On the application of Gröbner basis theory to the study of certain evaluation codes

Cícero Carvalho
Faculdade de Matemática - UFU

Celebrating Paulo Ribenboim's ninetieth birthday

IME-USP October 24th to 27th, 2018.

Facts from Gröbner bases theory

Let \mathcal{M} be the set of monomials of $k\left[X_{1}, \ldots, X_{n}\right]=: k[X]$ and endow \mathcal{M} with a monomial order \prec. Given $f \in k[\mathbf{X}] \backslash\{0\}$ the leading monomial of $f(\operatorname{Im}(f))$ is the greatest monomial appearing in f. Let $I \subset k[X]$ be an ideal, we say that $\left\{g_{1}, \ldots, g_{s}\right\} \subset I$ is a Gröbner basis for $I($ w.r.t. $\prec)$ if the leading monomial of any nonzero polynomial in I is multiple of $\operatorname{Im}\left(g_{i}\right)$ for some $i=1, \ldots, s$. One can prove that such a set is a basis for l in the usual sense $I=\left(g_{1}, \ldots, g_{s}\right)$ and that any ideal has a Gröbner basis. Let
$\Delta(I):=\{M \in M \mid M$ is not the leading monomial of any polynomial in $/\}$ be the footprint of $I($ w.r.t. $\prec)$. Observe that if $I \subset J$ then $\Delta(J) \subset \Delta(I)$. Buchberger (1965) proved that $\{M+I \mid M \in \Delta(I)\}$ is a basis for $k[\mathbf{X}] / I$ (considered as a k-vector space).
If I is homogeneous then $\{M+I \mid M \in \Delta(I), \operatorname{deg}(M)=d\}$ is a basis for $k[\mathbf{X}]_{d} / I(d)$.
We also have that $M \in \triangle(I)$ if and only if M is not a multiple of $1 \mathrm{~m}\left(g_{i}\right)$ for all $i=1, \ldots, s$.

Facts from Gröbner bases theory

Let \mathcal{M} be the set of monomials of $k\left[X_{1}, \ldots, X_{n}\right]=: k[\mathbf{X}]$ and endow \mathcal{M} with a monomial order \prec. Given $f \in k[\mathbf{X}] \backslash\{0\}$ the leading monomial of $f(\operatorname{lm}(f))$ is the greatest monomial appearing in f. Let $I \subset k[\mathbf{X}]$ be an ideal, we say that $\left\{g_{1}, \ldots, g_{s}\right\} \subset I$ is a Gröbner basis for I (w.r.t. $\left.\prec\right)$ if the leading monomial of any nonzero polynomial in $/$ is multiple of $\operatorname{Im}\left(g_{i}\right)$ for some $i=1, \ldots, s$. One can prove that such a set is a basis for I in the usual sense $I=\left(g_{1}, \ldots, g_{s}\right)$ and that any ideal has a Gröbner basis. Let
$\Delta(I)=\{M \in \mathcal{M} \mid M$ is not the leading monomial of any polynomial in $I\}$ be the footprint of I (w.r.t. $\prec)$. Observe that if $I \subset J$ then $\Delta(J) \subset \Delta(I)$. Buchberger (1965) proved that $\{M+I \mid M \in \Delta(I)\}$ is a basis for $k[X] / I$ (considered as a k-vector space).
If I is homogeneous then $\{M+I \mid M \in \triangle(I), \operatorname{deg}(M)=d\}$ is a basis for $k[\mathrm{X}]_{d} / I(d)$
We also have that $M \in \Delta(I)$ if and only if M is not a multiple of $\operatorname{Im}\left(g_{i}\right)$ for all $i=1, \ldots, s$.

Facts from Gröbner bases theory

Let \mathcal{M} be the set of monomials of $k\left[X_{1}, \ldots, X_{n}\right]=: k[\mathbf{X}]$ and endow \mathcal{M} with a monomial order \prec.
 leading monomial of any nonzero polynomial in I is multiple of $\operatorname{Im}\left(g_{i}\right)$ for some $i=1, \ldots, s$. One can prove that such a set is a basis for I in the usual sense $I=\left(g_{1}, \ldots, g_{s}\right)$ and that any ideal has a Gröbner basis. Let
$\Delta(I)=\{M \in \mathcal{M} \mid M$ is not the leading monomial of any polynomial in $/\}$ be the footprint of $I($ w.r.t. $\prec)$. Observe that if $I \subset J$ then $\Delta(J) \subset \Delta(I)$. Buchberger (1965) proved that $\{M+I \mid M \in \Delta(I)\}$ is a basis for $k[\mathbf{X}] / I$ (considered as a k-vector space) If I is homogeneous then $\{M+I \mid M \in \triangle(I), \operatorname{deg}(M)=d\}$ is a basis for $k[\mathbf{X}]_{d} / I(d)$ We also have that $M \in \triangle(I)$ if and only if M is not a multiple of $\operatorname{lm}\left(g_{i}\right)$ for all $i=1$

Facts from Gröbner bases theory

Let \mathcal{M} be the set of monomials of $k\left[X_{1}, \ldots, X_{n}\right]=: k[\mathbf{X}]$ and endow \mathcal{M} with a monomial order \prec. Given $f \in k[\mathbf{X}] \backslash\{0\}$ the leading monomial of $f(\operatorname{lm}(f))$ leading monomial of any nonzero polynomial in I is multiple of $\operatorname{Im}\left(g_{i}\right)$ for some $i=1, \ldots, s$. One can prove that such a set is a basis for I in the usual sense $I=\left(g_{1}, \ldots, g_{s}\right)$ and that any ideal has a Gröbner basis Let
$\Delta(I)=\{M \in \mathcal{M} \mid M$ is not the leading monomial of any polynomial in $/\}$ be the footprint of $I($ w.r.t. $\prec)$. Observe that if $I \subset J$ then $\Delta(J) \subset \Delta(I)$. Buchberger (1965) proved that $\{M+I \mid M \in \Delta(I)\}$ is a basis for $k[\mathbf{X}] / I$ (considered as a k-vector space) If I is homogeneous then $\{M+I \mid M \in \triangle(I), \operatorname{deg}(M)=d\}$ is a basis for $k[\mathbf{X}]_{d} / I(d)$ We also have that $M \in \triangle(I)$ if and only if M is not a multiple of $\operatorname{Im}\left(g_{i}\right)$ for all $i=1$

Facts from Gröbner bases theory

Let \mathcal{M} be the set of monomials of $k\left[X_{1}, \ldots, X_{n}\right]=: k[\mathbf{X}]$ and endow \mathcal{M} with a monomial order \prec. Given $f \in k[\mathbf{X}] \backslash\{0\}$ the leading monomial of $f(\operatorname{lm}(f))$ is the greatest monomial appearing in f.

usual sense $I=\left(g_{1}, \ldots, g_{s}\right)$ and that any ideal has a Gröbner basis Let
$\Delta(I)=\{M \in \mathcal{M} \mid M$ is not the leading monomial of any polynomial in $I\}$ be the footprint of I (w.r.t. $\prec)$. Observe that if $I \subset J$ then $\Delta(J) \subset \Delta(I)$. Buchberger (1965) proved that $\{M+I \mid M \in \Delta(I)\}$ is a basis for $k[\mathbf{X}] / I$ (considered as a k-vector space) If I is homogeneous then $\{M+I \mid M \in \Delta(I), \operatorname{deg}(M)=d\}$ is a basis for $k[\mathbf{X}]_{d} / I(d)$ We also have that $M \in \triangle(I)$ if and only if M is not a multiple of $\operatorname{Im}\left(g_{i}\right)$ for all $i=1$

Facts from Gröbner bases theory

Let \mathcal{M} be the set of monomials of $k\left[X_{1}, \ldots, X_{n}\right]=: k[\mathbf{X}]$ and endow \mathcal{M} with a monomial order \prec. Given $f \in k[\mathbf{X}] \backslash\{0\}$ the leading monomial of $f(\operatorname{lm}(f))$ is the greatest monomial appearing in f. Let $I \subset k[\mathbf{X}]$ be an ideal,
leading monomial of any nonzero polynomial in I is multiple of $\operatorname{Im}\left(g_{i}\right)$ for some $i=1, \ldots, s$. One can prove that such a set is a basis for I in the usual sense $I=\left(g_{1}, \ldots, g_{s}\right)$ and that any ideal has a Gröbner basis. Let
$\Delta(I)=\{M \in \mathcal{M} \mid M$ is not the leading monomial of any polynomial in $I\}$ be the footprint of $I($ w.r.t. $\prec)$. Observe that if $I \subset J$ then $\Delta(J) \subset \Delta(I)$. Buchberger (1965) proved that $\{M+I \mid M \in \triangle(I)\}$ is a basis for $k[X] / I$ (considered as a k-vector space) If I is homogeneous then $\{M+I \mid M \in \triangle(I), \operatorname{deg}(M)=d\}$ is a basis for $k[\mathbf{X}]_{d} / I(d)$ We also have that $M \in \Delta(I)$ if and only if M is not a multiple of $\operatorname{Im}\left(g_{i}\right)$ for all $i=1$,

Facts from Gröbner bases theory

Let \mathcal{M} be the set of monomials of $k\left[X_{1}, \ldots, X_{n}\right]=: k[\mathbf{X}]$ and endow \mathcal{M} with a monomial order \prec. Given $f \in k[\mathbf{X}] \backslash\{0\}$ the leading monomial of $f(\operatorname{lm}(f))$ is the greatest monomial appearing in f. Let $I \subset k[\mathbf{X}]$ be an ideal, we say that $\left\{g_{1}, \ldots, g_{s}\right\} \subset I$ is a Gröbner basis for I (w.r.t. \prec) if the leading monomial of any nonzero polynomial in I is multiple of $\operatorname{Im}\left(g_{i}\right)$ for some $i=1, \ldots$, s.
usual sense $I=\left(g_{1}\right.$
g_{s}) and that any ideal has a Gröbner basis
Let

(considered as a k-vector space) If I is homogeneous then $\{M+1 \mid M \in \triangle(I), \operatorname{deg}(M)=d\}$ is a basis for $k[\mathbf{X}]_{d} / I(d)$ We also have that $M \in \Delta(I)$ if and only if M is not a multiple of $\operatorname{Im}\left(g_{i}\right)$

Facts from Gröbner bases theory

Let \mathcal{M} be the set of monomials of $k\left[X_{1}, \ldots, X_{n}\right]=: k[\mathbf{X}]$ and endow \mathcal{M} with a monomial order \prec. Given $f \in k[\mathbf{X}] \backslash\{0\}$ the leading monomial of $f(\operatorname{lm}(f))$ is the greatest monomial appearing in f. Let $I \subset k[\mathbf{X}]$ be an ideal, we say that $\left\{g_{1}, \ldots, g_{s}\right\} \subset I$ is a Gröbner basis for I (w.r.t. \prec) if the leading monomial of any nonzero polynomial in I is multiple of $\operatorname{Im}\left(g_{i}\right)$ for some $i=1, \ldots, s$. One can prove that such a set is a basis for l in the usual sense $I=\left(g_{1}, \ldots, g_{s}\right)$ and that any ideal has a Gröbner basis
 (considered as a k-vector space) If I is homogeneous then $\{M+1 \mid M \in \triangle(I), \operatorname{deg}(M)=d\}$ is a basis for $k[\mathrm{X}]_{d} / I(d)$ We also have that $M \in \Delta(I)$ if and only if M is not a multiple of $\operatorname{Im}\left(g_{i}\right)$

Facts from Gröbner bases theory

Let \mathcal{M} be the set of monomials of $k\left[X_{1}, \ldots, X_{n}\right]=: k[\mathbf{X}]$ and endow \mathcal{M} with a monomial order \prec. Given $f \in k[\mathbf{X}] \backslash\{0\}$ the leading monomial of $f(\operatorname{lm}(f))$ is the greatest monomial appearing in f. Let $I \subset k[\mathbf{X}]$ be an ideal, we say that $\left\{g_{1}, \ldots, g_{s}\right\} \subset I$ is a Gröbner basis for I (w.r.t. \prec) if the leading monomial of any nonzero polynomial in I is multiple of $\operatorname{Im}\left(g_{i}\right)$ for some $i=1, \ldots, s$. One can prove that such a set is a basis for I in the usual sense $I=\left(g_{1}, \ldots, g_{s}\right)$ and that any ideal has a Gröbner basis.
 (considered as a k-vector space) If I is homogeneous then $\{M+1 \mid M \in \triangle(I), \operatorname{deg}(M)=d\}$ is a basis for $k[\mathrm{X}]_{d} / I(d)$ We also have that $M \in \Delta(I)$ if and only if M is not a multiple of $\operatorname{Im}\left(g_{i}\right)$

Facts from Gröbner bases theory

Let \mathcal{M} be the set of monomials of $k\left[X_{1}, \ldots, X_{n}\right]=: k[\mathbf{X}]$ and endow \mathcal{M} with a monomial order \prec. Given $f \in k[\mathbf{X}] \backslash\{0\}$ the leading monomial of $f(\operatorname{lm}(f))$ is the greatest monomial appearing in f. Let $I \subset k[\mathbf{X}]$ be an ideal, we say that $\left\{g_{1}, \ldots, g_{s}\right\} \subset I$ is a Gröbner basis for I (w.r.t. \prec) if the leading monomial of any nonzero polynomial in I is multiple of $\operatorname{Im}\left(g_{i}\right)$ for some $i=1, \ldots, s$. One can prove that such a set is a basis for I in the usual sense $I=\left(g_{1}, \ldots, g_{s}\right)$ and that any ideal has a Gröbner basis. Let
$\Delta(I)=\{M \in \mathcal{M} \mid M$ is not the leading monomial of any polynomial in $I\}$
\square

Facts from Gröbner bases theory

Let \mathcal{M} be the set of monomials of $k\left[X_{1}, \ldots, X_{n}\right]=: k[\mathbf{X}]$ and endow \mathcal{M} with a monomial order \prec. Given $f \in k[\mathbf{X}] \backslash\{0\}$ the leading monomial of $f(\operatorname{lm}(f))$ is the greatest monomial appearing in f. Let $I \subset k[\mathbf{X}]$ be an ideal, we say that $\left\{g_{1}, \ldots, g_{s}\right\} \subset I$ is a Gröbner basis for I (w.r.t. \prec) if the leading monomial of any nonzero polynomial in I is multiple of $\operatorname{Im}\left(g_{i}\right)$ for some $i=1, \ldots, s$. One can prove that such a set is a basis for l in the usual sense $I=\left(g_{1}, \ldots, g_{s}\right)$ and that any ideal has a Gröbner basis. Let
$\Delta(I)=\{M \in \mathcal{M} \mid M$ is not the leading monomial of any polynomial in $I\}$ be the footprint of I (w.r.t. $\prec)$.

Facts from Gröbner bases theory

Let \mathcal{M} be the set of monomials of $k\left[X_{1}, \ldots, X_{n}\right]=: k[\mathbf{X}]$ and endow \mathcal{M} with a monomial order \prec. Given $f \in k[\mathbf{X}] \backslash\{0\}$ the leading monomial of $f(\operatorname{lm}(f))$ is the greatest monomial appearing in f. Let $I \subset k[\mathbf{X}]$ be an ideal, we say that $\left\{g_{1}, \ldots, g_{s}\right\} \subset I$ is a Gröbner basis for I (w.r.t. \prec) if the leading monomial of any nonzero polynomial in I is multiple of $\operatorname{Im}\left(g_{i}\right)$ for some $i=1, \ldots, s$. One can prove that such a set is a basis for l in the usual sense $I=\left(g_{1}, \ldots, g_{s}\right)$ and that any ideal has a Gröbner basis. Let
$\Delta(I)=\{M \in \mathcal{M} \mid M$ is not the leading monomial of any polynomial in $I\}$ be the footprint of I (w.r.t. \prec). Observe that if $I \subset J$ then $\Delta(J) \subset \Delta(I)$.

Facts from Gröbner bases theory

Let \mathcal{M} be the set of monomials of $k\left[X_{1}, \ldots, X_{n}\right]=: k[\mathbf{X}]$ and endow \mathcal{M} with a monomial order \prec. Given $f \in k[\mathbf{X}] \backslash\{0\}$ the leading monomial of $f(\operatorname{lm}(f))$ is the greatest monomial appearing in f. Let $I \subset k[\mathbf{X}]$ be an ideal, we say that $\left\{g_{1}, \ldots, g_{s}\right\} \subset I$ is a Gröbner basis for I (w.r.t. \prec) if the leading monomial of any nonzero polynomial in I is multiple of $\operatorname{Im}\left(g_{i}\right)$ for some $i=1, \ldots, s$. One can prove that such a set is a basis for l in the usual sense $I=\left(g_{1}, \ldots, g_{s}\right)$ and that any ideal has a Gröbner basis. Let
$\Delta(I)=\{M \in \mathcal{M} \mid M$ is not the leading monomial of any polynomial in $I\}$ be the footprint of I (w.r.t. \prec). Observe that if $I \subset J$ then $\Delta(J) \subset \Delta(I)$. Buchberger (1965) proved that $\{M+I \mid M \in \Delta(I)\}$ is a basis for $k[\mathbf{X}] / I$ (considered as a k-vector space).
If I is homogeneous then $\{M+I \mid M \in \triangle(I), \operatorname{deg}(M)=d\}$ is a basis for
We also have that $M \in \Delta(I)$ if and only if M is not a multiple of $\operatorname{Im}\left(g_{i}\right)$

Facts from Gröbner bases theory

Let \mathcal{M} be the set of monomials of $k\left[X_{1}, \ldots, X_{n}\right]=: k[\mathbf{X}]$ and endow \mathcal{M} with a monomial order \prec. Given $f \in k[\mathbf{X}] \backslash\{0\}$ the leading monomial of $f(\operatorname{lm}(f))$ is the greatest monomial appearing in f. Let $I \subset k[\mathbf{X}]$ be an ideal, we say that $\left\{g_{1}, \ldots, g_{s}\right\} \subset I$ is a Gröbner basis for I (w.r.t. \prec) if the leading monomial of any nonzero polynomial in I is multiple of $\operatorname{Im}\left(g_{i}\right)$ for some $i=1, \ldots, s$. One can prove that such a set is a basis for l in the usual sense $I=\left(g_{1}, \ldots, g_{s}\right)$ and that any ideal has a Gröbner basis. Let
$\Delta(I)=\{M \in \mathcal{M} \mid M$ is not the leading monomial of any polynomial in $I\}$ be the footprint of I (w.r.t. \prec). Observe that if $I \subset J$ then $\Delta(J) \subset \Delta(I)$. Buchberger (1965) proved that $\{M+I \mid M \in \Delta(I)\}$ is a basis for $k[\mathbf{X}] / I$ (considered as a k-vector space). If I is homogeneous then $\{M+I \mid M \in \Delta(I), \operatorname{deg}(M)=d\}$ is a basis for $k[\mathbf{X}]_{d} / I(d)$.

Facts from Gröbner bases theory

Let \mathcal{M} be the set of monomials of $k\left[X_{1}, \ldots, X_{n}\right]=: k[\mathbf{X}]$ and endow \mathcal{M} with a monomial order \prec. Given $f \in k[\mathbf{X}] \backslash\{0\}$ the leading monomial of $f(\operatorname{lm}(f))$ is the greatest monomial appearing in f. Let $I \subset k[\mathbf{X}]$ be an ideal, we say that $\left\{g_{1}, \ldots, g_{s}\right\} \subset I$ is a Gröbner basis for I (w.r.t. \prec) if the leading monomial of any nonzero polynomial in I is multiple of $\operatorname{Im}\left(g_{i}\right)$ for some $i=1, \ldots, s$. One can prove that such a set is a basis for l in the usual sense $I=\left(g_{1}, \ldots, g_{s}\right)$ and that any ideal has a Gröbner basis. Let
$\Delta(I)=\{M \in \mathcal{M} \mid M$ is not the leading monomial of any polynomial in $I\}$ be the footprint of I (w.r.t. \prec). Observe that if $I \subset J$ then $\Delta(J) \subset \Delta(I)$. Buchberger (1965) proved that $\{M+I \mid M \in \Delta(I)\}$ is a basis for $k[\mathbf{X}] / I$ (considered as a k-vector space).
If I is homogeneous then $\{M+I \mid M \in \Delta(I), \operatorname{deg}(M)=d\}$ is a basis for $k[\mathbf{X}]_{d} / I(d)$.
We also have that $M \in \Delta(I)$ if and only if M is not a multiple of $\operatorname{Im}\left(g_{i}\right)$ for all $i=1, \ldots, s$.

Gröbner bases and coding theory

A (linear error correcting) code of length N defined over \mathbb{F}_{q} is an \mathbb{F}_{q}-vector subspace $C \subset \mathbb{F}_{q}^{N}$. Given an N-tuple $\alpha=\left(\alpha_{1}, \ldots, \alpha_{N}\right) \in \mathbb{F}_{q}^{N}$ the weight of $\boldsymbol{\alpha}$ is $w(\boldsymbol{\alpha})=\#\left\{i \mid \alpha_{i} \neq 0\right\}$ and the minimum distance of C is $d_{\min }(C):=\min \{w(\alpha) \mid \alpha \in C \backslash\{0\}\}$.
One may use a set $X=\left\{P_{1}, \ldots, P_{N}\right\} \subset \mathbb{A}^{m}\left(\mathbb{F}_{q}\right)$ to construct a code in the following way. Let $I_{X} \subset \mathbb{F}_{q}\left[X_{0}, \ldots, X_{m}\right]=\mathbb{F}_{q}[X]$ be the ideal of X anc let $\varphi: \mathbb{F}_{q}[X] / I_{X} \rightarrow \mathbb{F}_{q}^{N}$ be given by $\varphi\left(f+I_{X}\right)=\left(f\left(P_{1}\right) \ldots, f\left(P_{N}\right)\right)$. It is not difficult to show that φ is an isomorphism of \mathbb{F}_{q}-vector spaces. Thus, for any subspace $L \subset \mathbb{F}_{q}[X] / I_{X}$ we have a code $C_{L}:=\varphi(L)$.
Let d be a nonnegative integer and let
$L_{d}:=\left\{f+I_{X} \mid f=0\right.$ or $\left.\operatorname{deg}(f) \leq d\right\}$. In this case we say that $C_{L_{d}}$ is "of Reed-Muller type" and has order d. From Buchberger's result we know that the classes of the monomials in $\Delta\left(I_{X}\right)$) form a basis for $\mathbb{F}_{q}[\mathbf{X}] / I_{X}$ (in particular $\left.\#\left(\Delta\left(I_{X}\right)\right)=N\right)$ and one may prove that the set $\Delta\left(I_{X}\right)_{d}:=\left\{M+I_{X} \mid M \in \Delta\left(I_{X}\right), \operatorname{deg}(M) \leq d\right\}$ is a basis for L_{d}, so that $\operatorname{dim}\left(C_{L_{d}}\right)=\#\left(\Delta\left(I_{X}\right)_{d}\right)$.

Gröbner bases and coding theory

A (linear error correcting) code of length N defined over \mathbb{F}_{q} is an \mathbb{F}_{q}-vector subspace $C \subset \mathbb{F}_{q}^{N}$.
the weight of α is $w(\alpha)=\#\left\{i \mid \alpha_{i} \neq 0\right\}$ and the minimum distance of C is $d_{\min }(C):=\min \{w(\alpha) \mid \alpha \in C \backslash\{0\}\}$
One may use a set $X=\left\{P_{1}, \ldots, P_{N}\right\} \subset \mathbb{A}^{m}\left(\mathbb{F}_{q}\right)$ to construct a code in the following way. Let $I_{X} \subset \mathbb{F}_{q}\left[X_{0}, \ldots, X_{m}\right]=\mathbb{F}_{q}[\mathbf{X}]$ be the ideal of X and let $\varphi: \mathbb{F}_{q}[X] / / X \rightarrow \mathbb{F}_{q}^{N}$ be given by $\varphi\left(f+I_{X}\right)=\left(f\left(P_{1}\right) \ldots, f\left(P_{N}\right)\right)$. It is not difficult to show that φ is an isomorphism of \mathbb{F}_{q}-vector spaces. Thus, for any subspace $L \subset \mathbb{F}_{q}[\mathbf{X}] / I_{X}$ we have a code $C_{L}:=\varphi(L)$. Let d be a nonnegative integer and let
$L_{d}:=\left\{f+I_{X} \mid f=0\right.$ or $\left.\operatorname{deg}(f) \leq d\right\}$. In this case we say that $C_{L_{d}}$ is "of Reed-Muller type" and has order d. From Buchberger's result we know that the classes of the monomials in $\Delta\left(I_{X}\right)$) form a basis for $\mathbb{F}_{q}[\mathbf{X}] / I_{X}$ (in particular $\left.\#\left(\Delta\left(I_{X}\right)\right)=N\right)$ and one may prove that the set $\Delta\left(I_{X}\right)_{d}:=\left\{M+I_{X} \mid M \in \Delta\left(I_{X}\right), \operatorname{deg}(M) \leq d\right\}$ is a basis for L_{d}, so that $\operatorname{dim}\left(C_{L_{d}}\right)=\#\left(\Delta\left(I_{X}\right)_{d}\right)$.

