[X, Y]$ of Y-degree $n \geq 2$. Let $\rho \in(K[X, Y])_{d}$ be in the isotropy group of d. Then,
(i) $\rho(X)=X+\alpha,(\alpha \in K)$ and $\rho(Y)=b_{0}+b_{1} Y$ with $b_{0} \in K[X], b_{1} \in K^{\star}$ and satisfies $b_{1}^{n-1}=1$.
(ii) If $h_{n}(X) \in K[X] \backslash K$ and $b_{1}=1$, then $b_{0}=0$. In this case $\rho=i d$.
(iii) If If $h_{n}(X) \in K[X] \backslash K, h_{0} \neq 0$ and $b_{0}=0$, then $b_{1}=1$. In this case $\rho=i d$.
(iv) If If $h_{n}(X) \in K[X] \backslash K, d$ is simple and $b_{0}=0$, then $b_{1}=1$ In this case $\rho=i d$.

Theorem

Theorem

(Bertoncello,-, 2016.) Let d be a derivation of the polynomial ring in two variables $K[X, Y]$ of Y-degree $n \geq 2$. Let $\rho \in(K[X, Y])_{d}$ be in the isotropy group of d. Then,
(i) $\rho(X)=X+\alpha,(\alpha \in K)$ and $\rho(Y)=b_{0}+b_{1} Y$ with $b_{0} \in K[X], b_{1} \in K^{\star}$ and satisfies $b_{1}^{n-1}=1$.
(ii) If $h_{n}(X) \in K[X] \backslash K$ and $b_{1}=1$, then $b_{0}=0$. In this case $\rho=i d$.
(iii) If If $h_{n}(X) \in K[X] \backslash K, h_{0} \neq 0$ and $b_{0}=0$, then $b_{1}=1$. In this case $\rho=i d$.
(iv) If If $h_{n}(X) \in K[X] \backslash K$, d is simple and $b_{0}=0$, then $b_{1}=1$. In this case $\rho=i d$.

Corollaries

Corollary

Let d be a derivation in two variables of Y-degree $n \geq 2$ with $h_{n}(X) \in K[X] \backslash K$. Let $\mu_{n-1}(K)$ denote the cyclic group of $n-1$ roots of unity in K. Then

$$
\operatorname{Aut}(K[X, Y])_{d} \hookrightarrow \mu_{n-1}(K)
$$

In particular it is a finite cyclic group.

Corollaries

Corollary

Let d be a derivation in two variables of Y-degree $n \geq 2$ with $h_{n}(X) \in K[X] \backslash K$. Let $\mu_{n-1}(K)$ denote the cyclic group of $n-1$ roots of unity in K. Then

$$
\operatorname{Aut}(K[X, Y])_{d} \hookrightarrow \mu_{n-1}(K)
$$

In particular it is a finite cyclic group.

Proof.

Consider the map $\varphi: K[X, Y]_{d} \rightarrow \mu_{n-1}(K)$ given by $\varphi(\rho)=b_{1}$ where $\rho(Y)=b_{0}+b_{1} Y$. It is a group homomorphisms. By (i) of the theorem above, it is well defined; by (ii) it is injective. Then the result follows.

Corollaries

Corollary

(i) If d is a quadratic derivation in two variables with $h_{2}(X) \in K[X] \backslash K$, then its isotropy group is trivial.
(ii) If d is a cubic derivation in two variables with $h_{3}(X) \in K[X] \backslash K$, then its isotropy group is either trivial or a group of order 2 (and both cases occur).

Corollaries

Corollary

(i) If d is a quadratic derivation in two variables with $h_{2}(X) \in K[X] \backslash K$, then its isotropy group is trivial.
(ii) If d is a cubic derivation in two variables with $h_{3}(X) \in K[X] \backslash K$, then its isotropy group is either trivial or a group of order 2 (and both cases occur).

Examples

Example

Let d be a cubic derivation in two variables given by:

$$
d=\frac{\partial}{\partial X}+\left(h_{1} Y+h_{3} Y^{3}\right) \frac{\partial}{\partial Y}
$$

Then,

$$
K[X, Y]_{d}=\{\text { id }, \rho\}
$$

Examples

Example

Let d be a cubic derivation in two variables given by:

$$
d=\frac{\partial}{\partial X}+\left(h_{1} Y+h_{3} Y^{3}\right) \frac{\partial}{\partial Y}
$$

Let

$$
\rho: X \mapsto X, Y \mapsto-Y
$$

Then,

$$
K[X, Y]_{d}=\{\mathrm{id}, \rho\}
$$

Examples

Example

Let d be a cubic derivation in two variables given by:

$$
d=\frac{\partial}{\partial X}+\left(h_{1} Y+h_{3} Y^{3}\right) \frac{\partial}{\partial Y}
$$

Let

$$
\rho: X \mapsto X, Y \mapsto-Y
$$

Then,

$$
K[X, Y]_{d}=\{\mathrm{id}, \rho\}
$$

Example

Let d be the derivation in two variables given by:

$$
d=\frac{\partial}{\partial X}+\left(Y^{n}+p X\right) \frac{\partial}{\partial Y}
$$

where $n \geq 2, p \in K^{\star}$.
Novicki proved that d is simple.
Its isotropy group is trivial.

Example

Let d be the derivation in two variables given by:

$$
d=\frac{\partial}{\partial X}+\left(Y^{n}+p X\right) \frac{\partial}{\partial Y}
$$

where $n \geq 2, p \in K^{\star}$.
Novicki proved that d is simple.

Example

Let d be the derivation in two variables given by:

$$
d=\frac{\partial}{\partial X}+\left(Y^{n}+p X\right) \frac{\partial}{\partial Y}
$$

where $n \geq 2, p \in K^{\star}$.
Novicki proved that d is simple.
Its isotropy group is trivial.

References I

R R.Baltazar, On simple Shamsuddin derivations in two variables, Anais da Academia Brasileira de Ciências, to appear.
R R.Baltazar, Tese de Doutorado.
围 L.N.Bertoncello and D.Levcovitz, On the isotropy group of a simple derivation, preprint.

R R. Hart, Derivations on regular local rings of finitely generated type, J. London Math. Soc. 10(1975), 292-294.

國 Y.Lequain, Simple Shamsuddin derivations of $K\left[X ; Y_{1}, \ldots, Y_{n}\right]$, J. Pure Appl. Algebra 212(2008), 801-807.

References II

嗇 L.G.Mendes and I.Pan, On plane polynomial automorphisms commuting with simple derivations, available from Arxiv:1604.04933.
(A. Seidenberg, Differential ideals in rings of finitely generated type, Amer. J. Math. 89(1967), 22-42.

圊 A. Shamsuddin, Ph.D. Thesis, University of Leeds (1977).