Gröbner bases and coding theory

A (linear error correcting) code of length N defined over \mathbb{F}_{q} is an $\mathbb{F}_{q^{-}}$-vector subspace $C \subset \mathbb{F}_{q}^{N}$. Given an N-tuple $\boldsymbol{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{N}\right) \in \mathbb{F}_{q}^{N}$ the weight of $\boldsymbol{\alpha}$ is $w(\boldsymbol{\alpha})=\#\left\{i \mid \alpha_{i} \neq 0\right\}$

not difficult to show that φ is an isomorphism of \mathbb{F}_{q}-vector spaces. Thus, for any subspace $L \subset \mathbb{F}_{q}[\mathbf{X}] / I_{X}$ we have a code $C_{L}:=\varphi(L)$. Let d be a nonnegative integer and let $L_{d}:=\left\{f+I_{X} \mid f=0\right.$ or $\left.\operatorname{deg}(f) \leq d\right\}$. In this case we say that $C_{L_{d}}$ is "of Reed-Muller type" and has order d. From Buchberger's result we know that the classes of the monomials in $\Delta\left(I_{X}\right)$) form a basis for $\mathbb{F}_{q}[X] / I_{X}$ (in particular $\left.\#\left(\Delta\left(I_{X}\right)\right)=N\right)$ and one may prove that the set $\Delta\left(I_{X}\right)_{d}:=\left\{M+I_{X} \mid M \in \Delta\left(I_{X}\right), \operatorname{deg}(M) \leq d\right\}$ is a basis for L_{d}, so that $\operatorname{dim}\left(C_{L_{d}}\right)=\#\left(\Delta\left(I_{X}\right)_{d}\right)$.

Gröbner bases and coding theory

A (linear error correcting) code of length N defined over \mathbb{F}_{q} is an \mathbb{F}_{q}-vector subspace $C \subset \mathbb{F}_{q}^{N}$. Given an N-tuple $\boldsymbol{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{N}\right) \in \mathbb{F}_{q}^{N}$ the weight of $\boldsymbol{\alpha}$ is $w(\boldsymbol{\alpha})=\#\left\{i \mid \alpha_{i} \neq 0\right\}$ and the minimum distance of C is $d_{\text {min }}(C):=\min \{w(\boldsymbol{\alpha}) \mid \boldsymbol{\alpha} \in C \backslash\{\mathbf{0}\}\}$.

not difficult to show that φ is an isomorphism of \mathbb{F}_{q}-vector spaces. Thus, for any subspace $L \subset \mathbb{F}_{q}[\mathbf{X}] / I_{X}$ we have a code $C_{L}:=\varphi(L)$ Let d be a nonnegative integer and let
$L_{d}:=\left\{f+I_{X} \mid f=0\right.$ or $\left.\operatorname{deg}(f) \leq d\right\}$. In this case we say that $C_{L_{d}}$ is "of Reed-Muller type" and has order d. From Buchberger's result we know that the classes of the monomials in $\left.\Delta\left(I_{X}\right)\right)$ form a basis for $\mathbb{F}_{q}[X] / I_{X}$ (in particular $\left.\#\left(\Delta\left(I_{X}\right)\right)=N\right)$ and one may prove that the set $\Delta\left(I_{X}\right)_{d}:=\left\{M+I_{X} \mid M \in \Delta\left(I_{X}\right), \operatorname{deg}(M) \leq d\right\}$ is a basis for L_{d}, so that $\operatorname{dim}\left(C_{L_{d}}\right)=\#\left(\Delta\left(I_{X}\right)_{d}\right)$.

Gröbner bases and coding theory

A (linear error correcting) code of length N defined over \mathbb{F}_{q} is an \mathbb{F}_{q}-vector subspace $C \subset \mathbb{F}_{q}^{N}$. Given an N-tuple $\boldsymbol{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{N}\right) \in \mathbb{F}_{q}^{N}$ the weight of $\boldsymbol{\alpha}$ is $w(\boldsymbol{\alpha})=\#\left\{i \mid \alpha_{i} \neq 0\right\}$ and the minimum distance of C is $d_{\text {min }}(C):=\min \{w(\boldsymbol{\alpha}) \mid \boldsymbol{\alpha} \in C \backslash\{\mathbf{0}\}\}$.
One may use a set $X=\left\{P_{1}, \ldots, P_{N}\right\} \subset \mathbb{A}^{m}\left(\mathbb{F}_{q}\right)$ to construct a code in the following way.

\square

Gröbner bases and coding theory

A (linear error correcting) code of length N defined over \mathbb{F}_{q} is an \mathbb{F}_{q}-vector subspace $C \subset \mathbb{F}_{q}^{N}$. Given an N-tuple $\boldsymbol{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{N}\right) \in \mathbb{F}_{q}^{N}$ the weight of $\boldsymbol{\alpha}$ is $w(\boldsymbol{\alpha})=\#\left\{i \mid \alpha_{i} \neq 0\right\}$ and the minimum distance of C is $d_{\text {min }}(C):=\min \{w(\boldsymbol{\alpha}) \mid \boldsymbol{\alpha} \in C \backslash\{\mathbf{0}\}\}$.
One may use a set $X=\left\{P_{1}, \ldots, P_{N}\right\} \subset \mathbb{A}^{m}\left(\mathbb{F}_{q}\right)$ to construct a code in the following way. Let $I_{X} \subset \mathbb{F}_{q}\left[X_{0}, \ldots, X_{m}\right]=\mathbb{F}_{q}[\mathbf{X}]$ be the ideal of X
 for any subspace $L \subset \mathbb{F}_{q}[\mathbf{X}] / I_{X}$ we have a code $C_{L}:=\varphi(L)$. Let d be a nonnegative integer and let
 Reed-Muller type" and has order d. From Buchberger's result we know that the classes of the monomials in $\Delta\left(I_{X}\right)$) form a basis for $\mathbb{F}_{q}[\mathbf{X}] / I_{X}$ (in particular $\left.\#\left(\Delta\left(I_{X}\right)\right)=N\right)$ and one may prove that the set $\left.M \in \Delta\left(I_{X}\right), \operatorname{deg}(M) \leq d\right\}$ is a basis for L_{d}, so that

Gröbner bases and coding theory

A (linear error correcting) code of length N defined over \mathbb{F}_{q} is an \mathbb{F}_{q}-vector subspace $C \subset \mathbb{F}_{q}^{N}$. Given an N-tuple $\boldsymbol{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{N}\right) \in \mathbb{F}_{q}^{N}$ the weight of $\boldsymbol{\alpha}$ is $w(\boldsymbol{\alpha})=\#\left\{i \mid \alpha_{i} \neq 0\right\}$ and the minimum distance of C is $d_{\text {min }}(C):=\min \{w(\boldsymbol{\alpha}) \mid \boldsymbol{\alpha} \in C \backslash\{\mathbf{0}\}\}$.
One may use a set $X=\left\{P_{1}, \ldots, P_{N}\right\} \subset \mathbb{A}^{m}\left(\mathbb{F}_{q}\right)$ to construct a code in the following way. Let $I_{X} \subset \mathbb{F}_{q}\left[X_{0}, \ldots, X_{m}\right]=\mathbb{F}_{q}[\mathbf{X}]$ be the ideal of X and let $\varphi: \mathbb{F}_{q}[\mathbf{X}] / I_{X} \rightarrow \mathbb{F}_{q}^{N}$ be given by $\varphi\left(f+I_{X}\right)=\left(f\left(P_{1}\right), \ldots, f\left(P_{N}\right)\right)$.

Gröbner bases and coding theory

A (linear error correcting) code of length N defined over \mathbb{F}_{q} is an \mathbb{F}_{q}-vector subspace $C \subset \mathbb{F}_{q}^{N}$. Given an N-tuple $\boldsymbol{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{N}\right) \in \mathbb{F}_{q}^{N}$ the weight of $\boldsymbol{\alpha}$ is $w(\boldsymbol{\alpha})=\#\left\{i \mid \alpha_{i} \neq 0\right\}$ and the minimum distance of C is $d_{\text {min }}(C):=\min \{w(\boldsymbol{\alpha}) \mid \boldsymbol{\alpha} \in C \backslash\{\mathbf{0}\}\}$.
One may use a set $X=\left\{P_{1}, \ldots, P_{N}\right\} \subset \mathbb{A}^{m}\left(\mathbb{F}_{q}\right)$ to construct a code in the following way. Let $I_{X} \subset \mathbb{F}_{q}\left[X_{0}, \ldots, X_{m}\right]=\mathbb{F}_{q}[\mathbf{X}]$ be the ideal of X and let $\varphi: \mathbb{F}_{q}[\mathbf{X}] / I_{X} \rightarrow \mathbb{F}_{q}^{N}$ be given by $\varphi\left(f+I_{X}\right)=\left(f\left(P_{1}\right), \ldots, f\left(P_{N}\right)\right)$. It is not difficult to show that φ is an isomorphism of \mathbb{F}_{q}-vector spaces.

Gröbner bases and coding theory

A (linear error correcting) code of length N defined over \mathbb{F}_{q} is an \mathbb{F}_{q}-vector subspace $C \subset \mathbb{F}_{q}^{N}$. Given an N-tuple $\boldsymbol{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{N}\right) \in \mathbb{F}_{q}^{N}$ the weight of $\boldsymbol{\alpha}$ is $w(\boldsymbol{\alpha})=\#\left\{i \mid \alpha_{i} \neq 0\right\}$ and the minimum distance of C is $d_{\text {min }}(C):=\min \{w(\boldsymbol{\alpha}) \mid \boldsymbol{\alpha} \in C \backslash\{\mathbf{0}\}\}$.
One may use a set $X=\left\{P_{1}, \ldots, P_{N}\right\} \subset \mathbb{A}^{m}\left(\mathbb{F}_{q}\right)$ to construct a code in the following way. Let $I_{X} \subset \mathbb{F}_{q}\left[X_{0}, \ldots, X_{m}\right]=\mathbb{F}_{q}[\mathbf{X}]$ be the ideal of X and let $\varphi: \mathbb{F}_{q}[\mathbf{X}] / I_{X} \rightarrow \mathbb{F}_{q}^{N}$ be given by $\varphi\left(f+I_{X}\right)=\left(f\left(P_{1}\right), \ldots, f\left(P_{N}\right)\right)$. It is not difficult to show that φ is an isomorphism of \mathbb{F}_{q}-vector spaces. Thus, for any subspace $L \subset \mathbb{F}_{q}[\mathbf{X}] / I_{X}$ we have a code $C_{L}:=\varphi(L)$.

Gröbner bases and coding theory

A (linear error correcting) code of length N defined over \mathbb{F}_{q} is an \mathbb{F}_{q}-vector subspace $C \subset \mathbb{F}_{q}^{N}$. Given an N-tuple $\boldsymbol{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{N}\right) \in \mathbb{F}_{q}^{N}$ the weight of $\boldsymbol{\alpha}$ is $w(\boldsymbol{\alpha})=\#\left\{i \mid \alpha_{i} \neq 0\right\}$ and the minimum distance of C is $d_{\text {min }}(C):=\min \{w(\boldsymbol{\alpha}) \mid \boldsymbol{\alpha} \in C \backslash\{\mathbf{0}\}\}$.
One may use a set $X=\left\{P_{1}, \ldots, P_{N}\right\} \subset \mathbb{A}^{m}\left(\mathbb{F}_{q}\right)$ to construct a code in the following way. Let $I_{X} \subset \mathbb{F}_{q}\left[X_{0}, \ldots, X_{m}\right]=\mathbb{F}_{q}[\mathbf{X}]$ be the ideal of X and let $\varphi: \mathbb{F}_{q}[\mathbf{X}] / I_{X} \rightarrow \mathbb{F}_{q}^{N}$ be given by $\varphi\left(f+I_{X}\right)=\left(f\left(P_{1}\right), \ldots, f\left(P_{N}\right)\right)$. It is not difficult to show that φ is an isomorphism of \mathbb{F}_{q}-vector spaces. Thus, for any subspace $L \subset \mathbb{F}_{q}[\mathbf{X}] / I_{X}$ we have a code $C_{L}:=\varphi(L)$.
Let d be a nonnegative integer and let $L_{d}:=\left\{f+I_{X} \mid f=0\right.$ or $\left.\operatorname{deg}(f) \leq d\right\}$. \qquad Reed-Muller type"

Buchberger's result we know that the classes of the monomials in $\triangle(/ \mathcal{V})$) form a basis for $\mathbb{F}_{q}[\mathbf{X}] / I_{V}$ (ir particular $\left.\#\left(\Delta\left(I_{X}\right)\right)=N\right)$ and one may prove that the set $\Delta\left(I_{X}\right)_{d}:=\left\{M+I_{X} \mid M \in \Delta\left(I_{X}\right), \operatorname{deg}(M) \leq d\right\}$ is a basis for L_{d}, so that

Gröbner bases and coding theory

A (linear error correcting) code of length N defined over \mathbb{F}_{q} is an \mathbb{F}_{q}-vector subspace $C \subset \mathbb{F}_{q}^{N}$. Given an N-tuple $\boldsymbol{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{N}\right) \in \mathbb{F}_{q}^{N}$ the weight of $\boldsymbol{\alpha}$ is $w(\boldsymbol{\alpha})=\#\left\{i \mid \alpha_{i} \neq 0\right\}$ and the minimum distance of C is $d_{\text {min }}(C):=\min \{w(\boldsymbol{\alpha}) \mid \boldsymbol{\alpha} \in C \backslash\{\mathbf{0}\}\}$.
One may use a set $X=\left\{P_{1}, \ldots, P_{N}\right\} \subset \mathbb{A}^{m}\left(\mathbb{F}_{q}\right)$ to construct a code in the following way. Let $I_{X} \subset \mathbb{F}_{q}\left[X_{0}, \ldots, X_{m}\right]=\mathbb{F}_{q}[\mathbf{X}]$ be the ideal of X and let $\varphi: \mathbb{F}_{q}[\mathbf{X}] / I_{X} \rightarrow \mathbb{F}_{q}^{N}$ be given by $\varphi\left(f+I_{X}\right)=\left(f\left(P_{1}\right), \ldots, f\left(P_{N}\right)\right)$. It is not difficult to show that φ is an isomorphism of \mathbb{F}_{q}-vector spaces. Thus, for any subspace $L \subset \mathbb{F}_{q}[\mathbf{X}] / I_{X}$ we have a code $C_{L}:=\varphi(L)$.
Let d be a nonnegative integer and let
$L_{d}:=\left\{f+I_{X} \mid f=0\right.$ or $\left.\operatorname{deg}(f) \leq d\right\}$. In this case we say that $C_{L_{d}}$ is "of Reed-Muller type" and has order d.
that the classes of the monomials in $\Delta\left(I_{X}\right)$) form a basis for $\mathbb{F}_{q}[X] / I_{X}$ (in particular $\left.\#\left(\Delta\left(I_{X}\right)\right)=N\right)$ and one may prove that the set $\Delta\left(I_{X}\right)_{d}:=\left\{M+I_{X} \mid M \in \Delta\left(I_{X}\right), \operatorname{deg}(M) \leq d\right\}$ is a basis for L_{d}, so that

Gröbner bases and coding theory

A (linear error correcting) code of length N defined over \mathbb{F}_{q} is an \mathbb{F}_{q}-vector subspace $C \subset \mathbb{F}_{q}^{N}$. Given an N-tuple $\boldsymbol{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{N}\right) \in \mathbb{F}_{q}^{N}$ the weight of $\boldsymbol{\alpha}$ is $w(\boldsymbol{\alpha})=\#\left\{i \mid \alpha_{i} \neq 0\right\}$ and the minimum distance of C is $d_{\text {min }}(C):=\min \{w(\boldsymbol{\alpha}) \mid \boldsymbol{\alpha} \in C \backslash\{\mathbf{0}\}\}$.
One may use a set $X=\left\{P_{1}, \ldots, P_{N}\right\} \subset \mathbb{A}^{m}\left(\mathbb{F}_{q}\right)$ to construct a code in the following way. Let $I_{X} \subset \mathbb{F}_{q}\left[X_{0}, \ldots, X_{m}\right]=\mathbb{F}_{q}[\mathbf{X}]$ be the ideal of X and let $\varphi: \mathbb{F}_{q}[\mathbf{X}] / I_{X} \rightarrow \mathbb{F}_{q}^{N}$ be given by $\varphi\left(f+I_{X}\right)=\left(f\left(P_{1}\right), \ldots, f\left(P_{N}\right)\right)$. It is not difficult to show that φ is an isomorphism of \mathbb{F}_{q}-vector spaces. Thus, for any subspace $L \subset \mathbb{F}_{q}[\mathbf{X}] / I_{X}$ we have a code $C_{L}:=\varphi(L)$.
Let d be a nonnegative integer and let
$L_{d}:=\left\{f+I_{X} \mid f=0\right.$ or $\left.\operatorname{deg}(f) \leq d\right\}$. In this case we say that $C_{L_{d}}$ is "of Reed-Muller type" and has order d. From Buchberger's result we know that the classes of the monomials in $\Delta\left(I_{X}\right)$) form a basis for $\mathbb{F}_{q}[\mathbf{X}] / I_{X}$

Gröbner bases and coding theory

A (linear error correcting) code of length N defined over \mathbb{F}_{q} is an \mathbb{F}_{q}-vector subspace $C \subset \mathbb{F}_{q}^{N}$. Given an N-tuple $\boldsymbol{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{N}\right) \in \mathbb{F}_{q}^{N}$ the weight of $\boldsymbol{\alpha}$ is $w(\boldsymbol{\alpha})=\#\left\{i \mid \alpha_{i} \neq 0\right\}$ and the minimum distance of C is $d_{\text {min }}(C):=\min \{w(\boldsymbol{\alpha}) \mid \boldsymbol{\alpha} \in C \backslash\{\mathbf{0}\}\}$.
One may use a set $X=\left\{P_{1}, \ldots, P_{N}\right\} \subset \mathbb{A}^{m}\left(\mathbb{F}_{q}\right)$ to construct a code in the following way. Let $I_{X} \subset \mathbb{F}_{q}\left[X_{0}, \ldots, X_{m}\right]=\mathbb{F}_{q}[\mathbf{X}]$ be the ideal of X and let $\varphi: \mathbb{F}_{q}[\mathbf{X}] / I_{X} \rightarrow \mathbb{F}_{q}^{N}$ be given by $\varphi\left(f+I_{X}\right)=\left(f\left(P_{1}\right), \ldots, f\left(P_{N}\right)\right)$. It is not difficult to show that φ is an isomorphism of \mathbb{F}_{q}-vector spaces. Thus, for any subspace $L \subset \mathbb{F}_{q}[\mathbf{X}] / I_{X}$ we have a code $C_{L}:=\varphi(L)$.
Let d be a nonnegative integer and let
$L_{d}:=\left\{f+I_{X} \mid f=0\right.$ or $\left.\operatorname{deg}(f) \leq d\right\}$. In this case we say that $C_{L_{d}}$ is "of Reed-Muller type" and has order d. From Buchberger's result we know that the classes of the monomials in $\Delta\left(I_{X}\right)$) form a basis for $\mathbb{F}_{q}[\mathbf{X}] / I_{X}$ (in particular $\left.\#\left(\Delta\left(I_{X}\right)\right)=N\right)$
and one may prove that the set
$\operatorname{deg}(M) \leq d\}$ is a basis for L_{d}, so that

Gröbner bases and coding theory

A (linear error correcting) code of length N defined over \mathbb{F}_{q} is an \mathbb{F}_{q}-vector subspace $C \subset \mathbb{F}_{q}^{N}$. Given an N-tuple $\boldsymbol{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{N}\right) \in \mathbb{F}_{q}^{N}$ the weight of $\boldsymbol{\alpha}$ is $w(\boldsymbol{\alpha})=\#\left\{i \mid \alpha_{i} \neq 0\right\}$ and the minimum distance of C is $d_{\text {min }}(C):=\min \{w(\boldsymbol{\alpha}) \mid \boldsymbol{\alpha} \in C \backslash\{\mathbf{0}\}\}$.
One may use a set $X=\left\{P_{1}, \ldots, P_{N}\right\} \subset \mathbb{A}^{m}\left(\mathbb{F}_{q}\right)$ to construct a code in the following way. Let $I_{X} \subset \mathbb{F}_{q}\left[X_{0}, \ldots, X_{m}\right]=\mathbb{F}_{q}[\mathbf{X}]$ be the ideal of X and let $\varphi: \mathbb{F}_{q}[\mathbf{X}] / I_{X} \rightarrow \mathbb{F}_{q}^{N}$ be given by $\varphi\left(f+I_{X}\right)=\left(f\left(P_{1}\right), \ldots, f\left(P_{N}\right)\right)$. It is not difficult to show that φ is an isomorphism of \mathbb{F}_{q}-vector spaces. Thus, for any subspace $L \subset \mathbb{F}_{q}[\mathbf{X}] / I_{X}$ we have a code $C_{L}:=\varphi(L)$.
Let d be a nonnegative integer and let
$L_{d}:=\left\{f+I_{X} \mid f=0\right.$ or $\left.\operatorname{deg}(f) \leq d\right\}$. In this case we say that $C_{L_{d}}$ is "of Reed-Muller type" and has order d. From Buchberger's result we know that the classes of the monomials in $\Delta\left(I_{X}\right)$) form a basis for $\mathbb{F}_{q}[\mathbf{X}] / I_{X}$ (in particular $\left.\#\left(\Delta\left(I_{X}\right)\right)=N\right)$ and one may prove that the set $\Delta\left(I_{X}\right)_{d}:=\left\{M+I_{X} \mid M \in \Delta\left(I_{X}\right), \operatorname{deg}(M) \leq d\right\}$ is a basis for L_{d},

Gröbner bases and coding theory

A (linear error correcting) code of length N defined over \mathbb{F}_{q} is an \mathbb{F}_{q}-vector subspace $C \subset \mathbb{F}_{q}^{N}$. Given an N-tuple $\boldsymbol{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{N}\right) \in \mathbb{F}_{q}^{N}$ the weight of $\boldsymbol{\alpha}$ is $w(\boldsymbol{\alpha})=\#\left\{i \mid \alpha_{i} \neq 0\right\}$ and the minimum distance of C is $d_{\text {min }}(C):=\min \{w(\boldsymbol{\alpha}) \mid \boldsymbol{\alpha} \in C \backslash\{\mathbf{0}\}\}$.
One may use a set $X=\left\{P_{1}, \ldots, P_{N}\right\} \subset \mathbb{A}^{m}\left(\mathbb{F}_{q}\right)$ to construct a code in the following way. Let $I_{X} \subset \mathbb{F}_{q}\left[X_{0}, \ldots, X_{m}\right]=\mathbb{F}_{q}[\mathbf{X}]$ be the ideal of X and let $\varphi: \mathbb{F}_{q}[\mathbf{X}] / I_{X} \rightarrow \mathbb{F}_{q}^{N}$ be given by $\varphi\left(f+I_{X}\right)=\left(f\left(P_{1}\right), \ldots, f\left(P_{N}\right)\right)$. It is not difficult to show that φ is an isomorphism of \mathbb{F}_{q}-vector spaces. Thus, for any subspace $L \subset \mathbb{F}_{q}[\mathbf{X}] / I_{X}$ we have a code $C_{L}:=\varphi(L)$.
Let d be a nonnegative integer and let
$L_{d}:=\left\{f+I_{X} \mid f=0\right.$ or $\left.\operatorname{deg}(f) \leq d\right\}$. In this case we say that $C_{L_{d}}$ is "of Reed-Muller type" and has order d. From Buchberger's result we know that the classes of the monomials in $\Delta\left(I_{X}\right)$) form a basis for $\mathbb{F}_{q}[\mathbf{X}] / I_{X}$ (in particular $\left.\#\left(\Delta\left(I_{X}\right)\right)=N\right)$ and one may prove that the set $\Delta\left(I_{X}\right)_{d}:=\left\{M+I_{X} \mid M \in \Delta\left(I_{X}\right), \operatorname{deg}(M) \leq d\right\}$ is a basis for L_{d}, so that $\operatorname{dim}\left(C_{L_{d}}\right)=\#\left(\Delta\left(I_{X}\right)_{d}\right)$.

Gröbner basis methods and the parameters of C_{L}

As for the minimum distance $d_{\min }\left(C_{L}\right)$, we would like to estimate the number of zero entries in $\varphi\left(f+I_{X}\right)=\left(f\left(P_{1}\right), \ldots, f\left(P_{N}\right)\right)$. Let $I_{X, f}:=I_{X}+(f)$, we want to estimate $N-\#\left(V\left(I_{X, f}\right)\right)$. From $I_{X} \subset I_{X, f}$ we get $\Delta\left(I_{X, f}\right) \subset \Delta\left(I_{X}\right)$, in particular $\Delta\left(I_{X, f}\right)$ is finite which implies $\#\left(V\left(I_{X, f}\right)\right) \leq \#\left(\Delta\left(I_{X, f}\right)\right)$ and we get $N-\#\left(V\left(I_{X, f}\right)\right) \geq N-\#\left(\Delta\left(I_{X, f}\right)\right)$.

From Buchberger's result we can assume that f is a linear combination of monomials in $\Delta\left(I_{X}\right)$ so that $\operatorname{Im}(f) \in \Delta\left(I_{X}\right)$. One may prove that $N-\#\left(\Delta\left(I_{X, f}\right)\right) \geq \#\left(\left\{M^{\prime} \in \Delta\left(I_{X}\right)|\operatorname{Im}(f)| M^{\prime}\right\}\right)$, so the idea now is to determine for each monomial $M \in \Delta\left(I_{X}\right)$ the cardinality of the set $\left\{M^{\prime} \in \Delta\left(I_{X}\right)|M| M^{\prime}\right\}$, and from this determine a lower bound for $d_{\min }\left(C_{L}\right)$. Moreover, it is true that if $\left\{g_{1}, \ldots, g_{s}\right\}$ is a Gröbner basis for I_{X} and $\left\{f, g_{1}, \ldots, g_{s}\right\}$ is a Gröbner basis for $I_{X, f}$ then this bound is the true value of the minimum distance.

Gröbner basis methods and the parameters of C_{L}

As for the minimum distance $d_{\text {min }}\left(C_{L}\right)$, we would like to estimate the number of zero entries in $\varphi\left(f+I_{X}\right)=\left(f\left(P_{1}\right), \ldots, f\left(P_{N}\right)\right)$.

From Buchberger's result we can assume that f is a linear combination of monomials in $\Delta\left(I_{X}\right)$ so that $\operatorname{Im}(f) \in \Delta\left(I_{X}\right)$. One may prove that $N-\#\left(\Delta\left(I_{X, f}\right)\right) \geq \#\left(\left\{M^{\prime} \in \Delta\left(I_{X}\right)|\operatorname{Im}(f)| M^{\prime}\right\}\right)$, so the idea now is to determine for each monomial $M \in \Delta\left(I_{X}\right)$ the cardinality of the set $\left\{M^{\prime} \in \Delta\left(I_{X}\right)|M| M^{\prime}\right\}$, and from this determine a lower bound for $d_{\min }\left(C_{L}\right)$. Moreover, it is true that if $\left\{g_{1}, \ldots, g_{s}\right\}$ is a Gröbner basis for I_{X} and $\left\{f, g_{1}, \ldots, g_{s}\right\}$ is a Gröbner basis for $I_{X, f}$ then this bound is the true value of the minimum distance.

Gröbner basis methods and the parameters of C_{L}

As for the minimum distance $d_{\text {min }}\left(C_{L}\right)$, we would like to estimate the number of zero entries in $\varphi\left(f+I_{X}\right)=\left(f\left(P_{1}\right), \ldots, f\left(P_{N}\right)\right)$. Let $I_{X, f}:=I_{X}+(f)$,

From Buchberger's result we can assume that f is a linear combination of monomials in $\Delta\left(I_{X}\right)$ so that $\operatorname{Im}(f) \in \Delta\left(I_{X}\right)$. One may prove that $N-\#(\Delta(I X, f)) \geq \#\left(\left\{M^{\prime} \in \Delta(I X)|\operatorname{Im}(f)| M^{\prime}\right\}\right)$, so the idea now is to determine for each monomial $M \in \Delta\left(I_{X}\right)$ the cardinality of the set $\left\{M^{\prime} \in \Delta\left(I_{X}\right)|M| M^{\prime}\right\}$, and from this determine a lower bound for $d_{\min }\left(C_{L}\right)$. Moreover, it is true that if $\left\{g_{1}, \ldots, g_{s}\right\}$ is a Gröbner basis for I_{X} and $\left\{f, g_{1}, \ldots, g_{s}\right\}$ is a Gröbner basis for $I_{X, f}$ then this bound is the true value of the minimum distance.

Gröbner basis methods and the parameters of C_{L}

As for the minimum distance $d_{\text {min }}\left(C_{L}\right)$, we would like to estimate the number of zero entries in $\varphi\left(f+I_{X}\right)=\left(f\left(P_{1}\right), \ldots, f\left(P_{N}\right)\right)$. Let $I_{X, f}:=I_{X}+(f)$, we want to estimate $N-\#\left(V\left(I_{X, f}\right)\right)$.

From Buchberger's result we can assume that f is a linear combination of monomials in $\Delta\left(I_{X}\right)$ so that $\operatorname{Im}(f) \in \Delta\left(I_{X}\right)$. One may prove that $N-\#\left(\Delta\left(I_{X, f}\right)\right) \geq \#\left(\left\{M^{\prime} \in \Delta\left(I_{X}\right)|\operatorname{Im}(f)| M^{\prime}\right\}\right)$, so the idea now is to determine for each monomial $M \in \Delta\left(I_{X}\right)$ the cardinality of the set $\left\{M^{\prime} \in \Delta\left(I_{X}\right)|M| M^{\prime}\right\}$, and from this determine a lower bound for $d_{\min }\left(C_{L}\right)$. Moreover, it is true that if $\left\{g_{1}, \ldots, g_{s}\right\}$ is a Gröbner basis for I_{X} and $\left\{f, g_{1}, \ldots, g_{s}\right\}$ is a Gröbner basis for $I_{X, f}$ then this bound is the true value of the minimum distance.

Gröbner basis methods and the parameters of C_{L}

As for the minimum distance $d_{\text {min }}\left(C_{L}\right)$, we would like to estimate the number of zero entries in $\varphi\left(f+I_{X}\right)=\left(f\left(P_{1}\right), \ldots, f\left(P_{N}\right)\right)$. Let $I_{X, f}:=I_{X}+(f)$, we want to estimate $N-\#\left(V\left(I_{X, f}\right)\right)$. From $I_{X} \subset I_{X, f}$ we get $\Delta\left(I_{X, f}\right) \subset \Delta\left(I_{X}\right)$,

From Buchberger's result we can assume that f is a linear combination of monomials in $\Delta\left(I_{X}\right)$ so that $\operatorname{Im}(f) \in \Delta\left(I_{X}\right)$. One may prove that $N-\#\left(\Delta\left(I_{X, f}\right)\right) \geq \#\left(\left\{M^{\prime} \in \Delta\left(I_{X}\right)|\operatorname{Im}(f)| M^{\prime}\right\}\right)$, so the idea now is to determine for each monomial $M \in \Delta\left(I_{X}\right)$ the cardinality of the set $\left\{M^{\prime} \in \Delta(I X)|M| M^{\prime}\right\}$, and from this determine a lower bound for $d_{\min }\left(C_{L}\right)$. Moreover, it is true that if $\left\{g_{1}, \ldots, g_{s}\right\}$ is a Gröbner basis for I_{X} and $\left\{f, g_{1}, \ldots, g_{s}\right\}$ is a Gröbner basis for $I_{X, f}$ then this bound is the true value of the minimum distance.

Gröbner basis methods and the parameters of C_{L}

As for the minimum distance $d_{\text {min }}\left(C_{L}\right)$, we would like to estimate the number of zero entries in $\varphi\left(f+I_{X}\right)=\left(f\left(P_{1}\right), \ldots, f\left(P_{N}\right)\right)$. Let $I_{X, f}:=I_{X}+(f)$, we want to estimate $N-\#\left(V\left(I_{X, f}\right)\right)$. From $I_{X} \subset I_{X, f}$ we get $\Delta\left(I_{X, f}\right) \subset \Delta\left(I_{X}\right)$, in particular $\Delta\left(I_{X, f}\right)$ is finite

Gröbner basis methods and the parameters of C_{L}

As for the minimum distance $d_{\text {min }}\left(C_{L}\right)$, we would like to estimate the number of zero entries in $\varphi\left(f+I_{X}\right)=\left(f\left(P_{1}\right), \ldots, f\left(P_{N}\right)\right)$. Let $I_{X, f}:=I_{X}+(f)$, we want to estimate $N-\#\left(V\left(I_{X, f}\right)\right)$. From $I_{X} \subset I_{X, f}$ we get $\Delta\left(I_{X, f}\right) \subset \Delta\left(I_{X}\right)$, in particular $\Delta\left(I_{X, f}\right)$ is finite which implies $\#\left(V\left(I_{X, f}\right)\right) \leq \#\left(\Delta\left(I_{X, f}\right)\right)$

From Buchberger's result we can assume that f is a linear combination of monomials in $\Delta\left(I_{X}\right)$ so that $\operatorname{Im}(f) \in \Delta\left(I_{X}\right)$. One may prove that $N-\#\left(\Delta\left(I_{X, f}\right)\right) \geq \#\left(\left\{M^{\prime} \in \Delta\left(I_{X}\right)|\operatorname{Im}(f)| M^{\prime}\right\}\right)$, so the idea now is to determine for each monomial $M \in \Delta\left(I_{X}\right)$ the cardinality of the set $\left\{M^{\prime} \in \Delta\left(I_{X}\right)|M| M^{\prime}\right\}$, and from this determine a lower bound for $d_{\min }\left(C_{L}\right)$. Moreover, it is true that if $\left\{g_{1}, \ldots, g_{s}\right\}$ is a Gröbner basis for I_{X} and $\left\{f, g_{1}, \ldots, g_{s}\right\}$ is a Gröbner basis for $I_{X, f}$ then this bound is the true value of the minimum distance.

Gröbner basis methods and the parameters of C_{L}

As for the minimum distance $d_{\text {min }}\left(C_{L}\right)$, we would like to estimate the number of zero entries in $\varphi\left(f+I_{X}\right)=\left(f\left(P_{1}\right), \ldots, f\left(P_{N}\right)\right)$. Let $I_{X, f}:=I_{X}+(f)$, we want to estimate $N-\#\left(V\left(I_{X, f}\right)\right)$. From $I_{X} \subset I_{X, f}$ we get $\Delta\left(I_{X, f}\right) \subset \Delta\left(I_{X}\right)$, in particular $\Delta\left(I_{X, f}\right)$ is finite which implies $\#\left(V\left(I_{X, f}\right)\right) \leq \#\left(\Delta\left(I_{X, f}\right)\right)$ and we get $N-\#\left(V\left(I_{X, f}\right)\right) \geq N-\#\left(\Delta\left(I_{X, f}\right)\right)$.

From Buchberger's result we can assume that f is a linear combination of monomials in $\Delta\left(I_{X}\right)$ so that $\operatorname{Im}(f) \in \Delta\left(I_{X}\right)$. One may prove that $N-\#\left(\Delta\left(I_{X, f}\right)\right) \geq \#\left(\left\{M^{\prime} \in \Delta\left(I_{X}\right)|\operatorname{Im}(f)| M^{\prime}\right\}\right)$, so the idea now is to determine for each monomial $M \in \Delta\left(I_{X}\right)$ the cardinality of the set $\left\{M^{\prime} \in \Delta\left(I_{X}\right)|M| M^{\prime}\right\}$, and from this determine a lower bound for $d_{\min }\left(C_{L}\right)$. Moreover, it is true that if $\left\{g_{1}, \ldots, g_{s}\right\}$ is a Gröbner basis for I_{X} value of the minimum distance.

Gröbner basis methods and the parameters of C_{L}

As for the minimum distance $d_{\text {min }}\left(C_{L}\right)$, we would like to estimate the number of zero entries in $\varphi\left(f+I_{X}\right)=\left(f\left(P_{1}\right), \ldots, f\left(P_{N}\right)\right)$. Let $I_{X, f}:=I_{X}+(f)$, we want to estimate $N-\#\left(V\left(I_{X, f}\right)\right)$. From $I_{X} \subset I_{X, f}$ we get $\Delta\left(I_{X, f}\right) \subset \Delta\left(I_{X}\right)$, in particular $\Delta\left(I_{X, f}\right)$ is finite which implies $\#\left(V\left(I_{X, f}\right)\right) \leq \#\left(\Delta\left(I_{X, f}\right)\right)$ and we get $N-\#\left(V\left(I_{X, f}\right)\right) \geq N-\#\left(\Delta\left(I_{X, f}\right)\right)$.

From Buchberger's result we can assume that f is a linear combination of monomials in $\Delta\left(I_{X}\right)$ so that $\operatorname{Im}(f) \in \Delta\left(I_{X}\right)$.

value of the minimum distance.

Gröbner basis methods and the parameters of C_{L}

As for the minimum distance $d_{\text {min }}\left(C_{L}\right)$, we would like to estimate the number of zero entries in $\varphi\left(f+I_{X}\right)=\left(f\left(P_{1}\right), \ldots, f\left(P_{N}\right)\right)$. Let $I_{X, f}:=I_{X}+(f)$, we want to estimate $N-\#\left(V\left(I_{X, f}\right)\right)$. From $I_{X} \subset I_{X, f}$ we get $\Delta\left(I_{X, f}\right) \subset \Delta\left(I_{X}\right)$, in particular $\Delta\left(I_{X, f}\right)$ is finite which implies $\#\left(V\left(I_{X, f}\right)\right) \leq \#\left(\Delta\left(I_{X, f}\right)\right)$ and we get $N-\#\left(V\left(I_{X, f}\right)\right) \geq N-\#\left(\Delta\left(I_{X, f}\right)\right)$.

From Buchberger's result we can assume that f is a linear combination of monomials in $\Delta\left(I_{X}\right)$ so that $\operatorname{Im}(f) \in \Delta\left(I_{X}\right)$. One may prove that $N-\#\left(\Delta\left(I_{X, f}\right)\right) \geq \#\left(\left\{M^{\prime} \in \Delta\left(I_{X}\right)|\operatorname{Im}(f)| M^{\prime}\right\}\right)$,

Gröbner basis methods and the parameters of C_{L}

As for the minimum distance $d_{\text {min }}\left(C_{L}\right)$, we would like to estimate the number of zero entries in $\varphi\left(f+I_{X}\right)=\left(f\left(P_{1}\right), \ldots, f\left(P_{N}\right)\right)$. Let $I_{X, f}:=I_{X}+(f)$, we want to estimate $N-\#\left(V\left(I_{X, f}\right)\right)$. From $I_{X} \subset I_{X, f}$ we get $\Delta\left(I_{X, f}\right) \subset \Delta\left(I_{X}\right)$, in particular $\Delta\left(I_{X, f}\right)$ is finite which implies $\#\left(V\left(I_{X, f}\right)\right) \leq \#\left(\Delta\left(I_{X, f}\right)\right)$ and we get $N-\#\left(V\left(I_{X, f}\right)\right) \geq N-\#\left(\Delta\left(I_{X, f}\right)\right)$.

From Buchberger's result we can assume that f is a linear combination of monomials in $\Delta\left(I_{X}\right)$ so that $\operatorname{Im}(f) \in \Delta\left(I_{X}\right)$. One may prove that $N-\#\left(\Delta\left(I_{X, f}\right)\right) \geq \#\left(\left\{M^{\prime} \in \Delta\left(I_{X}\right)|\operatorname{Im}(f)| M^{\prime}\right\}\right)$, so the idea now is to determine for each monomial $M \in \Delta\left(I_{X}\right)$ the cardinality of the set $\left\{M^{\prime} \in \Delta\left(I_{X}\right)|M| M^{\prime}\right\}$,

value of the minimum distance.

Gröbner basis methods and the parameters of C_{L}

As for the minimum distance $d_{\text {min }}\left(C_{L}\right)$, we would like to estimate the number of zero entries in $\varphi\left(f+I_{X}\right)=\left(f\left(P_{1}\right), \ldots, f\left(P_{N}\right)\right)$. Let $I_{X, f}:=I_{X}+(f)$, we want to estimate $N-\#\left(V\left(I_{X, f}\right)\right)$. From $I_{X} \subset I_{X, f}$ we get $\Delta\left(I_{X, f}\right) \subset \Delta\left(I_{X}\right)$, in particular $\Delta\left(I_{X, f}\right)$ is finite which implies $\#\left(V\left(I_{X, f}\right)\right) \leq \#\left(\Delta\left(I_{X, f}\right)\right)$ and we get $N-\#\left(V\left(I_{X, f}\right)\right) \geq N-\#\left(\Delta\left(I_{X, f}\right)\right)$.

From Buchberger's result we can assume that f is a linear combination of monomials in $\Delta\left(I_{X}\right)$ so that $\operatorname{Im}(f) \in \Delta\left(I_{X}\right)$. One may prove that $N-\#\left(\Delta\left(I_{X, f}\right)\right) \geq \#\left(\left\{M^{\prime} \in \Delta\left(I_{X}\right)|\operatorname{Im}(f)| M^{\prime}\right\}\right)$, so the idea now is to determine for each monomial $M \in \Delta\left(I_{X}\right)$ the cardinality of the set $\left\{M^{\prime} \in \Delta\left(I_{X}\right)|M| M^{\prime}\right\}$, and from this determine a lower bound for $d_{\text {min }}\left(C_{L}\right)$. and $\left\{f, g_{1}, \ldots, g_{s}\right\}$ is a Gröbner basis for $I_{X, f}$ then this bound is the true value of the minimum distance.

Gröbner basis methods and the parameters of C_{L}

As for the minimum distance $d_{\text {min }}\left(C_{L}\right)$, we would like to estimate the number of zero entries in $\varphi\left(f+I_{X}\right)=\left(f\left(P_{1}\right), \ldots, f\left(P_{N}\right)\right)$. Let $I_{X, f}:=I_{X}+(f)$, we want to estimate $N-\#\left(V\left(I_{X, f}\right)\right)$. From $I_{X} \subset I_{X, f}$ we get $\Delta\left(I_{X, f}\right) \subset \Delta\left(I_{X}\right)$, in particular $\Delta\left(I_{X, f}\right)$ is finite which implies $\#\left(V\left(I_{X, f}\right)\right) \leq \#\left(\Delta\left(I_{X, f}\right)\right)$ and we get $N-\#\left(V\left(I_{X, f}\right)\right) \geq N-\#\left(\Delta\left(I_{X, f}\right)\right)$.

From Buchberger's result we can assume that f is a linear combination of monomials in $\Delta\left(I_{X}\right)$ so that $\operatorname{Im}(f) \in \Delta\left(I_{X}\right)$. One may prove that $N-\#\left(\Delta\left(I_{X, f}\right)\right) \geq \#\left(\left\{M^{\prime} \in \Delta\left(I_{X}\right)|\operatorname{Im}(f)| M^{\prime}\right\}\right)$, so the idea now is to determine for each monomial $M \in \Delta\left(I_{X}\right)$ the cardinality of the set $\left\{M^{\prime} \in \Delta\left(I_{X}\right)|M| M^{\prime}\right\}$, and from this determine a lower bound for $d_{\min }\left(C_{L}\right)$. Moreover, it is true that if $\left\{g_{1}, \ldots, g_{s}\right\}$ is a Gröbner basis for I_{X} value of the minimum distance.

Gröbner basis methods and the parameters of C_{L}

As for the minimum distance $d_{\text {min }}\left(C_{L}\right)$, we would like to estimate the number of zero entries in $\varphi\left(f+I_{X}\right)=\left(f\left(P_{1}\right), \ldots, f\left(P_{N}\right)\right)$. Let $I_{X, f}:=I_{X}+(f)$, we want to estimate $N-\#\left(V\left(I_{X, f}\right)\right)$. From $I_{X} \subset I_{X, f}$ we get $\Delta\left(I_{X, f}\right) \subset \Delta\left(I_{X}\right)$, in particular $\Delta\left(I_{X, f}\right)$ is finite which implies $\#\left(V\left(I_{X, f}\right)\right) \leq \#\left(\Delta\left(I_{X, f}\right)\right)$ and we get $N-\#\left(V\left(I_{X, f}\right)\right) \geq N-\#\left(\Delta\left(I_{X, f}\right)\right)$.

From Buchberger's result we can assume that f is a linear combination of monomials in $\Delta\left(I_{X}\right)$ so that $\operatorname{Im}(f) \in \Delta\left(I_{X}\right)$. One may prove that $N-\#\left(\Delta\left(I_{X, f}\right)\right) \geq \#\left(\left\{M^{\prime} \in \Delta\left(I_{X}\right)|\operatorname{Im}(f)| M^{\prime}\right\}\right)$, so the idea now is to determine for each monomial $M \in \Delta\left(I_{X}\right)$ the cardinality of the set $\left\{M^{\prime} \in \Delta\left(I_{X}\right)|M| M^{\prime}\right\}$, and from this determine a lower bound for $d_{\min }\left(C_{L}\right)$. Moreover, it is true that if $\left\{g_{1}, \ldots, g_{s}\right\}$ is a Gröbner basis for I_{X} and $\left\{f, g_{1}, \ldots, g_{s}\right\}$ is a Gröbner basis for $I_{X, f}$
value of the minimum distance.

Gröbner basis methods and the parameters of C_{L}

As for the minimum distance $d_{\text {min }}\left(C_{L}\right)$, we would like to estimate the number of zero entries in $\varphi\left(f+I_{X}\right)=\left(f\left(P_{1}\right), \ldots, f\left(P_{N}\right)\right)$. Let $I_{X, f}:=I_{X}+(f)$, we want to estimate $N-\#\left(V\left(I_{X, f}\right)\right)$. From $I_{X} \subset I_{X, f}$ we get $\Delta\left(I_{X, f}\right) \subset \Delta\left(I_{X}\right)$, in particular $\Delta\left(I_{X, f}\right)$ is finite which implies $\#\left(V\left(I_{X, f}\right)\right) \leq \#\left(\Delta\left(I_{X, f}\right)\right)$ and we get $N-\#\left(V\left(I_{X, f}\right)\right) \geq N-\#\left(\Delta\left(I_{X, f}\right)\right)$.

From Buchberger's result we can assume that f is a linear combination of monomials in $\Delta\left(I_{X}\right)$ so that $\operatorname{Im}(f) \in \Delta\left(I_{X}\right)$. One may prove that $N-\#\left(\Delta\left(I_{X, f}\right)\right) \geq \#\left(\left\{M^{\prime} \in \Delta\left(I_{X}\right)|\operatorname{Im}(f)| M^{\prime}\right\}\right)$, so the idea now is to determine for each monomial $M \in \Delta\left(I_{X}\right)$ the cardinality of the set $\left\{M^{\prime} \in \Delta\left(I_{X}\right)|M| M^{\prime}\right\}$, and from this determine a lower bound for $d_{\text {min }}\left(C_{L}\right)$. Moreover, it is true that if $\left\{g_{1}, \ldots, g_{s}\right\}$ is a Gröbner basis for I_{X} and $\left\{f, g_{1}, \ldots, g_{s}\right\}$ is a Gröbner basis for $I_{X, f}$ then this bound is the true value of the minimum distance.

Gröbner basis methods and the parameters of C_{L}

We present an example has which appeared in a couple or our works.
Let A_{1}, \ldots, A_{m} be nonempty subsets of \mathbb{F}_{q} such that
$2 \leq\left|A_{1}\right| \leq \cdots \leq\left|A_{m}\right|$, and set $X:=A_{1} \times \cdots \times A_{m}$. $\ln \mathbb{F}_{q}\left[X_{1}, \ldots, X_{m}\right]$ let
$f_{i}:=\prod_{c \in A_{i}}\left(X_{i}-c\right)$ for all $i \in\{1, \ldots, m\}$ and let $l:=\left(f_{1}, \ldots, f_{m}\right)$, then $X=V(I)$. One may show that I is the ideal of the set X, and clearly $|X|=\left|A_{1}\right| \cdots \cdot\left|A_{n}\right|$. Let $L_{d}:=\{p+I \mid p=0$ or $\operatorname{deg}(p) \leq d\}$. Then $\varphi\left(L_{d}\right)=: C\left(L_{d}\right)$ is the affine cartesian code of order d. We have that $\left\{f_{1}, \ldots, f_{m}\right\}$ is a Gröbner basis for I w.r.t. the graded lexicographic order. Let $d_{i}:=\left|A_{i}\right|$ for $i=1, \ldots, m$.

Gröbner basis methods and the parameters of C_{L}

We present an example has which appeared in a couple or our works.

Gröbner basis methods and the parameters of C_{L}

We present an example has which appeared in a couple or our works.
Let A_{1}, \ldots, A_{m} be nonempty subsets of \mathbb{F}_{q} such that $2 \leq\left|A_{1}\right| \leq \cdots \leq\left|A_{m}\right|$,

Gröbner basis methods and the parameters of C_{L}

We present an example has which appeared in a couple or our works.
Let A_{1}, \ldots, A_{m} be nonempty subsets of \mathbb{F}_{q} such that $2 \leq\left|A_{1}\right| \leq \cdots \leq\left|A_{m}\right|$, and set $X:=A_{1} \times \cdots \times A_{m}$.

Gröbner basis methods and the parameters of C_{L}

We present an example has which appeared in a couple or our works.
Let A_{1}, \ldots, A_{m} be nonempty subsets of \mathbb{F}_{q} such that $2 \leq\left|A_{1}\right| \leq \cdots \leq\left|A_{m}\right|$, and set $X:=A_{1} \times \cdots \times A_{m}$. $\ln \mathbb{F}_{q}\left[X_{1}, \ldots, X_{m}\right]$ let $f_{i}:=\prod_{c \in A_{i}}\left(X_{i}-c\right)$ for all $i \in\{1, \ldots, m\}$ \qquad

Gröbner basis methods and the parameters of C_{L}

We present an example has which appeared in a couple or our works.
Let A_{1}, \ldots, A_{m} be nonempty subsets of \mathbb{F}_{q} such that $2 \leq\left|A_{1}\right| \leq \cdots \leq\left|A_{m}\right|$, and set $X:=A_{1} \times \cdots \times A_{m}$. $\ln \mathbb{F}_{q}\left[X_{1}, \ldots, X_{m}\right]$ let $f_{i}:=\prod_{c \in A_{i}}\left(X_{i}-c\right)$ for all $i \in\{1, \ldots, m\}$ and let $l:=\left(f_{1}, \ldots, f_{m}\right)$, then $X=V(I)$.

Gröbner basis methods and the parameters of C_{L}

We present an example has which appeared in a couple or our works.
Let A_{1}, \ldots, A_{m} be nonempty subsets of \mathbb{F}_{q} such that $2 \leq\left|A_{1}\right| \leq \cdots \leq\left|A_{m}\right|$, and set $X:=A_{1} \times \cdots \times A_{m}$. $\ln \mathbb{F}_{q}\left[X_{1}, \ldots, X_{m}\right]$ let $f_{i}:=\prod_{c \in A_{i}}\left(X_{i}-c\right)$ for all $i \in\{1, \ldots, m\}$ and let $l:=\left(f_{1}, \ldots, f_{m}\right)$, then $X=V(I)$. One may show that I is the ideal of the set X,

Gröbner basis methods and the parameters of C_{L}

We present an example has which appeared in a couple or our works.
Let A_{1}, \ldots, A_{m} be nonempty subsets of \mathbb{F}_{q} such that $2 \leq\left|A_{1}\right| \leq \cdots \leq\left|A_{m}\right|$, and set $X:=A_{1} \times \cdots \times A_{m}$. $\ln \mathbb{F}_{q}\left[X_{1}, \ldots, X_{m}\right]$ let $f_{i}:=\prod_{c \in A_{i}}\left(X_{i}-c\right)$ for all $i \in\{1, \ldots, m\}$ and let $l:=\left(f_{1}, \ldots, f_{m}\right)$, then $X=V(I)$. One may show that I is the ideal of the set X, and clearly $|X|=\left|A_{1}\right| \cdots .\left|A_{n}\right|$.

Gröbner basis methods and the parameters of C_{L}

We present an example has which appeared in a couple or our works.
Let A_{1}, \ldots, A_{m} be nonempty subsets of \mathbb{F}_{q} such that $2 \leq\left|A_{1}\right| \leq \cdots \leq\left|A_{m}\right|$, and set $X:=A_{1} \times \cdots \times A_{m}$. $\ln \mathbb{F}_{q}\left[X_{1}, \ldots, X_{m}\right]$ let $f_{i}:=\prod_{c \in A_{i}}\left(X_{i}-c\right)$ for all $i \in\{1, \ldots, m\}$ and let $l:=\left(f_{1}, \ldots, f_{m}\right)$, then $X=V(I)$. One may show that I is the ideal of the set X, and clearly $|X|=\left|A_{1}\right| \cdots .\left|A_{n}\right|$. Let $L_{d}:=\{p+I \mid p=0$ or $\operatorname{deg}(p) \leq d\}$.

Gröbner basis methods and the parameters of C_{L}

We present an example has which appeared in a couple or our works.
Let A_{1}, \ldots, A_{m} be nonempty subsets of \mathbb{F}_{q} such that $2 \leq\left|A_{1}\right| \leq \cdots \leq\left|A_{m}\right|$, and set $X:=A_{1} \times \cdots \times A_{m}$. $\ln \mathbb{F}_{q}\left[X_{1}, \ldots, X_{m}\right]$ let $f_{i}:=\prod_{c \in A_{i}}\left(X_{i}-c\right)$ for all $i \in\{1, \ldots, m\}$ and let $I:=\left(f_{1}, \ldots, f_{m}\right)$, then $X=V(I)$. One may show that I is the ideal of the set X, and clearly $|X|=\left|A_{1}\right| \cdots .\left|A_{n}\right|$. Let $L_{d}:=\{p+I \mid p=0$ or $\operatorname{deg}(p) \leq d\}$. Then $\varphi\left(L_{d}\right)=: C\left(L_{d}\right)$ is the affine cartesian code of order d.

Gröbner basis methods and the parameters of C_{L}

We present an example has which appeared in a couple or our works.
Let A_{1}, \ldots, A_{m} be nonempty subsets of \mathbb{F}_{q} such that $2 \leq\left|A_{1}\right| \leq \cdots \leq\left|A_{m}\right|$, and set $X:=A_{1} \times \cdots \times A_{m}$. $\ln \mathbb{F}_{q}\left[X_{1}, \ldots, X_{m}\right]$ let $f_{i}:=\prod_{c \in A_{i}}\left(X_{i}-c\right)$ for all $i \in\{1, \ldots, m\}$ and let $l:=\left(f_{1}, \ldots, f_{m}\right)$, then $X=V(I)$. One may show that I is the ideal of the set X, and clearly $|X|=\left|A_{1}\right| \cdots .\left|A_{n}\right|$. Let $L_{d}:=\{p+I \mid p=0$ or $\operatorname{deg}(p) \leq d\}$. Then $\varphi\left(L_{d}\right)=: C\left(L_{d}\right)$ is the affine cartesian code of order d. We have that $\left\{f_{1}, \ldots, f_{m}\right\}$ is a Gröbner basis for I w.r.t. the graded lexicographic order.

Gröbner basis methods and the parameters of C_{L}

We present an example has which appeared in a couple or our works.
Let A_{1}, \ldots, A_{m} be nonempty subsets of \mathbb{F}_{q} such that $2 \leq\left|A_{1}\right| \leq \cdots \leq\left|A_{m}\right|$, and set $X:=A_{1} \times \cdots \times A_{m}$. $\ln \mathbb{F}_{q}\left[X_{1}, \ldots, X_{m}\right]$ let $f_{i}:=\prod_{c \in A_{i}}\left(X_{i}-c\right)$ for all $i \in\{1, \ldots, m\}$ and let $l:=\left(f_{1}, \ldots, f_{m}\right)$, then $X=V(I)$. One may show that I is the ideal of the set X, and clearly $|X|=\left|A_{1}\right| \cdots .\left|A_{n}\right|$. Let $L_{d}:=\{p+I \mid p=0$ or $\operatorname{deg}(p) \leq d\}$. Then $\varphi\left(L_{d}\right)=: C\left(L_{d}\right)$ is the affine cartesian code of order d. We have that $\left\{f_{1}, \ldots, f_{m}\right\}$ is a Gröbner basis for I w.r.t. the graded lexicographic order. Let $d_{i}:=\left|A_{i}\right|$ for $i=1, \ldots, m$.

Gröbner basis methods and the parameters of C_{L}

We present an example has which appeared in a couple or our works.
Let A_{1}, \ldots, A_{m} be nonempty subsets of \mathbb{F}_{q} such that $2 \leq\left|A_{1}\right| \leq \cdots \leq\left|A_{m}\right|$, and set $X:=A_{1} \times \cdots \times A_{m}$. $\ln \mathbb{F}_{q}\left[X_{1}, \ldots, X_{m}\right]$ let $f_{i}:=\prod_{c \in A_{i}}\left(X_{i}-c\right)$ for all $i \in\{1, \ldots, m\}$ and let $l:=\left(f_{1}, \ldots, f_{m}\right)$, then $X=V(I)$. One may show that I is the ideal of the set X, and clearly $|X|=\left|A_{1}\right| \cdots .\left|A_{n}\right|$. Let $L_{d}:=\{p+I \mid p=0$ or $\operatorname{deg}(p) \leq d\}$. Then $\varphi\left(L_{d}\right)=: C\left(L_{d}\right)$ is the affine cartesian code of order d. We have that $\left\{f_{1}, \ldots, f_{m}\right\}$ is a Gröbner basis for I w.r.t. the graded lexicographic order. Let $d_{i}:=\left|A_{i}\right|$ for $i=1, \ldots, m$.

Gröbner basis methods and the parameters of C_{L}

We present an example has which appeared in a couple or our works.
Let A_{1}, \ldots, A_{m} be nonempty subsets of \mathbb{F}_{q} such that
$2 \leq\left|A_{1}\right| \leq \cdots \leq\left|A_{m}\right|$, and set $X:=A_{1} \times \cdots \times A_{m}$. $\ln \mathbb{F}_{q}\left[X_{1}, \ldots, X_{m}\right]$ let $f_{i}:=\prod_{c \in A_{i}}\left(X_{i}-c\right)$ for all $i \in\{1, \ldots, m\}$ and let $l:=\left(f_{1}, \ldots, f_{m}\right)$, then $X=V(I)$. One may show that I is the ideal of the set X, and clearly $|X|=\left|A_{1}\right| \cdots .\left|A_{n}\right|$. Let $L_{d}:=\{p+I \mid p=0$ or $\operatorname{deg}(p) \leq d\}$. Then $\varphi\left(L_{d}\right)=: C\left(L_{d}\right)$ is the affine cartesian code of order d. We have that $\left\{f_{1}, \ldots, f_{m}\right\}$ is a Gröbner basis for I w.r.t. the graded lexicographic order. Let $d_{i}:=\left|A_{i}\right|$ for $i=1, \ldots, m$.

Gröbner basis methods and the parameters of C_{L}

We present an example has which appeared in a couple or our works.
Let A_{1}, \ldots, A_{m} be nonempty subsets of \mathbb{F}_{q} such that
$2 \leq\left|A_{1}\right| \leq \cdots \leq\left|A_{m}\right|$, and set $X:=A_{1} \times \cdots \times A_{m}$. $\ln \mathbb{F}_{q}\left[X_{1}, \ldots, X_{m}\right]$ let $f_{i}:=\prod_{c \in A_{i}}\left(X_{i}-c\right)$ for all $i \in\{1, \ldots, m\}$ and let $l:=\left(f_{1}, \ldots, f_{m}\right)$, then $X=V(I)$. One may show that I is the ideal of the set X, and clearly $|X|=\left|A_{1}\right| \cdots .\left|A_{n}\right|$. Let $L_{d}:=\{p+I \mid p=0$ or $\operatorname{deg}(p) \leq d\}$. Then $\varphi\left(L_{d}\right)=: C\left(L_{d}\right)$ is the affine cartesian code of order d. We have that $\left\{f_{1}, \ldots, f_{m}\right\}$ is a Gröbner basis for I w.r.t. the graded lexicographic order. Let $d_{i}:=\left|A_{i}\right|$ for $i=1, \ldots, m$.

Gröbner basis methods and the parameters of C_{L}

We present an example has which appeared in a couple or our works.
Let A_{1}, \ldots, A_{m} be nonempty subsets of \mathbb{F}_{q} such that
$2 \leq\left|A_{1}\right| \leq \cdots \leq\left|A_{m}\right|$, and set $X:=A_{1} \times \cdots \times A_{m}$. $\ln \mathbb{F}_{q}\left[X_{1}, \ldots, X_{m}\right]$ let $f_{i}:=\prod_{c \in A_{i}}\left(X_{i}-c\right)$ for all $i \in\{1, \ldots, m\}$ and let $l:=\left(f_{1}, \ldots, f_{m}\right)$, then $X=V(I)$. One may show that I is the ideal of the set X, and clearly $|X|=\left|A_{1}\right| \cdots .\left|A_{n}\right|$. Let $L_{d}:=\{p+I \mid p=0$ or $\operatorname{deg}(p) \leq d\}$. Then $\varphi\left(L_{d}\right)=: C\left(L_{d}\right)$ is the affine cartesian code of order d. We have that $\left\{f_{1}, \ldots, f_{m}\right\}$ is a Gröbner basis for I w.r.t. the graded lexicographic order. Let $d_{i}:=\left|A_{i}\right|$ for $i=1, \ldots, m$.

Gröbner basis methods and the parameters of C_{L}

We present an example has which appeared in a couple or our works.
Let A_{1}, \ldots, A_{m} be nonempty subsets of \mathbb{F}_{q} such that
$2 \leq\left|A_{1}\right| \leq \cdots \leq\left|A_{m}\right|$, and set $X:=A_{1} \times \cdots \times A_{m}$. $\ln \mathbb{F}_{q}\left[X_{1}, \ldots, X_{m}\right]$ let $f_{i}:=\prod_{c \in A_{i}}\left(X_{i}-c\right)$ for all $i \in\{1, \ldots, m\}$ and let $l:=\left(f_{1}, \ldots, f_{m}\right)$, then $X=V(I)$. One may show that I is the ideal of the set X, and clearly $|X|=\left|A_{1}\right| \cdots .\left|A_{n}\right|$. Let $L_{d}:=\{p+I \mid p=0$ or $\operatorname{deg}(p) \leq d\}$. Then $\varphi\left(L_{d}\right)=: C\left(L_{d}\right)$ is the affine cartesian code of order d. We have that $\left\{f_{1}, \ldots, f_{m}\right\}$ is a Gröbner basis for I w.r.t. the graded lexicographic order. Let $d_{i}:=\left|A_{i}\right|$ for $i=1, \ldots, m$.

Gröbner basis methods and the parameters of C_{L}

We present an example has which appeared in a couple or our works.
Let A_{1}, \ldots, A_{m} be nonempty subsets of \mathbb{F}_{q} such that
$2 \leq\left|A_{1}\right| \leq \cdots \leq\left|A_{m}\right|$, and set $X:=A_{1} \times \cdots \times A_{m}$. $\ln \mathbb{F}_{q}\left[X_{1}, \ldots, X_{m}\right]$ let $f_{i}:=\prod_{c \in A_{i}}\left(X_{i}-c\right)$ for all $i \in\{1, \ldots, m\}$ and let $l:=\left(f_{1}, \ldots, f_{m}\right)$, then $X=V(I)$. One may show that I is the ideal of the set X, and clearly $|X|=\left|A_{1}\right| \cdots .\left|A_{n}\right|$. Let $L_{d}:=\{p+I \mid p=0$ or $\operatorname{deg}(p) \leq d\}$. Then $\varphi\left(L_{d}\right)=: C\left(L_{d}\right)$ is the affine cartesian code of order d. We have that $\left\{f_{1}, \ldots, f_{m}\right\}$ is a Gröbner basis for I w.r.t. the graded lexicographic order. Let $d_{i}:=\left|A_{i}\right|$ for $i=1, \ldots, m$.

Gröbner basis methods and the parameters of C_{L}

We present an example has which appeared in a couple or our works.
Let A_{1}, \ldots, A_{m} be nonempty subsets of \mathbb{F}_{q} such that $2 \leq\left|A_{1}\right| \leq \cdots \leq\left|A_{m}\right|$, and set $X:=A_{1} \times \cdots \times A_{m}$. In $\mathbb{F}_{q}\left[X_{1}, \ldots, X_{m}\right]$ let $f_{i}:=\prod_{c \in A_{i}}\left(X_{i}-c\right)$ for all $i \in\{1, \ldots, m\}$ and let $l:=\left(f_{1}, \ldots, f_{m}\right)$, then $X=V(I)$. One may show that I is the ideal of the set X, and clearly $|X|=\left|A_{1}\right| \cdots .\left|A_{n}\right|$. Let $L_{d}:=\{p+I \mid p=0$ or $\operatorname{deg}(p) \leq d\}$. Then $\varphi\left(L_{d}\right)=: C\left(L_{d}\right)$ is the affine cartesian code of order d. We have that $\left\{f_{1}, \ldots, f_{m}\right\}$ is a Gröbner basis for I w.r.t. the graded lexicographic order. Let $d_{i}:=\left|A_{i}\right|$ for $i=1, \ldots, m$.

Gröbner basis methods and the parameters of C_{L}

We present an example has which appeared in a couple or our works.
Let A_{1}, \ldots, A_{m} be nonempty subsets of \mathbb{F}_{q} such that $2 \leq\left|A_{1}\right| \leq \cdots \leq\left|A_{m}\right|$, and set $X:=A_{1} \times \cdots \times A_{m}$. In $\mathbb{F}_{q}\left[X_{1}, \ldots, X_{m}\right]$ let $f_{i}:=\prod_{c \in A_{i}}\left(X_{i}-c\right)$ for all $i \in\{1, \ldots, m\}$ and let $l:=\left(f_{1}, \ldots, f_{m}\right)$, then $X=V(I)$. One may show that I is the ideal of the set X, and clearly $|X|=\left|A_{1}\right| \cdots .\left|A_{n}\right|$. Let $L_{d}:=\{p+I \mid p=0$ or $\operatorname{deg}(p) \leq d\}$. Then $\varphi\left(L_{d}\right)=: C\left(L_{d}\right)$ is the affine cartesian code of order d. We have that $\left\{f_{1}, \ldots, f_{m}\right\}$ is a Gröbner basis for I w.r.t. the graded lexicographic order. Let $d_{i}:=\left|A_{i}\right|$ for $i=1, \ldots, m$.

Gröbner basis methods and the parameters of C_{L}

We present an example has which appeared in a couple or our works.
Let A_{1}, \ldots, A_{m} be nonempty subsets of \mathbb{F}_{q} such that $2 \leq\left|A_{1}\right| \leq \cdots \leq\left|A_{m}\right|$, and set $X:=A_{1} \times \cdots \times A_{m}$. In $\mathbb{F}_{q}\left[X_{1}, \ldots, X_{m}\right]$ let $f_{i}:=\prod_{c \in A_{i}}\left(X_{i}-c\right)$ for all $i \in\{1, \ldots, m\}$ and let $l:=\left(f_{1}, \ldots, f_{m}\right)$, then $X=V(I)$. One may show that I is the ideal of the set X, and clearly $|X|=\left|A_{1}\right| \cdots .\left|A_{n}\right|$. Let $L_{d}:=\{p+I \mid p=0$ or $\operatorname{deg}(p) \leq d\}$. Then $\varphi\left(L_{d}\right)=: C\left(L_{d}\right)$ is the affine cartesian code of order d. We have that $\left\{f_{1}, \ldots, f_{m}\right\}$ is a Gröbner basis for I w.r.t. the graded lexicographic order. Let $d_{i}:=\left|A_{i}\right|$ for $i=1, \ldots, m$.

Gröbner basis methods and the parameters of C_{L}

We present an example has which appeared in a couple or our works.
Let A_{1}, \ldots, A_{m} be nonempty subsets of \mathbb{F}_{q} such that $2 \leq\left|A_{1}\right| \leq \cdots \leq\left|A_{m}\right|$, and set $X:=A_{1} \times \cdots \times A_{m}$. In $\mathbb{F}_{q}\left[X_{1}, \ldots, X_{m}\right]$ let $f_{i}:=\prod_{c \in A_{i}}\left(X_{i}-c\right)$ for all $i \in\{1, \ldots, m\}$ and let $l:=\left(f_{1}, \ldots, f_{m}\right)$, then $X=V(I)$. One may show that I is the ideal of the set X, and clearly $|X|=\left|A_{1}\right| \cdots .\left|A_{n}\right|$. Let $L_{d}:=\{p+I \mid p=0$ or $\operatorname{deg}(p) \leq d\}$. Then $\varphi\left(L_{d}\right)=: C\left(L_{d}\right)$ is the affine cartesian code of order d. We have that $\left\{f_{1}, \ldots, f_{m}\right\}$ is a Gröbner basis for I w.r.t. the graded lexicographic order. Let $d_{i}:=\left|A_{i}\right|$ for $i=1, \ldots, m$.

Gröbner basis methods and the parameters of C_{L}

We present an example has which appeared in a couple or our works.
Let A_{1}, \ldots, A_{m} be nonempty subsets of \mathbb{F}_{q} such that
$2 \leq\left|A_{1}\right| \leq \cdots \leq\left|A_{m}\right|$, and set $X:=A_{1} \times \cdots \times A_{m}$. In $\mathbb{F}_{q}\left[X_{1}, \ldots, X_{m}\right]$ let $f_{i}:=\prod_{c \in A_{i}}\left(X_{i}-c\right)$ for all $i \in\{1, \ldots, m\}$ and let $l:=\left(f_{1}, \ldots, f_{m}\right)$, then $X=V(I)$. One may show that I is the ideal of the set X, and clearly $|X|=\left|A_{1}\right| \cdots .\left|A_{n}\right|$. Let $L_{d}:=\{p+I \mid p=0$ or $\operatorname{deg}(p) \leq d\}$. Then $\varphi\left(L_{d}\right)=: C\left(L_{d}\right)$ is the affine cartesian code of order d. We have that $\left\{f_{1}, \ldots, f_{m}\right\}$ is a Gröbner basis for I w.r.t. the graded lexicographic order. Let $d_{i}:=\left|A_{i}\right|$ for $i=1, \ldots, m$.

Gröbner basis methods and the parameters of C_{L}

We present an example has which appeared in a couple or our works.
Let A_{1}, \ldots, A_{m} be nonempty subsets of \mathbb{F}_{q} such that
$2 \leq\left|A_{1}\right| \leq \cdots \leq\left|A_{m}\right|$, and set $X:=A_{1} \times \cdots \times A_{m}$. In $\mathbb{F}_{q}\left[X_{1}, \ldots, X_{m}\right]$ let $f_{i}:=\prod_{c \in A_{i}}\left(X_{i}-c\right)$ for all $i \in\{1, \ldots, m\}$ and let $l:=\left(f_{1}, \ldots, f_{m}\right)$, then $X=V(I)$. One may show that I is the ideal of the set X, and clearly $|X|=\left|A_{1}\right| \cdots .\left|A_{n}\right|$. Let $L_{d}:=\{p+I \mid p=0$ or $\operatorname{deg}(p) \leq d\}$. Then $\varphi\left(L_{d}\right)=: C\left(L_{d}\right)$ is the affine cartesian code of order d. We have that $\left\{f_{1}, \ldots, f_{m}\right\}$ is a Gröbner basis for I w.r.t. the graded lexicographic order. Let $d_{i}:=\left|A_{i}\right|$ for $i=1, \ldots, m$.

Gröbner basis methods and the parameters of C_{L}

We present an example has which appeared in a couple or our works.
Let A_{1}, \ldots, A_{m} be nonempty subsets of \mathbb{F}_{q} such that
$2 \leq\left|A_{1}\right| \leq \cdots \leq\left|A_{m}\right|$, and set $X:=A_{1} \times \cdots \times A_{m}$. In $\mathbb{F}_{q}\left[X_{1}, \ldots, X_{m}\right]$ let $f_{i}:=\prod_{c \in A_{i}}\left(X_{i}-c\right)$ for all $i \in\{1, \ldots, m\}$ and let $l:=\left(f_{1}, \ldots, f_{m}\right)$, then $X=V(I)$. One may show that I is the ideal of the set X, and clearly $|X|=\left|A_{1}\right| \cdots .\left|A_{n}\right|$. Let $L_{d}:=\{p+I \mid p=0$ or $\operatorname{deg}(p) \leq d\}$. Then $\varphi\left(L_{d}\right)=: C\left(L_{d}\right)$ is the affine cartesian code of order d. We have that $\left\{f_{1}, \ldots, f_{m}\right\}$ is a Gröbner basis for I w.r.t. the graded lexicographic order. Let $d_{i}:=\left|A_{i}\right|$ for $i=1, \ldots, m$.

Gröbner basis methods and the parameters of C_{L}

We present an example has which appeared in a couple or our works.
Let A_{1}, \ldots, A_{m} be nonempty subsets of \mathbb{F}_{q} such that
$2 \leq\left|A_{1}\right| \leq \cdots \leq\left|A_{m}\right|$, and set $X:=A_{1} \times \cdots \times A_{m}$. In $\mathbb{F}_{q}\left[X_{1}, \ldots, X_{m}\right]$ let $f_{i}:=\prod_{c \in A_{i}}\left(X_{i}-c\right)$ for all $i \in\{1, \ldots, m\}$ and let $l:=\left(f_{1}, \ldots, f_{m}\right)$, then $X=V(I)$. One may show that I is the ideal of the set X, and clearly $|X|=\left|A_{1}\right| \cdots .\left|A_{n}\right|$. Let $L_{d}:=\{p+I \mid p=0$ or $\operatorname{deg}(p) \leq d\}$. Then $\varphi\left(L_{d}\right)=: C\left(L_{d}\right)$ is the affine cartesian code of order d. We have that $\left\{f_{1}, \ldots, f_{m}\right\}$ is a Gröbner basis for I w.r.t. the graded lexicographic order. Let $d_{i}:=\left|A_{i}\right|$ for $i=1, \ldots, m$.

Gröbner basis methods and the parameters of C_{L}

We present an example has which appeared in a couple or our works.
Let A_{1}, \ldots, A_{m} be nonempty subsets of \mathbb{F}_{q} such that
$2 \leq\left|A_{1}\right| \leq \cdots \leq\left|A_{m}\right|$, and set $X:=A_{1} \times \cdots \times A_{m}$. In $\mathbb{F}_{q}\left[X_{1}, \ldots, X_{m}\right]$ let $f_{i}:=\prod_{c \in A_{i}}\left(X_{i}-c\right)$ for all $i \in\{1, \ldots, m\}$ and let $l:=\left(f_{1}, \ldots, f_{m}\right)$, then $X=V(I)$. One may show that I is the ideal of the set X, and clearly $|X|=\left|A_{1}\right| \cdots .\left|A_{n}\right|$. Let $L_{d}:=\{p+I \mid p=0$ or $\operatorname{deg}(p) \leq d\}$. Then $\varphi\left(L_{d}\right)=: C\left(L_{d}\right)$ is the affine cartesian code of order d. We have that $\left\{f_{1}, \ldots, f_{m}\right\}$ is a Gröbner basis for I w.r.t. the graded lexicographic order. Let $d_{i}:=\left|A_{i}\right|$ for $i=1, \ldots, m$.

Gröbner basis methods and the parameters of C_{L}

We present an example has which appeared in a couple or our works.
Let A_{1}, \ldots, A_{m} be nonempty subsets of \mathbb{F}_{q} such that
$2 \leq\left|A_{1}\right| \leq \cdots \leq\left|A_{m}\right|$, and set $X:=A_{1} \times \cdots \times A_{m}$. In $\mathbb{F}_{q}\left[X_{1}, \ldots, X_{m}\right]$ let $f_{i}:=\prod_{c \in A_{i}}\left(X_{i}-c\right)$ for all $i \in\{1, \ldots, m\}$ and let $l:=\left(f_{1}, \ldots, f_{m}\right)$, then $X=V(I)$. One may show that I is the ideal of the set X, and clearly $|X|=\left|A_{1}\right| \cdots .\left|A_{n}\right|$. Let $L_{d}:=\{p+I \mid p=0$ or $\operatorname{deg}(p) \leq d\}$. Then $\varphi\left(L_{d}\right)=: C\left(L_{d}\right)$ is the affine cartesian code of order d. We have that $\left\{f_{1}, \ldots, f_{m}\right\}$ is a Gröbner basis for I w.r.t. the graded lexicographic order. Let $d_{i}:=\left|A_{i}\right|$ for $i=1, \ldots, m$.

Let $f \in \mathbb{F}_{q}[\mathbf{X}]$ with $\operatorname{deg}(f) \leq d$ and let $M:=\operatorname{Im}(f)$.

Gröbner basis methods and the parameters of C_{L}

We present an example has which appeared in a couple or our works.
Let A_{1}, \ldots, A_{m} be nonempty subsets of \mathbb{F}_{q} such that
$2 \leq\left|A_{1}\right| \leq \cdots \leq\left|A_{m}\right|$, and set $X:=A_{1} \times \cdots \times A_{m}$. In $\mathbb{F}_{q}\left[X_{1}, \ldots, X_{m}\right]$ let $f_{i}:=\prod_{c \in A_{i}}\left(X_{i}-c\right)$ for all $i \in\{1, \ldots, m\}$ and let $l:=\left(f_{1}, \ldots, f_{m}\right)$, then $X=V(I)$. One may show that I is the ideal of the set X, and clearly $|X|=\left|A_{1}\right| \cdots .\left|A_{n}\right|$. Let $L_{d}:=\{p+I \mid p=0$ or $\operatorname{deg}(p) \leq d\}$. Then $\varphi\left(L_{d}\right)=: C\left(L_{d}\right)$ is the affine cartesian code of order d. We have that $\left\{f_{1}, \ldots, f_{m}\right\}$ is a Gröbner basis for I w.r.t. the graded lexicographic order. Let $d_{i}:=\left|A_{i}\right|$ for $i=1, \ldots, m$.

Let $f \in \mathbb{F}_{q}[\mathbf{X}]$ with $\operatorname{deg}(f) \leq d$ and let $M:=\operatorname{lm}(f)$.

Gröbner basis methods and the parameters of C_{L}

We present an example has which appeared in a couple or our works.
Let A_{1}, \ldots, A_{m} be nonempty subsets of \mathbb{F}_{q} such that
$2 \leq\left|A_{1}\right| \leq \cdots \leq\left|A_{m}\right|$, and set $X:=A_{1} \times \cdots \times A_{m}$. In $\mathbb{F}_{q}\left[X_{1}, \ldots, X_{m}\right]$ let $f_{i}:=\prod_{c \in A_{i}}\left(X_{i}-c\right)$ for all $i \in\{1, \ldots, m\}$ and let $l:=\left(f_{1}, \ldots, f_{m}\right)$, then $X=V(I)$. One may show that I is the ideal of the set X, and clearly $|X|=\left|A_{1}\right| \cdots .\left|A_{n}\right|$. Let $L_{d}:=\{p+I \mid p=0$ or $\operatorname{deg}(p) \leq d\}$. Then $\varphi\left(L_{d}\right)=: C\left(L_{d}\right)$ is the affine cartesian code of order d. We have that $\left\{f_{1}, \ldots, f_{m}\right\}$ is a Gröbner basis for I w.r.t. the graded lexicographic order. Let $d_{i}:=\left|A_{i}\right|$ for $i=1, \ldots, m$.

Let $f \in \mathbb{F}_{q}[\mathbf{X}]$ with $\operatorname{deg}(f) \leq d$ and let $M:=\operatorname{lm}(f)$.
 We have $\Delta\left(I_{X}+(f)\right) \subset \Delta\left(I_{X}\right)$.

Gröbner basis methods and the parameters of C_{L}

We present an example has which appeared in a couple or our works.
Let A_{1}, \ldots, A_{m} be nonempty subsets of \mathbb{F}_{q} such that
$2 \leq\left|A_{1}\right| \leq \cdots \leq\left|A_{m}\right|$, and set $X:=A_{1} \times \cdots \times A_{m}$. In $\mathbb{F}_{q}\left[X_{1}, \ldots, X_{m}\right]$ let $f_{i}:=\prod_{c \in A_{i}}\left(X_{i}-c\right)$ for all $i \in\{1, \ldots, m\}$ and let $l:=\left(f_{1}, \ldots, f_{m}\right)$, then $X=V(I)$. One may show that I is the ideal of the set X, and clearly $|X|=\left|A_{1}\right| \cdots .\left|A_{n}\right|$. Let $L_{d}:=\{p+I \mid p=0$ or $\operatorname{deg}(p) \leq d\}$. Then $\varphi\left(L_{d}\right)=: C\left(L_{d}\right)$ is the affine cartesian code of order d. We have that $\left\{f_{1}, \ldots, f_{m}\right\}$ is a Gröbner basis for I w.r.t. the graded lexicographic order. Let $d_{i}:=\left|A_{i}\right|$ for $i=1, \ldots, m$.

Let $f \in \mathbb{F}_{q}[\mathbf{X}]$ with $\operatorname{deg}(f) \leq d$ and let $M:=\operatorname{lm}(f)$.
 We have $\Delta\left(I_{X}+(f)\right) \subset \Delta\left(I_{X}\right)$

Gröbner basis methods and the parameters of C_{L}

We present an example has which appeared in a couple or our works.
Let A_{1}, \ldots, A_{m} be nonempty subsets of \mathbb{F}_{q} such that
$2 \leq\left|A_{1}\right| \leq \cdots \leq\left|A_{m}\right|$, and set $X:=A_{1} \times \cdots \times A_{m}$. In $\mathbb{F}_{q}\left[X_{1}, \ldots, X_{m}\right]$ let $f_{i}:=\prod_{c \in A_{i}}\left(X_{i}-c\right)$ for all $i \in\{1, \ldots, m\}$ and let $l:=\left(f_{1}, \ldots, f_{m}\right)$, then $X=V(I)$. One may show that I is the ideal of the set X, and clearly $|X|=\left|A_{1}\right| \cdots .\left|A_{n}\right|$. Let $L_{d}:=\{p+I \mid p=0$ or $\operatorname{deg}(p) \leq d\}$. Then $\varphi\left(L_{d}\right)=: C\left(L_{d}\right)$ is the affine cartesian code of order d. We have that $\left\{f_{1}, \ldots, f_{m}\right\}$ is a Gröbner basis for I w.r.t. the graded lexicographic order. Let $d_{i}:=\left|A_{i}\right|$ for $i=1, \ldots, m$.

Let $f \in \mathbb{F}_{q}[\mathbf{X}]$ with $\operatorname{deg}(f) \leq d$ and let $M:=\operatorname{Im}(f)$.

Gröbner basis methods and the parameters of C_{L}

We present an example has which appeared in a couple or our works.
Let A_{1}, \ldots, A_{m} be nonempty subsets of \mathbb{F}_{q} such that
$2 \leq\left|A_{1}\right| \leq \cdots \leq\left|A_{m}\right|$, and set $X:=A_{1} \times \cdots \times A_{m}$. In $\mathbb{F}_{q}\left[X_{1}, \ldots, X_{m}\right]$ let $f_{i}:=\prod_{c \in A_{i}}\left(X_{i}-c\right)$ for all $i \in\{1, \ldots, m\}$ and let $l:=\left(f_{1}, \ldots, f_{m}\right)$, then $X=V(I)$. One may show that I is the ideal of the set X, and clearly $|X|=\left|A_{1}\right| \cdots .\left|A_{n}\right|$. Let $L_{d}:=\{p+I \mid p=0$ or $\operatorname{deg}(p) \leq d\}$. Then $\varphi\left(L_{d}\right)=: C\left(L_{d}\right)$ is the affine cartesian code of order d. We have that $\left\{f_{1}, \ldots, f_{m}\right\}$ is a Gröbner basis for I w.r.t. the graded lexicographic order. Let $d_{i}:=\left|A_{i}\right|$ for $i=1, \ldots, m$.

Let $f \in \mathbb{F}_{q}[\mathbf{X}]$ with $\operatorname{deg}(f) \leq d$ and let $M:=\operatorname{Im}(f)$.

Gröbner basis methods and the parameters of C_{L}

We present an example has which appeared in a couple or our works.
Let A_{1}, \ldots, A_{m} be nonempty subsets of \mathbb{F}_{q} such that
$2 \leq\left|A_{1}\right| \leq \cdots \leq\left|A_{m}\right|$, and set $X:=A_{1} \times \cdots \times A_{m}$. In $\mathbb{F}_{q}\left[X_{1}, \ldots, X_{m}\right]$ let $f_{i}:=\prod_{c \in A_{i}}\left(X_{i}-c\right)$ for all $i \in\{1, \ldots, m\}$ and let $l:=\left(f_{1}, \ldots, f_{m}\right)$, then $X=V(I)$. One may show that I is the ideal of the set X, and clearly $|X|=\left|A_{1}\right| \cdots .\left|A_{n}\right|$. Let $L_{d}:=\{p+I \mid p=0$ or $\operatorname{deg}(p) \leq d\}$. Then $\varphi\left(L_{d}\right)=: C\left(L_{d}\right)$ is the affine cartesian code of order d. We have that $\left\{f_{1}, \ldots, f_{m}\right\}$ is a Gröbner basis for I w.r.t. the graded lexicographic order. Let $d_{i}:=\left|A_{i}\right|$ for $i=1, \ldots, m$.

Let $f \in \mathbb{F}_{q}[\mathbf{X}]$ with $\operatorname{deg}(f) \leq d$ and let $M:=\operatorname{Im}(f)$.

Gröbner basis methods and the parameters of C_{L}

We present an example has which appeared in a couple or our works.
Let A_{1}, \ldots, A_{m} be nonempty subsets of \mathbb{F}_{q} such that
$2 \leq\left|A_{1}\right| \leq \cdots \leq\left|A_{m}\right|$, and set $X:=A_{1} \times \cdots \times A_{m}$. In $\mathbb{F}_{q}\left[X_{1}, \ldots, X_{m}\right]$ let $f_{i}:=\prod_{c \in A_{i}}\left(X_{i}-c\right)$ for all $i \in\{1, \ldots, m\}$ and let $l:=\left(f_{1}, \ldots, f_{m}\right)$, then $X=V(I)$. One may show that I is the ideal of the set X, and clearly $|X|=\left|A_{1}\right| \cdots .\left|A_{n}\right|$. Let $L_{d}:=\{p+I \mid p=0$ or $\operatorname{deg}(p) \leq d\}$. Then $\varphi\left(L_{d}\right)=: C\left(L_{d}\right)$ is the affine cartesian code of order d. We have that $\left\{f_{1}, \ldots, f_{m}\right\}$ is a Gröbner basis for I w.r.t. the graded lexicographic order. Let $d_{i}:=\left|A_{i}\right|$ for $i=1, \ldots, m$.

Let $f \in \mathbb{F}_{q}[\mathbf{X}]$ with $\operatorname{deg}(f) \leq d$ and let $M:=\operatorname{Im}(f)$.

Gröbner basis methods and the parameters of C_{L}

We present an example has which appeared in a couple or our works.
Let A_{1}, \ldots, A_{m} be nonempty subsets of \mathbb{F}_{q} such that
$2 \leq\left|A_{1}\right| \leq \cdots \leq\left|A_{m}\right|$, and set $X:=A_{1} \times \cdots \times A_{m}$. In $\mathbb{F}_{q}\left[X_{1}, \ldots, X_{m}\right]$ let $f_{i}:=\prod_{c \in A_{i}}\left(X_{i}-c\right)$ for all $i \in\{1, \ldots, m\}$ and let $l:=\left(f_{1}, \ldots, f_{m}\right)$, then $X=V(I)$. One may show that I is the ideal of the set X, and clearly $|X|=\left|A_{1}\right| \cdots .\left|A_{n}\right|$. Let $L_{d}:=\{p+I \mid p=0$ or $\operatorname{deg}(p) \leq d\}$. Then $\varphi\left(L_{d}\right)=: C\left(L_{d}\right)$ is the affine cartesian code of order d. We have that $\left\{f_{1}, \ldots, f_{m}\right\}$ is a Gröbner basis for I w.r.t. the graded lexicographic order. Let $d_{i}:=\left|A_{i}\right|$ for $i=1, \ldots, m$.

Let $f \in \mathbb{F}_{q}[\mathbf{X}]$ with $\operatorname{deg}(f) \leq d$ and let $M:=\operatorname{Im}(f)$.

Gröbner basis methods and the parameters of C_{L}

We present an example has which appeared in a couple or our works.
Let A_{1}, \ldots, A_{m} be nonempty subsets of \mathbb{F}_{q} such that
$2 \leq\left|A_{1}\right| \leq \cdots \leq\left|A_{m}\right|$, and set $X:=A_{1} \times \cdots \times A_{m}$. In $\mathbb{F}_{q}\left[X_{1}, \ldots, X_{m}\right]$ let $f_{i}:=\prod_{c \in A_{i}}\left(X_{i}-c\right)$ for all $i \in\{1, \ldots, m\}$ and let $l:=\left(f_{1}, \ldots, f_{m}\right)$, then $X=V(I)$. One may show that I is the ideal of the set X, and clearly $|X|=\left|A_{1}\right| \cdots .\left|A_{n}\right|$. Let $L_{d}:=\{p+I \mid p=0$ or $\operatorname{deg}(p) \leq d\}$. Then $\varphi\left(L_{d}\right)=: C\left(L_{d}\right)$ is the affine cartesian code of order d. We have that $\left\{f_{1}, \ldots, f_{m}\right\}$ is a Gröbner basis for I w.r.t. the graded lexicographic order. Let $d_{i}:=\left|A_{i}\right|$ for $i=1, \ldots, m$.

Let $f \in \mathbb{F}_{q}[\mathbf{X}]$ with $\operatorname{deg}(f) \leq d$ and let $M:=\operatorname{Im}(f)$.

Gröbner basis methods and the parameters of C_{L}

We present an example has which appeared in a couple or our works.
Let A_{1}, \ldots, A_{m} be nonempty subsets of \mathbb{F}_{q} such that
$2 \leq\left|A_{1}\right| \leq \cdots \leq\left|A_{m}\right|$, and set $X:=A_{1} \times \cdots \times A_{m}$. In $\mathbb{F}_{q}\left[X_{1}, \ldots, X_{m}\right]$ let $f_{i}:=\prod_{c \in A_{i}}\left(X_{i}-c\right)$ for all $i \in\{1, \ldots, m\}$ and let $l:=\left(f_{1}, \ldots, f_{m}\right)$, then $X=V(I)$. One may show that I is the ideal of the set X, and clearly $|X|=\left|A_{1}\right| \cdots .\left|A_{n}\right|$. Let $L_{d}:=\{p+I \mid p=0$ or $\operatorname{deg}(p) \leq d\}$. Then $\varphi\left(L_{d}\right)=: C\left(L_{d}\right)$ is the affine cartesian code of order d. We have that $\left\{f_{1}, \ldots, f_{m}\right\}$ is a Gröbner basis for I w.r.t. the graded lexicographic order. Let $d_{i}:=\left|A_{i}\right|$ for $i=1, \ldots, m$.

Let $f \in \mathbb{F}_{q}[\mathbf{X}]$ with $\operatorname{deg}(f) \leq d$ and let $M:=\operatorname{Im}(f)$.

We have $\Delta\left(I_{X}+(f)\right) \subset \Delta\left(I_{X}\right)$
and $\#\left(V\left(I_{X}+(f)\right)\right) \leq \#\left(\Delta\left(I_{X}+(f)\right)\right)$.
Hence $N-\#\left(V\left(I_{x}+(f)\right)\right)$

$$
\geq \#\left(\left\{M^{\prime} \in \Delta\left(I_{X}\right)|M| M^{\prime}\right\}\right)
$$

Writing $d=\sum_{i=1}^{k}\left(d_{i}-1\right)+\ell$ with $0 \leq \ell<d_{k+1}$

Gröbner basis methods and the parameters of C_{L}

We present an example has which appeared in a couple or our works.
Let A_{1}, \ldots, A_{m} be nonempty subsets of \mathbb{F}_{q} such that
$2 \leq\left|A_{1}\right| \leq \cdots \leq\left|A_{m}\right|$, and set $X:=A_{1} \times \cdots \times A_{m}$. In $\mathbb{F}_{q}\left[X_{1}, \ldots, X_{m}\right]$ let $f_{i}:=\prod_{c \in A_{i}}\left(X_{i}-c\right)$ for all $i \in\{1, \ldots, m\}$ and let $l:=\left(f_{1}, \ldots, f_{m}\right)$, then $X=V(I)$. One may show that I is the ideal of the set X, and clearly $|X|=\left|A_{1}\right| \cdots .\left|A_{n}\right|$. Let $L_{d}:=\{p+I \mid p=0$ or $\operatorname{deg}(p) \leq d\}$. Then $\varphi\left(L_{d}\right)=: C\left(L_{d}\right)$ is the affine cartesian code of order d. We have that $\left\{f_{1}, \ldots, f_{m}\right\}$ is a Gröbner basis for I w.r.t. the graded lexicographic order. Let $d_{i}:=\left|A_{i}\right|$ for $i=1, \ldots, m$.

Let $f \in \mathbb{F}_{q}[\mathbf{X}]$ with $\operatorname{deg}(f) \leq d$ and let $M:=\operatorname{Im}(f)$.

$$
\text { and } \#\left(V\left(I_{X}+(f)\right)\right) \leq \#\left(\Delta\left(I_{X}+(f)\right)\right)
$$

$$
\text { Hence } N-\#\left(V\left(I_{X}+(f)\right)\right)
$$

$$
\geq \#\left(\left\{M^{\prime} \in \Delta\left(I_{X}\right)|M| M^{\prime}\right\}\right)
$$

$$
\text { Writing } d=\sum_{i=1}^{k}\left(d_{i}-1\right)+\ell
$$

$$
\text { with } 0 \leq \ell<d_{k+1} \text { we get }
$$

$$
d_{\min }\left(C\left(L_{d}\right)\right)=\left(d_{k+1}-\ell\right) \prod_{i=k+2}^{n} d_{i}
$$

Codes defined over projective varieties

One may also use a set $X=\left\{P_{1}, \ldots, P_{N}\right\} \subset \mathbb{P}^{l}\left(\mathbb{F}_{q}\right)$ to construct a code in the following way.
As before let $I_{X} \subset \mathbb{F}_{q}\left[X_{0}, \ldots, X_{n}\right]=\mathbb{F}_{q}[\mathbf{X}]$ be the ideal of X (as a set of points). In this case we have that $\mathbb{F}_{q}[\mathbf{X}] / I_{X}$ is an infinite dimensional \mathbb{F}_{q}-vector space.
Looking at $\mathbb{F}_{q}[\mathbf{X}] / I_{X}$ as a graded algebra $\mathbb{F}_{q}[\mathbf{X}] / I_{X}=\bigoplus_{d=0}^{\infty} \mathbb{F}_{q}[\mathbf{X}]_{d} / I_{X}(d)$ we pick a d, write the points of X in "standard form" and consider the evaluation morphism $\psi: \mathbb{F}_{q}[\mathrm{X}]_{d} / I_{X}(d) \rightarrow \mathbb{F}_{q}^{N}$ where $\psi\left(f+I_{X}\right)=\left(f\left(P_{1}\right), \ldots, f\left(P_{N}\right)\right)$. Now can choose an \mathbb{F}_{q}-vector subspace $L \subset \mathbb{F}_{q}[\mathbf{X}]_{d} / I_{X}(d)$ and define C_{L} to be the projective code associated to L. Observe that ψ is injective so that $\operatorname{dim}_{\mathbb{F}_{q}} C_{L}=\operatorname{dim}_{\mathbb{F}_{q}} L$. It is not true that ψ is an isomorphism for all $d \geq 0$ but one may prove that if $d \geq N-1$ then ψ is an isomorphism.
On the literature usually one takes $L=\mathbb{F}_{q}[\mathbf{X}]_{d} / I_{X}(d)$. For example:
G. Lachaud, Projective Reed-Muller codes (1986)
A. Sørensen, Projective Reed-Muller codes (1991)
C. Rentería, H. Tapia-Recillas, Reed-Muller codes: An ideal theory approach (1997)
M. González-Sarabia et al., Reed-Muller-Type Codes Over the Segre Variety, (2002)
A. Tochimani et al., Direct products in projective Segre codes (2016)

Codes defined over projective varieties

One may also use a set $X=\left\{P_{1}, \ldots, P_{N}\right\} \subset \mathbb{P}^{\ell}\left(\mathbb{F}_{q}\right)$ to construct a code in the following way.
As before let $I_{X} \subset \mathbb{F}_{q}\left[X_{0}, \ldots, X_{n}\right]=\mathbb{F}_{q}[X]$ be the ideal of X (as a set of points). In this case we have that $\mathbb{F}_{q}[\mathbf{X}] / I_{X}$ is an infinite dimensional \mathbb{F}_{q}-vector space.
Looking at $\mathbb{F}_{q}[X] / I_{X}$ as a graded algebra $\mathbb{F}_{q}[X] / I_{X}=\bigoplus_{d=0}^{\infty} \mathbb{F}_{q}[X]_{d} / I_{X}(d)$ we pick a d, write the points of X in "standard form" and consider the evaluation morphism $\psi: \mathbb{F}_{q}[\mathbf{X}]_{d} / I_{X}(d) \rightarrow \mathbb{F}_{q}^{N}$ where $\psi(f+I X)=\left(f\left(P_{1}\right), \ldots, f\left(P_{N}\right)\right)$. Now can choose an \mathbb{F}_{q}-vector subspace $L \subset \mathbb{F}_{q}[X]_{d} / I_{X}(d)$ and define C_{L} to be the projective code associated to L. Observe that ψ is injective so that $\operatorname{dim}_{\mathbb{F}_{q}} C_{L}=\operatorname{dim}_{\mathbb{F}_{q}} L$. It is not true that ψ is an isomorphism for all $d \geq 0$ but one may prove that if $d \geq N-1$ then ψ is an isomorphism.
On the literature usually one takes $L=\mathbb{F}_{q}[\mathbf{X}]_{d} / I_{X}(d)$. For example:
G. Lachaud, Projective Reed-Muller codes (1986)
A. Sørensen. Projective Reed-Muller codes (1991)
C. Rentería, H. Tapia-Recillas, Reed-Muller codes: An ideal theory approach (1997)
M. González-Sarabia et al., Reed-Muller-Type Codes Over the Segre Variety, (2002)

Codes defined over projective varieties

One may also use a set $X=\left\{P_{1}, \ldots, P_{N}\right\} \subset \mathbb{P}^{\ell}\left(\mathbb{F}_{q}\right)$ to construct a code in the following way.
As before let $I_{X} \subset \mathbb{F}_{q}\left[X_{0}, \ldots, X_{n}\right]=\mathbb{F}_{q}[\mathbf{X}]$ be the ideal of X (as a set of points).

\mathbb{F}_{q}-vector space

\square

$L \subset \mathbb{F}_{q}[X]_{d} / I_{X}(d)$ and define C_{L} to be the projective code associated to L. Observe that ψ is injective so that $\operatorname{dim}_{\mathbb{F}_{q}} C_{L}=\operatorname{dim}_{\mathbb{F}_{q}} L$. It is not true that ψ is an isomorphism for all $d \geq 0$ but one may prove that if $d \geq N-1$ then ψ is an isomorphism.
On the literature usually one takes $L=\mathbb{F}_{q}[X]_{d} / I_{X}(d)$. For example:
G. Lachaud, Projective Reed-Muller codes (1986)
A. Sørensen, Projective Reed-Muller codes (1991)
C. Rentería, H. Tapia-Recillas, Reed-Muller codes: An ideal theory approach (1997)
M. González-Sarabia et al., Reed-Muller-Type Codes Over the Segre Variety, (2002)

Codes defined over projective varieties

One may also use a set $X=\left\{P_{1}, \ldots, P_{N}\right\} \subset \mathbb{P}^{\ell}\left(\mathbb{F}_{q}\right)$ to construct a code in the following way.
As before let $I_{X} \subset \mathbb{F}_{q}\left[X_{0}, \ldots, X_{n}\right]=\mathbb{F}_{q}[\mathbf{X}]$ be the ideal of X (as a set of points). In this case we have that $\mathbb{F}_{q}[\mathbf{X}] / I_{X}$ is an infinite dimensional \mathbb{F}_{q}-vector space.

$d \geq N-1$ then ψ is an isomorphism
On the literature usually one takes $L=\mathbb{F}_{q}[X]_{d} / I_{X}(d)$. For example:
G. Lachaud, Projective Reed-Muller codes (1986)
A. Sørensen, Projective Reed-Muller codes (1991)
C. Rentería, H. Tapia-Recillas, Reed-Muller codes: An ideal theory approach (1997)
M. González-Sarabia et al., Reed-Muller-Type Codes Over the Segre Variety, (2002)

Codes defined over projective varieties

One may also use a set $X=\left\{P_{1}, \ldots, P_{N}\right\} \subset \mathbb{P}^{\ell}\left(\mathbb{F}_{q}\right)$ to construct a code in the following way.
As before let $I_{X} \subset \mathbb{F}_{q}\left[X_{0}, \ldots, X_{n}\right]=\mathbb{F}_{q}[\mathbf{X}]$ be the ideal of X (as a set of points). In this case we have that $\mathbb{F}_{q}[\mathbf{X}] / I_{X}$ is an infinite dimensional \mathbb{F}_{q}-vector space.
Looking at $\mathbb{F}_{q}[\mathbf{X}] / I_{X}$ as a graded algebra $\mathbb{F}_{q}[\mathbf{X}] / I_{X}=\bigoplus_{d=0}^{\infty} \mathbb{F}_{q}[\mathbf{X}]_{d} / I_{X}(d)$

Codes defined over projective varieties

One may also use a set $X=\left\{P_{1}, \ldots, P_{N}\right\} \subset \mathbb{P}^{\ell}\left(\mathbb{F}_{q}\right)$ to construct a code in the following way.
As before let $I_{X} \subset \mathbb{F}_{q}\left[X_{0}, \ldots, X_{n}\right]=\mathbb{F}_{q}[\mathbf{X}]$ be the ideal of X (as a set of points). In this case we have that $\mathbb{F}_{q}[\mathbf{X}] / I_{X}$ is an infinite dimensional \mathbb{F}_{q}-vector space.
Looking at $\mathbb{F}_{q}[\mathbf{X}] / I_{X}$ as a graded algebra $\mathbb{F}_{q}[\mathbf{X}] / I_{X}=\bigoplus_{d=0}^{\infty} \mathbb{F}_{q}[\mathbf{X}]_{d} / I_{X}(d)$ we pick a d, write the points of X in "standard form"

$L \subset \mathbb{F}_{q}[X]_{d} I_{X}(d)$ and define C_{L} to be the projective code associated to L. Observe that $\pi /$ is injective so that $\operatorname{dim}_{\pi_{r}} C_{1}=\operatorname{dim}_{\pi_{q}} L$. It is not true that ψ is an isomorphism for all $d \geq 0$ but one may prove that if $d \geq N-1$ then ψ is an isomorphism.
On the literature usually one takes $\boldsymbol{I}=\mathbb{\mathbb { F }} \mathrm{q}_{\mathrm{q}}[\mathrm{X}]_{d} / I_{X}(d)$. For example: G. Lachaud, Projective Reed-Muller codes (1986)
A. Sørensen, Projective Reed-Muller codes (1991)
C. Rentería, H. Tapia-Recillas, Reed-Muller codes: An ideal theory approach (1997) M. González-Sarabia et al., Reed-Muller-Type Codes Over the Segre Variety, (2002)

Codes defined over projective varieties

One may also use a set $X=\left\{P_{1}, \ldots, P_{N}\right\} \subset \mathbb{P}^{\ell}\left(\mathbb{F}_{q}\right)$ to construct a code in the following way.
As before let $I_{X} \subset \mathbb{F}_{q}\left[X_{0}, \ldots, X_{n}\right]=\mathbb{F}_{q}[\mathbf{X}]$ be the ideal of X (as a set of points). In this case we have that $\mathbb{F}_{q}[\mathbf{X}] / I_{X}$ is an infinite dimensional \mathbb{F}_{q}-vector space.
Looking at $\mathbb{F}_{q}[\mathbf{X}] / I_{X}$ as a graded algebra $\mathbb{F}_{q}[\mathbf{X}] / I_{X}=\bigoplus_{d=0}^{\infty} \mathbb{F}_{q}[\mathbf{X}]_{d} / I_{X}(d)$ we pick a d, write the points of X in "standard form" and consider the evaluation morphism $\psi: \mathbb{F}_{q}[\mathbf{X}]_{d} / I_{X}(d) \rightarrow \mathbb{F}_{q}^{N}$ where $\psi\left(f+I_{X}\right)=\left(f\left(P_{1}\right), \ldots, f\left(P_{N}\right)\right)$.

Observe that ψ is injective so that
at ψ is an isomorphism for all $d \geq$
$\geq N-1$ then ψ is an isomorphism.
On the literature usually one takes $L=\mathbb{F}_{q}[\mathbf{X}]_{d} / I_{X}(d)$. For example:
G. Lachaud, Projective Reed-Muller codes (1986)

A Sxrensen Proiective Reed-Muller codes (1991)
C. Rentería, H. Tapia-Recillas, Reed-Muller codes: An ideal theory approach (1997) M. González-Sarabia et al., Reed-Muller-Type Codes Over the Segre Variety, (2002)

Codes defined over projective varieties

One may also use a set $X=\left\{P_{1}, \ldots, P_{N}\right\} \subset \mathbb{P}^{\ell}\left(\mathbb{F}_{q}\right)$ to construct a code in the following way.
As before let $I_{X} \subset \mathbb{F}_{q}\left[X_{0}, \ldots, X_{n}\right]=\mathbb{F}_{q}[\mathbf{X}]$ be the ideal of X (as a set of points). In this case we have that $\mathbb{F}_{q}[\mathbf{X}] / I_{X}$ is an infinite dimensional \mathbb{F}_{q}-vector space.
Looking at $\mathbb{F}_{q}[\mathbf{X}] / I_{X}$ as a graded algebra $\mathbb{F}_{q}[\mathbf{X}] / I_{X}=\bigoplus_{d=0}^{\infty} \mathbb{F}_{q}[\mathbf{X}]_{d} / I_{X}(d)$ we pick a d, write the points of X in "standard form" and consider the evaluation morphism $\psi: \mathbb{F}_{q}[\mathbf{X}]_{d} / I_{X}(d) \rightarrow \mathbb{F}_{q}^{N}$ where $\psi\left(f+I_{X}\right)=\left(f\left(P_{1}\right), \ldots, f\left(P_{N}\right)\right)$. Now can choose an \mathbb{F}_{q}-vector subspace $L \subset \mathbb{F}_{q}[\mathbf{X}]_{d} / I_{X}(d)$ and define C_{L} to be the projective code associated to L.
that ψ is an isomorphism for all $d \geq 0$ but one may prove that if $d \geq N-1$ then ψ is an isomorphism.
On the literature usually one takes $\boldsymbol{I}=\mathbb{N} q[X] d / I X(d)$. For example: G. Lachaud, Projective Reed-Muller codes (1986)
A. Sørensen, Projective Reed-Muller codes (1991)
C. Rentería, H. Tapia-Recillas, Reed-Muller codes: An ideal theory approach (1997) M. González-Sarabia et al., Reed-Muller-Type Codes Over the Segre Variety, (2002)

Codes defined over projective varieties

One may also use a set $X=\left\{P_{1}, \ldots, P_{N}\right\} \subset \mathbb{P}^{\ell}\left(\mathbb{F}_{q}\right)$ to construct a code in the following way.
As before let $I_{X} \subset \mathbb{F}_{q}\left[X_{0}, \ldots, X_{n}\right]=\mathbb{F}_{q}[\mathbf{X}]$ be the ideal of X (as a set of points). In this case we have that $\mathbb{F}_{q}[\mathbf{X}] / I_{X}$ is an infinite dimensional \mathbb{F}_{q}-vector space.
Looking at $\mathbb{F}_{q}[\mathbf{X}] / I_{X}$ as a graded algebra $\mathbb{F}_{q}[\mathbf{X}] / I_{X}=\bigoplus_{d=0}^{\infty} \mathbb{F}_{q}[\mathbf{X}]_{d} / I_{X}(d)$ we pick a d, write the points of X in "standard form" and consider the evaluation morphism $\psi: \mathbb{F}_{q}[\mathbf{X}]_{d} / I_{X}(d) \rightarrow \mathbb{F}_{q}^{N}$ where $\psi\left(f+I_{X}\right)=\left(f\left(P_{1}\right), \ldots, f\left(P_{N}\right)\right)$. Now can choose an \mathbb{F}_{q}-vector subspace $L \subset \mathbb{F}_{q}[\mathbf{X}]_{d} / I_{X}(d)$ and define C_{L} to be the projective code associated to L. Observe that ψ is injective so that $\operatorname{dim}_{\mathbb{F}_{q}} C_{L}=\operatorname{dim}_{\mathbb{F}_{q}} L$.
4.
that ψ is an isomorphism for all $d \geq 0$
$d \geq N-1$ then ψ is an isomorphism.
On the literature usually one takes $L=\mathbb{F}_{q}[\mathbf{X}]_{d} / I_{X}(d)$. For example: G. Lachaud, Projective Reed-Muller codes (1986)
A. Sørensen, Projective Reed-Muller codes (1991)
C. Rentería, H. Tapia-Recillas, Reed-Muller codes: An ideal theory approach (1997) M. González-Sarabia et al., Reed-Muller-Type Codes Over the Segre Variety, (2002)

Codes defined over projective varieties

One may also use a set $X=\left\{P_{1}, \ldots, P_{N}\right\} \subset \mathbb{P}^{\ell}\left(\mathbb{F}_{q}\right)$ to construct a code in the following way.
As before let $I_{X} \subset \mathbb{F}_{q}\left[X_{0}, \ldots, X_{n}\right]=\mathbb{F}_{q}[\mathbf{X}]$ be the ideal of X (as a set of points). In this case we have that $\mathbb{F}_{q}[\mathbf{X}] / I_{X}$ is an infinite dimensional \mathbb{F}_{q}-vector space.
Looking at $\mathbb{F}_{q}[\mathbf{X}] / I_{X}$ as a graded algebra $\mathbb{F}_{q}[\mathbf{X}] / I_{X}=\bigoplus_{d=0}^{\infty} \mathbb{F}_{q}[\mathbf{X}]_{d} / I_{X}(d)$ we pick a d, write the points of X in "standard form" and consider the evaluation morphism $\psi: \mathbb{F}_{q}[\mathbf{X}]_{d} / I_{X}(d) \rightarrow \mathbb{F}_{q}^{N}$ where $\psi\left(f+I_{X}\right)=\left(f\left(P_{1}\right), \ldots, f\left(P_{N}\right)\right)$. Now can choose an \mathbb{F}_{q}-vector subspace $L \subset \mathbb{F}_{q}[\mathbf{X}]_{d} / I_{X}(d)$ and define C_{L} to be the projective code associated to L. Observe that ψ is injective so that $\operatorname{dim}_{\mathbb{F}_{q}} C_{L}=\operatorname{dim}_{\mathbb{F}_{q}} L$. It is not true that ψ is an isomorphism for all $d \geq 0$

On the literature usually one takes $L=\mathbb{F}_{q}[\mathbf{X}]_{d} / I_{X}(d)$. For example:
G. Lachaud, Projective Reed-Muller codes (1986)

A Sxrensen Proiective Reed-Muller codes (1091)
C. Rentería, H. Tapia-Recillas, Reed-Muller codes: An ideal theory approach (1997) M. González-Sarabia et al., Reed-Muller-Type Codes Over the Segre Variety, (2002)

Codes defined over projective varieties

One may also use a set $X=\left\{P_{1}, \ldots, P_{N}\right\} \subset \mathbb{P}^{\ell}\left(\mathbb{F}_{q}\right)$ to construct a code in the following way.
As before let $I_{X} \subset \mathbb{F}_{q}\left[X_{0}, \ldots, X_{n}\right]=\mathbb{F}_{q}[\mathbf{X}]$ be the ideal of X (as a set of points). In this case we have that $\mathbb{F}_{q}[\mathbf{X}] / I_{X}$ is an infinite dimensional \mathbb{F}_{q}-vector space.
Looking at $\mathbb{F}_{q}[\mathbf{X}] / I_{X}$ as a graded algebra $\mathbb{F}_{q}[\mathbf{X}] / I_{X}=\bigoplus_{d=0}^{\infty} \mathbb{F}_{q}[\mathbf{X}]_{d} / I_{X}(d)$ we pick a d, write the points of X in "standard form" and consider the evaluation morphism $\psi: \mathbb{F}_{q}[\mathbf{X}]_{d} / I_{X}(d) \rightarrow \mathbb{F}_{q}^{N}$ where $\psi\left(f+I_{X}\right)=\left(f\left(P_{1}\right), \ldots, f\left(P_{N}\right)\right)$. Now can choose an \mathbb{F}_{q}-vector subspace $L \subset \mathbb{F}_{q}[\mathbf{X}]_{d} / I_{X}(d)$ and define C_{L} to be the projective code associated to L. Observe that ψ is injective so that $\operatorname{dim}_{\mathbb{F}_{q}} C_{L}=\operatorname{dim}_{\mathbb{F}_{q}} L$. It is not true that ψ is an isomorphism for all $d \geq 0$ but one may prove that if $d \geq N-1$ then ψ is an isomorphism.

Codes defined over projective varieties

One may also use a set $X=\left\{P_{1}, \ldots, P_{N}\right\} \subset \mathbb{P}^{\ell}\left(\mathbb{F}_{q}\right)$ to construct a code in the following way.
As before let $I_{X} \subset \mathbb{F}_{q}\left[X_{0}, \ldots, X_{n}\right]=\mathbb{F}_{q}[\mathbf{X}]$ be the ideal of X (as a set of points). In this case we have that $\mathbb{F}_{q}[\mathbf{X}] / I_{X}$ is an infinite dimensional \mathbb{F}_{q}-vector space.
Looking at $\mathbb{F}_{q}[\mathbf{X}] / I_{X}$ as a graded algebra $\mathbb{F}_{q}[\mathbf{X}] / I_{X}=\bigoplus_{d=0}^{\infty} \mathbb{F}_{q}[\mathbf{X}]_{d} / I_{X}(d)$ we pick a d, write the points of X in "standard form" and consider the evaluation morphism $\psi: \mathbb{F}_{q}[\mathbf{X}]_{d} / I_{X}(d) \rightarrow \mathbb{F}_{q}^{N}$ where $\psi\left(f+I_{X}\right)=\left(f\left(P_{1}\right), \ldots, f\left(P_{N}\right)\right)$. Now can choose an \mathbb{F}_{q}-vector subspace $L \subset \mathbb{F}_{q}[\mathbf{X}]_{d} / I_{X}(d)$ and define C_{L} to be the projective code associated to L. Observe that ψ is injective so that $\operatorname{dim}_{\mathbb{F}_{q}} C_{L}=\operatorname{dim}_{\mathbb{F}_{q}} L$. It is not true that ψ is an isomorphism for all $d \geq 0$ but one may prove that if $d \geq N-1$ then ψ is an isomorphism.
On the literature usually one takes $L=\mathbb{F}_{q}[\mathbf{X}]_{d} / I_{X}(d)$.

[^0]
Codes defined over projective varieties

One may also use a set $X=\left\{P_{1}, \ldots, P_{N}\right\} \subset \mathbb{P}^{\ell}\left(\mathbb{F}_{q}\right)$ to construct a code in the following way.
As before let $I_{X} \subset \mathbb{F}_{q}\left[X_{0}, \ldots, X_{n}\right]=\mathbb{F}_{q}[\mathbf{X}]$ be the ideal of X (as a set of points). In this case we have that $\mathbb{F}_{q}[\mathbf{X}] / I_{X}$ is an infinite dimensional \mathbb{F}_{q}-vector space.
Looking at $\mathbb{F}_{q}[\mathbf{X}] / I_{X}$ as a graded algebra $\mathbb{F}_{q}[\mathbf{X}] / I_{X}=\bigoplus_{d=0}^{\infty} \mathbb{F}_{q}[\mathbf{X}]_{d} / I_{X}(d)$ we pick a d, write the points of X in "standard form" and consider the evaluation morphism $\psi: \mathbb{F}_{q}[\mathbf{X}]_{d} / I_{X}(d) \rightarrow \mathbb{F}_{q}^{N}$ where $\psi\left(f+I_{X}\right)=\left(f\left(P_{1}\right), \ldots, f\left(P_{N}\right)\right)$. Now can choose an \mathbb{F}_{q}-vector subspace $L \subset \mathbb{F}_{q}[\mathbf{X}]_{d} / I_{X}(d)$ and define C_{L} to be the projective code associated to L. Observe that ψ is injective so that $\operatorname{dim}_{\mathbb{F}_{q}} C_{L}=\operatorname{dim}_{\mathbb{F}_{q}} L$. It is not true that ψ is an isomorphism for all $d \geq 0$ but one may prove that if $d \geq N-1$ then ψ is an isomorphism.
On the literature usually one takes $L=\mathbb{F}_{q}[\mathbf{X}]_{d} / I_{X}(d)$. For example:

Codes defined over projective varieties

One may also use a set $X=\left\{P_{1}, \ldots, P_{N}\right\} \subset \mathbb{P}^{\ell}\left(\mathbb{F}_{q}\right)$ to construct a code in the following way.
As before let $I_{X} \subset \mathbb{F}_{q}\left[X_{0}, \ldots, X_{n}\right]=\mathbb{F}_{q}[\mathbf{X}]$ be the ideal of X (as a set of points). In this case we have that $\mathbb{F}_{q}[\mathbf{X}] / I_{X}$ is an infinite dimensional \mathbb{F}_{q}-vector space.
Looking at $\mathbb{F}_{q}[\mathbf{X}] / I_{X}$ as a graded algebra $\mathbb{F}_{q}[\mathbf{X}] / I_{X}=\bigoplus_{d=0}^{\infty} \mathbb{F}_{q}[\mathbf{X}]_{d} / I_{X}(d)$ we pick a d, write the points of X in "standard form" and consider the evaluation morphism $\psi: \mathbb{F}_{q}[\mathbf{X}]_{d} / I_{X}(d) \rightarrow \mathbb{F}_{q}^{N}$ where $\psi\left(f+I_{X}\right)=\left(f\left(P_{1}\right), \ldots, f\left(P_{N}\right)\right)$. Now can choose an \mathbb{F}_{q}-vector subspace $L \subset \mathbb{F}_{q}[\mathbf{X}]_{d} / I_{X}(d)$ and define C_{L} to be the projective code associated to L. Observe that ψ is injective so that $\operatorname{dim}_{\mathbb{F}_{q}} C_{L}=\operatorname{dim}_{\mathbb{F}_{q}} L$. It is not true that ψ is an isomorphism for all $d \geq 0$ but one may prove that if $d \geq N-1$ then ψ is an isomorphism.
On the literature usually one takes $L=\mathbb{F}_{q}[\mathbf{X}]_{d} / I_{X}(d)$. For example:
G. Lachaud, Projective Reed-Muller codes (1986)

Codes defined over projective varieties

One may also use a set $X=\left\{P_{1}, \ldots, P_{N}\right\} \subset \mathbb{P}^{\ell}\left(\mathbb{F}_{q}\right)$ to construct a code in the following way.
As before let $I_{X} \subset \mathbb{F}_{q}\left[X_{0}, \ldots, X_{n}\right]=\mathbb{F}_{q}[\mathbf{X}]$ be the ideal of X (as a set of points). In this case we have that $\mathbb{F}_{q}[\mathbf{X}] / I_{X}$ is an infinite dimensional \mathbb{F}_{q}-vector space.
Looking at $\mathbb{F}_{q}[\mathbf{X}] / I_{X}$ as a graded algebra $\mathbb{F}_{q}[\mathbf{X}] / I_{X}=\bigoplus_{d=0}^{\infty} \mathbb{F}_{q}[\mathbf{X}]_{d} / I_{X}(d)$ we pick a d, write the points of X in "standard form" and consider the evaluation morphism $\psi: \mathbb{F}_{q}[\mathbf{X}]_{d} / I_{X}(d) \rightarrow \mathbb{F}_{q}^{N}$ where $\psi\left(f+I_{X}\right)=\left(f\left(P_{1}\right), \ldots, f\left(P_{N}\right)\right)$. Now can choose an \mathbb{F}_{q}-vector subspace $L \subset \mathbb{F}_{q}[\mathbf{X}]_{d} / I_{X}(d)$ and define C_{L} to be the projective code associated to L. Observe that ψ is injective so that $\operatorname{dim}_{\mathbb{F}_{q}} C_{L}=\operatorname{dim}_{\mathbb{F}_{q}} L$. It is not true that ψ is an isomorphism for all $d \geq 0$ but one may prove that if $d \geq N-1$ then ψ is an isomorphism.
On the literature usually one takes $L=\mathbb{F}_{q}[\mathbf{X}]_{d} / I_{X}(d)$. For example:
G. Lachaud, Projective Reed-Muller codes (1986)
A. Sørensen, Projective Reed-Muller codes (1991)

Codes defined over projective varieties

One may also use a set $X=\left\{P_{1}, \ldots, P_{N}\right\} \subset \mathbb{P}^{\ell}\left(\mathbb{F}_{q}\right)$ to construct a code in the following way.
As before let $I_{X} \subset \mathbb{F}_{q}\left[X_{0}, \ldots, X_{n}\right]=\mathbb{F}_{q}[\mathbf{X}]$ be the ideal of X (as a set of points). In this case we have that $\mathbb{F}_{q}[\mathbf{X}] / I_{X}$ is an infinite dimensional \mathbb{F}_{q}-vector space.
Looking at $\mathbb{F}_{q}[\mathbf{X}] / I_{X}$ as a graded algebra $\mathbb{F}_{q}[\mathbf{X}] / I_{X}=\bigoplus_{d=0}^{\infty} \mathbb{F}_{q}[\mathbf{X}]_{d} / I_{X}(d)$ we pick a d, write the points of X in "standard form" and consider the evaluation morphism $\psi: \mathbb{F}_{q}[\mathbf{X}]_{d} / I_{X}(d) \rightarrow \mathbb{F}_{q}^{N}$ where $\psi\left(f+I_{X}\right)=\left(f\left(P_{1}\right), \ldots, f\left(P_{N}\right)\right)$. Now can choose an \mathbb{F}_{q}-vector subspace $L \subset \mathbb{F}_{q}[\mathbf{X}]_{d} / I_{X}(d)$ and define C_{L} to be the projective code associated to L. Observe that ψ is injective so that $\operatorname{dim}_{\mathbb{F}_{q}} C_{L}=\operatorname{dim}_{\mathbb{F}_{q}} L$. It is not true that ψ is an isomorphism for all $d \geq 0$ but one may prove that if $d \geq N-1$ then ψ is an isomorphism.
On the literature usually one takes $L=\mathbb{F}_{q}[\mathbf{X}]_{d} / I_{X}(d)$. For example:
G. Lachaud, Projective Reed-Muller codes (1986)
A. Sørensen, Projective Reed-Muller codes (1991)
C. Rentería, H. Tapia-Recillas, Reed-Muller codes: An ideal theory approach (1997)

Codes defined over projective varieties

One may also use a set $X=\left\{P_{1}, \ldots, P_{N}\right\} \subset \mathbb{P}^{\ell}\left(\mathbb{F}_{q}\right)$ to construct a code in the following way.
As before let $I_{X} \subset \mathbb{F}_{q}\left[X_{0}, \ldots, X_{n}\right]=\mathbb{F}_{q}[\mathbf{X}]$ be the ideal of X (as a set of points). In this case we have that $\mathbb{F}_{q}[\mathbf{X}] / I_{X}$ is an infinite dimensional \mathbb{F}_{q}-vector space.
Looking at $\mathbb{F}_{q}[\mathbf{X}] / I_{X}$ as a graded algebra $\mathbb{F}_{q}[\mathbf{X}] / I_{X}=\bigoplus_{d=0}^{\infty} \mathbb{F}_{q}[\mathbf{X}]_{d} / I_{X}(d)$ we pick a d, write the points of X in "standard form" and consider the evaluation morphism $\psi: \mathbb{F}_{q}[\mathbf{X}]_{d} / I_{X}(d) \rightarrow \mathbb{F}_{q}^{N}$ where $\psi\left(f+I_{X}\right)=\left(f\left(P_{1}\right), \ldots, f\left(P_{N}\right)\right)$. Now can choose an \mathbb{F}_{q}-vector subspace $L \subset \mathbb{F}_{q}[\mathbf{X}]_{d} / I_{X}(d)$ and define C_{L} to be the projective code associated to L. Observe that ψ is injective so that $\operatorname{dim}_{\mathbb{F}_{q}} C_{L}=\operatorname{dim}_{\mathbb{F}_{q}} L$. It is not true that ψ is an isomorphism for all $d \geq 0$ but one may prove that if $d \geq N-1$ then ψ is an isomorphism.
On the literature usually one takes $L=\mathbb{F}_{q}[\mathbf{X}]_{d} / I_{X}(d)$. For example:
G. Lachaud, Projective Reed-Muller codes (1986)
A. Sørensen, Projective Reed-Muller codes (1991)
C. Rentería, H. Tapia-Recillas, Reed-Muller codes: An ideal theory approach (1997)
M. González-Sarabia et al., Reed-Muller-Type Codes Over the Segre Variety, (2002)

Codes defined over projective varieties

One may also use a set $X=\left\{P_{1}, \ldots, P_{N}\right\} \subset \mathbb{P}^{\ell}\left(\mathbb{F}_{q}\right)$ to construct a code in the following way.
As before let $I_{X} \subset \mathbb{F}_{q}\left[X_{0}, \ldots, X_{n}\right]=\mathbb{F}_{q}[\mathbf{X}]$ be the ideal of X (as a set of points). In this case we have that $\mathbb{F}_{q}[\mathbf{X}] / I_{X}$ is an infinite dimensional \mathbb{F}_{q}-vector space.
Looking at $\mathbb{F}_{q}[\mathbf{X}] / I_{X}$ as a graded algebra $\mathbb{F}_{q}[\mathbf{X}] / I_{X}=\bigoplus_{d=0}^{\infty} \mathbb{F}_{q}[\mathbf{X}]_{d} / I_{X}(d)$ we pick a d, write the points of X in "standard form" and consider the evaluation morphism $\psi: \mathbb{F}_{q}[\mathbf{X}]_{d} / I_{X}(d) \rightarrow \mathbb{F}_{q}^{N}$ where $\psi\left(f+I_{X}\right)=\left(f\left(P_{1}\right), \ldots, f\left(P_{N}\right)\right)$. Now can choose an \mathbb{F}_{q}-vector subspace $L \subset \mathbb{F}_{q}[\mathbf{X}]_{d} / I_{X}(d)$ and define C_{L} to be the projective code associated to L. Observe that ψ is injective so that $\operatorname{dim}_{\mathbb{F}_{q}} C_{L}=\operatorname{dim}_{\mathbb{F}_{q}} L$. It is not true that ψ is an isomorphism for all $d \geq 0$ but one may prove that if $d \geq N-1$ then ψ is an isomorphism.
On the literature usually one takes $L=\mathbb{F}_{q}[\mathbf{X}]_{d} / I_{X}(d)$. For example:
G. Lachaud, Projective Reed-Muller codes (1986)
A. Sørensen, Projective Reed-Muller codes (1991)
C. Rentería, H. Tapia-Recillas, Reed-Muller codes: An ideal theory approach (1997)
M. González-Sarabia et al., Reed-Muller-Type Codes Over the Segre Variety, (2002)
A. Tochimani et al., Direct products in projective Segre codes (2016)

Codes defined on projective varieties

To determine the dimension of $\psi\left(\mathbb{F}_{q}[\mathbf{X}]_{d} / I_{X}(d)\right)=: \mathcal{C}_{d}$ we can, as in the affine case, find a Gröbner basis for I_{X}, determine the footprint of I_{X} and count the elements in the set $\Delta(/ X) d$ of monomials of degree d in $\Delta(/ X)$, whose classes form a basis for $\mathbb{F}_{q}[\mathbf{X}]_{d} / I_{X}(d)$. As for the minimum distance, we can adapt the method used on affine variety codes.

Let $f \in \mathbb{F}_{q}\left[X_{0}, \ldots, X_{n}\right]$ be a homogeneous polynomial of degree d. As before we may assume that f is a linear combination of monomials in $\Delta\left(I_{X}\right)_{d}$, and the weight of $\psi\left(f+I_{X}\right)$ is $\omega:=N-\#\left(V\left(I_{X}+(f)\right)\right.$. Let $V\left(I_{X}+(f)\right)=\left\{Q_{1}, \ldots, Q_{t}\right\}=: Y$. For e "big enough" we have $N=\#\left(\Delta\left(I_{X}\right)_{e}\right)$ and $t=\#\left(\Delta\left(I_{Y}\right)_{e}\right)$, so $\omega=\#\left(\Delta\left(I_{X}\right)_{e}\right)-\#\left(\Delta\left(I_{Y}\right)_{e}\right)$. From $I_{X} \subset I_{X}+(f) \subset I_{Y}$ we get $\Delta\left(I_{Y}\right) \subset \Delta\left(I_{X}+(f)\right) \subset \Delta\left(I_{X}\right)$ so that $\omega=\#\left(\Delta\left(I_{X}\right)_{e} \backslash \Delta\left(I_{Y}\right)_{e}\right) \geq \#\left(\Delta\left(I_{X}\right)_{e} \backslash \Delta\left(I_{X}+(f)\right)_{e}\right)$ $\geq \#\left(\left\{M^{\prime} \in \Delta(I X)|\operatorname{deg} M=e, \operatorname{Im}(f)| M^{\prime}\right\}\right.$
This can be used to obtain a lower bound for $d_{\min }\left(C_{d}\right)$.

Codes defined on projective varieties

To determine the dimension of $\psi\left(\mathbb{F}_{q}[\mathbf{X}]_{d} / I_{X}(d)\right)=: \mathcal{C}_{d}$ we can, as in the affine case, find a Gröbner basis for I_{X}, determine the footprint of I_{X} and count the elements in the set $\Delta\left(I_{X}\right)_{d}$ of monomials of degree d in $\Delta\left(I_{X}\right)$,

Codes defined on projective varieties

To determine the dimension of $\psi\left(\mathbb{F}_{q}[\mathbf{X}]_{d} / I_{X}(d)\right)=: \mathcal{C}_{d}$ we can, as in the affine case, find a Gröbner basis for I_{X}, determine the footprint of I_{X} and count the elements in the set $\Delta\left(I_{X}\right)_{d}$ of monomials of degree d in $\Delta\left(I_{X}\right)$, whose classes form a basis for $\mathbb{F}_{q}[\mathbf{X}]_{d} / I_{X}(d)$.

Codes defined on projective varieties

To determine the dimension of $\psi\left(\mathbb{F}_{q}[\mathbf{X}]_{d} / I_{X}(d)\right)=: \mathcal{C}_{d}$ we can, as in the affine case, find a Gröbner basis for I_{X}, determine the footprint of I_{X} and count the elements in the set $\Delta\left(I_{X}\right)_{d}$ of monomials of degree d in $\Delta\left(I_{X}\right)$, whose classes form a basis for $\mathbb{F}_{q}[\mathbf{X}]_{d} / I_{X}(d)$. As for the minimum distance, we can adapt the method used on affine variety codes.

Codes defined on projective varieties

To determine the dimension of $\psi\left(\mathbb{F}_{q}[\mathbf{X}]_{d} / I_{X}(d)\right)=: \mathcal{C}_{d}$ we can, as in the affine case, find a Gröbner basis for I_{X}, determine the footprint of I_{X} and count the elements in the set $\Delta\left(I_{X}\right)_{d}$ of monomials of degree d in $\Delta\left(I_{X}\right)$, whose classes form a basis for $\mathbb{F}_{q}[\mathbf{X}]_{d} / I_{X}(d)$. As for the minimum distance, we can adapt the method used on affine variety codes.

Let $f \in \mathbb{F}_{q}\left[X_{0}, \ldots, X_{n}\right]$ be a homogeneous polynomial of degree d.

This can be used to obtain a lower bound for $d_{\min }\left(\mathcal{C}_{d}\right)$

Codes defined on projective varieties

To determine the dimension of $\psi\left(\mathbb{F}_{q}[\mathbf{X}]_{d} / I_{X}(d)\right)=: \mathcal{C}_{d}$ we can, as in the affine case, find a Gröbner basis for I_{X}, determine the footprint of I_{X} and count the elements in the set $\Delta\left(I_{X}\right)_{d}$ of monomials of degree d in $\Delta\left(I_{X}\right)$, whose classes form a basis for $\mathbb{F}_{q}[\mathbf{X}]_{d} / I_{X}(d)$. As for the minimum distance, we can adapt the method used on affine variety codes.

Let $f \in \mathbb{F}_{q}\left[X_{0}, \ldots, X_{n}\right]$ be a homogeneous polynomial of degree d. As before we may assume that f is a linear combination of monomials in $\Delta\left(I_{X}\right)_{d}$,

This can be used to obtain a lower bound for $d_{\min }\left(\mathcal{C}_{d}\right)$

Codes defined on projective varieties

To determine the dimension of $\psi\left(\mathbb{F}_{q}[\mathbf{X}]_{d} / I_{X}(d)\right)=: \mathcal{C}_{d}$ we can, as in the affine case, find a Gröbner basis for I_{X}, determine the footprint of I_{X} and count the elements in the set $\Delta\left(I_{X}\right)_{d}$ of monomials of degree d in $\Delta\left(I_{X}\right)$, whose classes form a basis for $\mathbb{F}_{q}[\mathbf{X}]_{d} / I_{X}(d)$. As for the minimum distance, we can adapt the method used on affine variety codes.

Let $f \in \mathbb{F}_{q}\left[X_{0}, \ldots, X_{n}\right]$ be a homogeneous polynomial of degree d. As before we may assume that f is a linear combination of monomials in $\Delta\left(I_{X}\right)_{d}$, and the weight of $\psi\left(f+I_{X}\right)$ is $\omega:=N-\#\left(V\left(I_{X}+(f)\right)\right.$.

This can be used to obtain a lower bound for $d_{\min }\left(\mathcal{C}_{d}\right)$

Codes defined on projective varieties

To determine the dimension of $\psi\left(\mathbb{F}_{q}[\mathbf{X}]_{d} / I_{X}(d)\right)=: \mathcal{C}_{d}$ we can, as in the affine case, find a Gröbner basis for I_{X}, determine the footprint of I_{X} and count the elements in the set $\Delta\left(I_{X}\right)_{d}$ of monomials of degree d in $\Delta\left(I_{X}\right)$, whose classes form a basis for $\mathbb{F}_{q}[\mathbf{X}]_{d} / I_{X}(d)$. As for the minimum distance, we can adapt the method used on affine variety codes.

Let $f \in \mathbb{F}_{q}\left[X_{0}, \ldots, X_{n}\right]$ be a homogeneous polynomial of degree d. As before we may assume that f is a linear combination of monomials in $\Delta\left(I_{X}\right)_{d}$, and the weight of $\psi\left(f+I_{X}\right)$ is $\omega:=N-\#\left(V\left(I_{X}+(f)\right)\right.$. Let $V\left(I_{X}+(f)\right)=\left\{Q_{1}, \ldots, Q_{t}\right\}=: Y$.

From

Codes defined on projective varieties

To determine the dimension of $\psi\left(\mathbb{F}_{q}[\mathbf{X}]_{d} / I_{X}(d)\right)=: \mathcal{C}_{d}$ we can, as in the affine case, find a Gröbner basis for I_{X}, determine the footprint of I_{X} and count the elements in the set $\Delta\left(I_{X}\right)_{d}$ of monomials of degree d in $\Delta\left(I_{X}\right)$, whose classes form a basis for $\mathbb{F}_{q}[\mathbf{X}]_{d} / I_{X}(d)$. As for the minimum distance, we can adapt the method used on affine variety codes.

Let $f \in \mathbb{F}_{q}\left[X_{0}, \ldots, X_{n}\right]$ be a homogeneous polynomial of degree d. As before we may assume that f is a linear combination of monomials in $\Delta\left(I_{X}\right)_{d}$, and the weight of $\psi\left(f+I_{X}\right)$ is $\omega:=N-\#\left(V\left(I_{X}+(f)\right)\right.$. Let $V\left(I_{X}+(f)\right)=\left\{Q_{1}, \ldots, Q_{t}\right\}=: Y$.

From

This can be used to obtain a lower $\psi: \mathbb{F}_{q}[\mathbf{X}]_{d} / I_{X}(d) \rightarrow \mathbb{F}_{q}^{N}$

Codes defined on projective varieties

To determine the dimension of $\psi\left(\mathbb{F}_{q}[\mathbf{X}]_{d} / I_{X}(d)\right)=: \mathcal{C}_{d}$ we can, as in the affine case, find a Gröbner basis for I_{X}, determine the footprint of I_{X} and count the elements in the set $\Delta\left(I_{X}\right)_{d}$ of monomials of degree d in $\Delta\left(I_{X}\right)$, whose classes form a basis for $\mathbb{F}_{q}[\mathbf{X}]_{d} / I_{X}(d)$. As for the minimum distance, we can adapt the method used on affine variety codes.

Let $f \in \mathbb{F}_{q}\left[X_{0}, \ldots, X_{n}\right]$ be a homogeneous polynomial of degree d. As before we may assume that f is a linear combination of monomials in $\Delta\left(I_{X}\right)_{d}$, and the weight of $\psi\left(f+I_{X}\right)$ is $\omega:=N-\#\left(V\left(I_{X}+(f)\right)\right.$. Let $V\left(I_{X}+(f)\right)=\left\{Q_{1}, \ldots, Q_{t}\right\}=: Y$. For e "big enough" we have From we get $\Delta\left(I_{Y}\right) \subset \Delta\left(I_{X}+(f)\right) \subset \Delta\left(I_{X}\right)$

This can be used to obtain a lower bound for $d_{\min }\left(\mathcal{C}_{d}\right)$

Codes defined on projective varieties

To determine the dimension of $\psi\left(\mathbb{F}_{q}[\mathbf{X}]_{d} / I_{X}(d)\right)=: \mathcal{C}_{d}$ we can, as in the affine case, find a Gröbner basis for I_{X}, determine the footprint of I_{X} and count the elements in the set $\Delta\left(I_{X}\right)_{d}$ of monomials of degree d in $\Delta\left(I_{X}\right)$, whose classes form a basis for $\mathbb{F}_{q}[\mathbf{X}]_{d} / I_{X}(d)$. As for the minimum distance, we can adapt the method used on affine variety codes.

Let $f \in \mathbb{F}_{q}\left[X_{0}, \ldots, X_{n}\right]$ be a homogeneous polynomial of degree d. As before we may assume that f is a linear combination of monomials in $\Delta\left(I_{X}\right)_{d}$, and the weight of $\psi\left(f+I_{X}\right)$ is $\omega:=N-\#\left(V\left(I_{X}+(f)\right)\right.$. Let $V\left(I_{X}+(f)\right)=\left\{Q_{1}, \ldots, Q_{t}\right\}=: Y$. For e "big enough" we have $N=\#\left(\Delta\left(I_{X}\right)_{e}\right)$
From
$\geq \#\left(\left\{M^{\prime} \in \Delta\left(I_{X}\right)|\operatorname{deg} M=e, \operatorname{Im}(f)| M^{\prime}\right\}\right.$
This can be used to obtain a lower bound for $d_{\min }\left(C_{d}\right)$

Codes defined on projective varieties

To determine the dimension of $\psi\left(\mathbb{F}_{q}[\mathbf{X}]_{d} / I_{X}(d)\right)=: \mathcal{C}_{d}$ we can, as in the affine case, find a Gröbner basis for I_{X}, determine the footprint of I_{X} and count the elements in the set $\Delta\left(I_{X}\right)_{d}$ of monomials of degree d in $\Delta\left(I_{X}\right)$, whose classes form a basis for $\mathbb{F}_{q}[\mathbf{X}]_{d} / I_{X}(d)$. As for the minimum distance, we can adapt the method used on affine variety codes.

Let $f \in \mathbb{F}_{q}\left[X_{0}, \ldots, X_{n}\right]$ be a homogeneous polynomial of degree d. As before we may assume that f is a linear combination of monomials in $\Delta\left(I_{X}\right)_{d}$, and the weight of $\psi\left(f+I_{X}\right)$ is $\omega:=N-\#\left(V\left(I_{X}+(f)\right)\right.$. Let $V\left(I_{X}+(f)\right)=\left\{Q_{1}, \ldots, Q_{t}\right\}=: Y$. For e "big enough" we have $N=\#\left(\Delta\left(I_{X}\right)_{e}\right)$ and $t=\#\left(\Delta\left(I_{Y}\right)_{e}\right)$,
From
$\geq \#\left(\left\{M^{\prime} \in \Delta(I X)|\operatorname{deg} M=e, \operatorname{lm}(f)| M^{\prime}\right\}\right.$
This can be used to obtain a lower bound for $d_{\min }\left(C_{d}\right)$

Codes defined on projective varieties

To determine the dimension of $\psi\left(\mathbb{F}_{q}[\mathbf{X}]_{d} / I_{X}(d)\right)=: \mathcal{C}_{d}$ we can, as in the affine case, find a Gröbner basis for I_{X}, determine the footprint of I_{X} and count the elements in the set $\Delta\left(I_{X}\right)_{d}$ of monomials of degree d in $\Delta\left(I_{X}\right)$, whose classes form a basis for $\mathbb{F}_{q}[\mathbf{X}]_{d} / I_{X}(d)$. As for the minimum distance, we can adapt the method used on affine variety codes.

Let $f \in \mathbb{F}_{q}\left[X_{0}, \ldots, X_{n}\right]$ be a homogeneous polynomial of degree d. As before we may assume that f is a linear combination of monomials in $\Delta\left(I_{X}\right)_{d}$, and the weight of $\psi\left(f+I_{X}\right)$ is $\omega:=N-\#\left(V\left(I_{X}+(f)\right)\right.$. Let $V\left(I_{X}+(f)\right)=\left\{Q_{1}, \ldots, Q_{t}\right\}=: Y$. For e "big enough" we have $N=\#\left(\Delta\left(I_{X}\right)_{e}\right)$ and $t=\#\left(\Delta\left(I_{Y}\right)_{e}\right)$, so $\omega=\#\left(\Delta\left(I_{X}\right)_{e}\right)-\#\left(\Delta\left(I_{Y}\right)_{e}\right)$. From $I_{X} \subset I_{X}+(f) \subset I_{Y}$ we get $\Delta\left(I_{Y}\right) \subset \Delta\left(I_{X}+(f)\right)$
$\omega=\#\left(\Delta\left(I_{X}\right)_{e} \backslash \Delta\left(I_{Y}\right)_{e}\right) \geq \#\left(\Delta\left(I_{X}\right)_{e} \backslash \Delta\left(I_{X}+(f)\right)_{e}\right)$
$\geq \#\left(\left\{M^{\prime} \in \Delta\left(I_{X}\right)\left|\operatorname{deg} M=e,|m(f)| M^{\prime}\right\}\right.\right.$.
This can be used to obtain a lower bound for $d_{\min }\left(C_{d}\right)$.

Codes defined on projective varieties

To determine the dimension of $\psi\left(\mathbb{F}_{q}[\mathbf{X}]_{d} / I_{X}(d)\right)=: \mathcal{C}_{d}$ we can, as in the affine case, find a Gröbner basis for I_{X}, determine the footprint of I_{X} and count the elements in the set $\Delta\left(I_{X}\right)_{d}$ of monomials of degree d in $\Delta\left(I_{X}\right)$, whose classes form a basis for $\mathbb{F}_{q}[\mathbf{X}]_{d} / I_{X}(d)$. As for the minimum distance, we can adapt the method used on affine variety codes.

Let $f \in \mathbb{F}_{q}\left[X_{0}, \ldots, X_{n}\right]$ be a homogeneous polynomial of degree d. As before we may assume that f is a linear combination of monomials in $\Delta\left(I_{X}\right)_{d}$, and the weight of $\psi\left(f+I_{X}\right)$ is $\omega:=N-\#\left(V\left(I_{X}+(f)\right)\right.$. Let $V\left(I_{X}+(f)\right)=\left\{Q_{1}, \ldots, Q_{t}\right\}=: Y$. For e "big enough" we have $N=\#\left(\Delta\left(I_{X}\right)_{e}\right)$ and $t=\#\left(\Delta\left(I_{Y}\right)_{e}\right)$, so $\omega=\#\left(\Delta\left(I_{X}\right)_{e}\right)-\#\left(\Delta\left(I_{Y}\right)_{e}\right)$. From $I_{X} \subset I_{X}+(f) \subset I_{Y}$ we get
$\geq \#\left(\left\{M^{\prime} \in \Delta(I X)|\operatorname{deg} M=e, \operatorname{lm}(f)| M^{\prime}\right\}\right.$
This can be used to obtain a lower bound for $d_{\text {min }}\left(C_{d}\right)$

Codes defined on projective varieties

To determine the dimension of $\psi\left(\mathbb{F}_{q}[\mathbf{X}]_{d} / I_{X}(d)\right)=: \mathcal{C}_{d}$ we can, as in the affine case, find a Gröbner basis for I_{X}, determine the footprint of I_{X} and count the elements in the set $\Delta\left(I_{X}\right)_{d}$ of monomials of degree d in $\Delta\left(I_{X}\right)$, whose classes form a basis for $\mathbb{F}_{q}[\mathbf{X}]_{d} / I_{X}(d)$. As for the minimum distance, we can adapt the method used on affine variety codes.

Let $f \in \mathbb{F}_{q}\left[X_{0}, \ldots, X_{n}\right]$ be a homogeneous polynomial of degree d. As before we may assume that f is a linear combination of monomials in $\Delta\left(I_{X}\right)_{d}$, and the weight of $\psi\left(f+I_{X}\right)$ is $\omega:=N-\#\left(V\left(I_{X}+(f)\right)\right.$. Let $V\left(I_{X}+(f)\right)=\left\{Q_{1}, \ldots, Q_{t}\right\}=: Y$. For e "big enough" we have $N=\#\left(\Delta\left(I_{X}\right)_{e}\right)$ and $t=\#\left(\Delta\left(I_{Y}\right)_{e}\right)$, so $\omega=\#\left(\Delta\left(I_{X}\right)_{e}\right)-\#\left(\Delta\left(I_{Y}\right)_{e}\right)$. From $I_{X} \subset I_{X}+(f) \subset I_{Y}$ we get $\Delta\left(I_{Y}\right) \subset \Delta\left(I_{X}+(f)\right) \subset \Delta\left(I_{X}\right)$

This can be used to obtain a lower bound for $d_{\min }\left(\mathcal{C}_{d}\right)$

Codes defined on projective varieties

To determine the dimension of $\psi\left(\mathbb{F}_{q}[\mathbf{X}]_{d} / I_{X}(d)\right)=: \mathcal{C}_{d}$ we can, as in the affine case, find a Gröbner basis for I_{X}, determine the footprint of I_{X} and count the elements in the set $\Delta\left(I_{X}\right)_{d}$ of monomials of degree d in $\Delta\left(I_{X}\right)$, whose classes form a basis for $\mathbb{F}_{q}[\mathbf{X}]_{d} / I_{X}(d)$. As for the minimum distance, we can adapt the method used on affine variety codes.
Let $f \in \mathbb{F}_{q}\left[X_{0}, \ldots, X_{n}\right]$ be a homogeneous polynomial of degree d. As before we may assume that f is a linear combination of monomials in $\Delta\left(I_{X}\right)_{d}$, and the weight of $\psi\left(f+I_{X}\right)$ is $\omega:=N-\#\left(V\left(I_{X}+(f)\right)\right.$. Let $V\left(I_{X}+(f)\right)=\left\{Q_{1}, \ldots, Q_{t}\right\}=: Y$. For e "big enough" we have $N=\#\left(\Delta\left(I_{X}\right)_{e}\right)$ and $t=\#\left(\Delta\left(I_{Y}\right)_{e}\right)$, so $\omega=\#\left(\Delta\left(I_{X}\right)_{e}\right)-\#\left(\Delta\left(I_{Y}\right)_{e}\right)$. From $I_{X} \subset I_{X}+(f) \subset I_{Y}$ we get $\Delta\left(I_{Y}\right) \subset \Delta\left(I_{X}+(f)\right) \subset \Delta\left(I_{X}\right)$ so that $\omega=\#\left(\Delta\left(I_{X}\right)_{e} \backslash \Delta\left(I_{Y}\right)_{e}\right)$

This can be used to obtain a lower bound for $d_{\min }\left(\mathcal{C}_{d}\right)$

Codes defined on projective varieties

To determine the dimension of $\psi\left(\mathbb{F}_{q}[\mathbf{X}]_{d} / I_{X}(d)\right)=: \mathcal{C}_{d}$ we can, as in the affine case, find a Gröbner basis for I_{X}, determine the footprint of I_{X} and count the elements in the set $\Delta\left(I_{X}\right)_{d}$ of monomials of degree d in $\Delta\left(I_{X}\right)$, whose classes form a basis for $\mathbb{F}_{q}[\mathbf{X}]_{d} / I_{X}(d)$. As for the minimum distance, we can adapt the method used on affine variety codes.
Let $f \in \mathbb{F}_{q}\left[X_{0}, \ldots, X_{n}\right]$ be a homogeneous polynomial of degree d. As before we may assume that f is a linear combination of monomials in $\Delta\left(I_{X}\right)_{d}$, and the weight of $\psi\left(f+I_{X}\right)$ is $\omega:=N-\#\left(V\left(I_{X}+(f)\right)\right.$. Let $V\left(I_{X}+(f)\right)=\left\{Q_{1}, \ldots, Q_{t}\right\}=: Y$. For e "big enough" we have $N=\#\left(\Delta\left(I_{X}\right)_{e}\right)$ and $t=\#\left(\Delta\left(I_{Y}\right)_{e}\right)$, so $\omega=\#\left(\Delta\left(I_{X}\right)_{e}\right)-\#\left(\Delta\left(I_{Y}\right)_{e}\right)$. From $I_{X} \subset I_{X}+(f) \subset I_{Y}$ we get $\Delta\left(I_{Y}\right) \subset \Delta\left(I_{X}+(f)\right) \subset \Delta\left(I_{X}\right)$ so that $\omega=\#\left(\Delta\left(I_{X}\right)_{e} \backslash \Delta\left(I_{Y}\right)_{e}\right) \geq \#\left(\Delta\left(I_{X}\right)_{e} \backslash \Delta\left(I_{X}+(f)\right)_{e}\right)$

This can be used to obtain a lower bound for $d_{\min }\left(\mathcal{C}_{d}\right)$

Codes defined on projective varieties

To determine the dimension of $\psi\left(\mathbb{F}_{q}[\mathbf{X}]_{d} / I_{X}(d)\right)=: \mathcal{C}_{d}$ we can, as in the affine case, find a Gröbner basis for I_{X}, determine the footprint of I_{X} and count the elements in the set $\Delta\left(I_{X}\right)_{d}$ of monomials of degree d in $\Delta\left(I_{X}\right)$, whose classes form a basis for $\mathbb{F}_{q}[\mathbf{X}]_{d} / I_{X}(d)$. As for the minimum distance, we can adapt the method used on affine variety codes.
Let $f \in \mathbb{F}_{q}\left[X_{0}, \ldots, X_{n}\right]$ be a homogeneous polynomial of degree d. As before we may assume that f is a linear combination of monomials in $\Delta\left(I_{X}\right)_{d}$, and the weight of $\psi\left(f+I_{X}\right)$ is $\omega:=N-\#\left(V\left(I_{X}+(f)\right)\right.$. Let $V\left(I_{X}+(f)\right)=\left\{Q_{1}, \ldots, Q_{t}\right\}=: Y$. For e "big enough" we have $N=\#\left(\Delta\left(I_{X}\right)_{e}\right)$ and $t=\#\left(\Delta\left(I_{Y}\right)_{e}\right)$, so $\omega=\#\left(\Delta\left(I_{X}\right)_{e}\right)-\#\left(\Delta\left(I_{Y}\right)_{e}\right)$. From $I_{X} \subset I_{X}+(f) \subset I_{Y}$ we get $\Delta\left(I_{Y}\right) \subset \Delta\left(I_{X}+(f)\right) \subset \Delta\left(I_{X}\right)$ so that $\omega=\#\left(\Delta\left(I_{X}\right)_{e} \backslash \Delta\left(I_{Y}\right)_{e}\right) \geq \#\left(\Delta\left(I_{X}\right)_{e} \backslash \Delta\left(I_{X}+(f)\right)_{e}\right)$ $\geq \#\left(\left\{M^{\prime} \in \Delta\left(I_{X}\right)|\operatorname{deg} M=e, \operatorname{lm}(f)| M^{\prime}\right\}\right.$.

[^1]
Codes defined on projective varieties

To determine the dimension of $\psi\left(\mathbb{F}_{q}[\mathbf{X}]_{d} / I_{X}(d)\right)=: \mathcal{C}_{d}$ we can, as in the affine case, find a Gröbner basis for I_{X}, determine the footprint of I_{X} and count the elements in the set $\Delta\left(I_{X}\right)_{d}$ of monomials of degree d in $\Delta\left(I_{X}\right)$, whose classes form a basis for $\mathbb{F}_{q}[\mathbf{X}]_{d} / I_{X}(d)$. As for the minimum distance, we can adapt the method used on affine variety codes.
Let $f \in \mathbb{F}_{q}\left[X_{0}, \ldots, X_{n}\right]$ be a homogeneous polynomial of degree d. As before we may assume that f is a linear combination of monomials in $\Delta\left(I_{X}\right)_{d}$, and the weight of $\psi\left(f+I_{X}\right)$ is $\omega:=N-\#\left(V\left(I_{X}+(f)\right)\right.$. Let $V\left(I_{X}+(f)\right)=\left\{Q_{1}, \ldots, Q_{t}\right\}=: Y$. For e "big enough" we have $N=\#\left(\Delta\left(I_{X}\right)_{e}\right)$ and $t=\#\left(\Delta\left(I_{Y}\right)_{e}\right)$, so $\omega=\#\left(\Delta\left(I_{X}\right)_{e}\right)-\#\left(\Delta\left(I_{Y}\right)_{e}\right)$. From $I_{X} \subset I_{X}+(f) \subset I_{Y}$ we get $\Delta\left(I_{Y}\right) \subset \Delta\left(I_{X}+(f)\right) \subset \Delta\left(I_{X}\right)$ so that $\omega=\#\left(\Delta\left(I_{X}\right)_{e} \backslash \Delta\left(I_{Y}\right)_{e}\right) \geq \#\left(\Delta\left(I_{X}\right)_{e} \backslash \Delta\left(I_{X}+(f)\right)_{e}\right)$ $\geq \#\left(\left\{M^{\prime} \in \Delta\left(I_{X}\right)|\operatorname{deg} M=e, \operatorname{lm}(f)| M^{\prime}\right\}\right.$.
This can be used to obtain a lower bound for $d_{\text {min }}\left(\mathcal{C}_{d}\right)$.

Codes defined over projective varieties

In recent joint works we have studied the parameters of some projective variety codes using these Gröbner methods.

In 2017 together with V G I Neumann and H. López we have studied "projective nested cartesian codes"
Let $K_{0} \subset \cdots \subset K_{n} \subset \mathbb{F}_{q}$ and take X to be $X=\left[K_{0} \times \cdots \times K_{n}\right]$, i.e. a projective nested product of fields.
We proved that the set
$\mathcal{G}=\left\{X_{i} \prod_{a_{j} \in A_{j}}\left(X_{j}-a_{j} X_{i}\right): i<j, \quad i, j=0, \ldots, n\right\}$ is a Gröbner basis for $I X$.
We determined the dimension and minimum distance of these codes, but we didn't use the above reasoning to find the minimum distance.

Codes defined over projective varieties

In recent joint works we have studied the parameters of some projective variety codes using these Gröbner methods.
In 2017, together with V.G.L. Neumann and H. López we have studied "projective nested cartesian codes"
Let $K_{n} \subset \cdots \subset K_{n} \subset \mathbb{F}_{n}$ and take X to be $X=\left[K_{0} \times \cdots \times K_{n}\right]$, i.e. a
projective nested product of fields.
We proved that the set
$\mathcal{G}=\left\{X_{i} \prod_{3, \in A,}\left(X_{i}-a_{j} X_{i}\right): i<j, i, j=0, \ldots, n\right\}$ is a Gröbner basis
for IX
We determined the dimension and minimum distance of these codes, but
we didn't use the above reasoning to find the minimum distance.

Codes defined over projective varieties

In recent joint works we have studied the parameters of some projective variety codes using these Gröbner methods.
In 2017, together with V.G.L. Neumann and H. López we have studied "projective nested cartesian codes".
projective nested product of fields.
We proved that the set
$G=\left\{X_{i} \prod_{a_{j} \in A_{j}}\left(X_{j}-a_{j} X_{i}\right): i<j, i, j=0, \ldots, n\right\}$ is a Gröbner basis for I_{X}

We determined the dimension and minimum distance of these codes, but
we didn't use the above reasoning to find the minimum distance.

Codes defined over projective varieties

In recent joint works we have studied the parameters of some projective variety codes using these Gröbner methods.
In 2017, together with V.G.L. Neumann and H. López we have studied "projective nested cartesian codes".
Let $K_{0} \subset \cdots \subset K_{n} \subset \mathbb{F}_{\boldsymbol{q}}$ and take X to be $X=\left[K_{0} \times \cdots \times K_{n}\right]$, i.e. a projective nested product of fields.
We proved that the set
$\mathcal{G}=\left\{X_{i} \prod_{3, \in A,}\left(X_{i}-a_{j} X_{i}\right): i<j, i, j=0, \ldots, n\right\}$ is a Gröbner basis

We determined the dimension and minimum distance of these codes, but
we didn't use the above reasoning to find the minimum distance.

Codes defined over projective varieties

In recent joint works we have studied the parameters of some projective variety codes using these Gröbner methods.
In 2017, together with V.G.L. Neumann and H. López we have studied "projective nested cartesian codes".
Let $K_{0} \subset \cdots \subset K_{n} \subset \mathbb{F}_{q}$ and take X to be $X=\left[K_{0} \times \cdots \times K_{n}\right]$, i.e. a projective nested product of fields.

Codes defined over projective varieties

In recent joint works we have studied the parameters of some projective variety codes using these Gröbner methods.
In 2017, together with V.G.L. Neumann and H. López we have studied "projective nested cartesian codes".
Let $K_{0} \subset \cdots \subset K_{n} \subset \mathbb{F}_{q}$ and take X to be $X=\left[K_{0} \times \cdots \times K_{n}\right]$, i.e. a projective nested product of fields.
We proved that the set
$\mathcal{G}=\left\{X_{i} \prod_{a_{j} \in A_{j}}\left(X_{j}-a_{j} X_{i}\right): i<j, \quad i, j=0, \ldots, n\right\}$ is a Gröbner basis for I_{X}.
We determined the dimension and minimum distance of these codes, but
we didn't use the above reasoning to find the minimum distance.

Codes defined over projective varieties

In recent joint works we have studied the parameters of some projective variety codes using these Gröbner methods.
In 2017, together with V.G.L. Neumann and H. López we have studied "projective nested cartesian codes".
Let $K_{0} \subset \cdots \subset K_{n} \subset \mathbb{F}_{q}$ and take X to be $X=\left[K_{0} \times \cdots \times K_{n}\right]$, i.e. a projective nested product of fields.
We proved that the set
$\mathcal{G}=\left\{X_{i} \prod_{a_{j} \in A_{j}}\left(X_{j}-a_{j} X_{i}\right): i<j, \quad i, j=0, \ldots, n\right\}$ is a Gröbner basis for I_{X}.
We determined the dimension and minimum distance of these codes, but we didn't use the above reasoning to find the minimum distance.

Codes defined over projective varieties

In 2016 in a joint work with V.G.L. Neumann we studied codes defined over a rational normal scroll, i.e. the surface defined by
$S=\left\{\left(x_{0}: \cdots: x_{\ell}\right) \in \mathbb{P}^{\ell}\left(\mathbb{F}_{q}\right) \left\lvert\, \operatorname{rank}\left(\begin{array}{cccccc}x_{0} & \cdots & x_{n-1} & x_{n+1} & \cdots & x_{\ell-1} \\ x_{1} & \cdots & x_{n} & x_{n+2} & \cdots & x_{\ell}\end{array}\right)=1\right.\right\}$
where $!=n+m+1$ with $1 \leq m \leq n$. W/e proved that the set $\mathcal{G}=\left\{X_{i} X_{j}-X_{i+1} X_{j-1} \mid 0 \leq i \leq \ell-2, i \neq n, i+1<j \leq \ell, j \neq n+1\right\}$ is a Gröbner basis, w.r.t. the graded lexicographic order such that $X_{\ell}<\cdots<X_{0}$, for the ideal I that it defines in $\mathbb{F}_{q}\left[X_{0}, \ldots, X_{\ell}\right]$ but th is ideal is not the ideal I_{S} of the points of S. We found a graded \mathbb{F}_{q}-subalgebra $B \subset \mathbb{F}_{q}[Y, Z, V, W]$ such that $\mathbb{F}_{q}\left[X_{0}, \ldots, X_{\ell}\right] / I \cong B$ and then an ideal $J \subset B$ such that for all $d \geq 1$ we have $\mathbb{F}_{q}\left[X_{0}, \ldots, X_{\ell}\right]_{d} / I_{S}(d) \cong B_{d} / J(d)$. Then we determined a basis for $B_{d} / J(d)$ formed by classes of monomials in B_{d}. From here on we proceeded in a manner very similar to the process described above. We determined the dimension, a lower bound for the minimum distance and the exact value of it in the case where $m=n$.

Codes defined over projective varieties

In 2016 in a joint work with V.G.L. Neumann we studied codes defined over a rational normal scroll,
$S=\left\{\left(x_{0}: \cdots: x_{\ell}\right) \in \mathbb{P}^{\ell}\left(\mathbb{F}_{q}\right) \left\lvert\, \operatorname{rank}\left(\begin{array}{cccccc}x_{0} & \cdots & x_{n-1} & x_{n+1} & \cdots & x_{\ell-1} \\ x_{1} & \cdots & x_{n} & x_{n+2} & \cdots & x_{\ell}\end{array}\right)=1\right.\right\}$

where $\ell=n+m+1$ with $1 \leq m \leq n$. We proved that the set

 is a Gröbner basis, w.r.t. the graded lexicographic order such that $X_{\ell}<\cdots<X_{0}$, for the ideal I that it defines in $\mathbb{F}_{q}\left[X_{0}, \ldots, X_{\ell}\right]$ but this ideal is not the ideal I_{S} of the points of S. We found a graded \mathbb{F}_{q}-subalgebra $B \subset \mathbb{F}_{q}[Y, Z, V, W]$ such that $\mathbb{F}_{q}\left[X_{0}, \ldots, X_{\ell}\right] / I \cong B$ and then an ideal $J \subset B$ such that for all $d \geq 1$ we have $\mathbb{F}_{q}\left[X_{0}, \ldots, X_{\ell}\right]_{d} / I_{S}(d) \cong B_{d} / J(d)$. Then we determined a basis for $B_{d} / J(d)$ formed by classes of monomials in B_{d}. From here on we proceeded in a manner very similar to the process described above. We determined the dimension, a lower bound for the minimum distance and the exact value of it in the case where $m=n$.

Codes defined over projective varieties

In 2016 in a joint work with V.G.L. Neumann we studied codes defined over a rational normal scroll, i.e. the surface defined by
$S=\left\{\left(x_{0}: \cdots: x_{\ell}\right) \in \mathbb{P}^{\ell}\left(\mathbb{F}_{q}\right) \left\lvert\, \operatorname{rank}\left(\begin{array}{ccccc}x_{0} & \cdots & x_{n-1} & x_{n+1} & \cdots \\ x_{1} & \cdots & x_{n-1} & x_{n+2} & \cdots \\ x_{\ell}\end{array}\right)=1\right.\right\}$

where $\ell=n+m+1$ with $1 \leq m \leq n$. We proved that the set

 is a Gröbner basis, w.r.t. the graded lexicographic order such that $X_{\ell}<\cdots<X_{0}$, for the ideal $/$ that it defines in $\mathbb{F}_{q}\left[X_{0}, \ldots, X_{\ell}\right]$ but this ideal is not the ideal I_{S} of the points of S. We found a graded \mathbb{F}_{q}-subalgebra $B \subset \mathbb{F}_{q}[Y, Z, V, W]$ such that $\mathbb{F}_{q}\left[X_{0}, \ldots, X_{\ell}\right] / I \cong B$ and then an ideal $J \subset B$ such that for all $d \geq 1$ we have $\mathbb{F}_{a}\left[X_{0}, \ldots, X_{\ell}\right]_{d} / I_{S}(d) \cong B_{d} / J(d)$. Then we determined a basis for $B_{d} / J(d)$ formed by classes of monomials in B_{d}. From here on we proceeded in a manner very similar to the process described above. We determined the dimension, a lower bound for the minimum distance and the exact value of it in the case where $m=n$.

Codes defined over projective varieties

In 2016 in a joint work with V.G.L. Neumann we studied codes defined over a rational normal scroll, i.e. the surface defined by
$S=\left\{\left(x_{0}: \cdots: x_{\ell}\right) \in \mathbb{P}^{\ell}\left(\mathbb{F}_{q}\right) \left\lvert\, \operatorname{rank}\left(\begin{array}{cccccc}x_{0} & \cdots & x_{n-1} & x_{n+1} & \cdots & x_{\ell-1} \\ x_{1} & \cdots & x_{n} & x_{n+2} & \cdots & x_{\ell}\end{array}\right)=1\right.\right\}$.
where $\ell=n+m+1$ with $1 \leq m \leq n$. We proved that the set
$\mathcal{G}=\left\{X_{i} X_{j}-X_{i+1} X_{j-1} \mid 0 \leq i \leq \ell-2, i \neq n, i+1<j \leq \ell, j \neq n+1\right.$
is a Gröbner basis, w.r.t. the graded lexicographic order such that
$X_{\ell}<\cdots<X_{0}$, for the ideal I that it defines in $\mathbb{F}_{q}\left[X_{0}, \ldots, X_{\ell}\right]$ but this
ideal is not the ideal I_{S} of the points of S. We found a graded \mathbb{F}_{q}-subaigebra $B \subset \mathbb{F}_{q}[Y, Z, V, W]$ such that $\mathbb{F}_{q}\left[X_{0}, \ldots, X_{l}\right] / I \cong B$ and then an ideal $J \subset B$ such that for all $d \geq 1$ we have $\mathbb{F}_{q}\left[X_{0}, \ldots, X_{\ell}\right]_{d} / I_{S}(d) \cong B_{d} / J(d)$. Then we determined a basis for $B_{d} / J(d)$ formed by classes of monomials in B_{d}. From here on we proceeded in a manner very similar to the process described above. We determined the dimension, a lower bound for the minimum distance and the exact value of it in the case where $m=n$.

Codes defined over projective varieties

In 2016 in a joint work with V.G.L. Neumann we studied codes defined over a rational normal scroll, i.e. the surface defined by
$S=\left\{\left(x_{0}: \cdots: x_{\ell}\right) \in \mathbb{P}^{\ell}\left(\mathbb{F}_{q}\right) \left\lvert\, \operatorname{rank}\left(\begin{array}{cccccc}x_{0} & \cdots & x_{n-1} & x_{n+1} & \cdots & x_{\ell-1} \\ x_{1} & \cdots & x_{n} & x_{n+2} & \cdots & x_{\ell}\end{array}\right)=1\right.\right\}$. where $\ell=n+m+1$ with $1 \leq m \leq n$. We proved that the set
is a Gröbner basis, w.r.t. the graded lexicographic order such that $X_{\ell}<\cdots<X_{0}$, for the ideal I that it defines in $\mathbb{F}_{q}\left[X_{0}, \ldots, X_{\ell}\right]$ but this ideal is not the ideal I_{S} of the points of S. We found a graded \mathbb{F}_{q}-subalgebra $B \subset \mathbb{F}_{q}[Y, Z, V, W]$ such that $\mathbb{F}_{q}\left[X_{0}, \ldots, X_{\ell}\right] / I \cong B$ and then an ideal $J \subset B$ such that for all $d \geq 1$ we have $\mathbb{F}_{q}\left[X_{0}, \ldots, X_{\ell}\right]_{d} / I_{S}(d) \cong B_{d} / J(d)$. Then we determined a basis for $B_{d} / J(d)$ formed by classes of monomials in B_{d}. From here on we proceeded in a manner very similar to the process described above. We determined the dimension, a lower bound for the minimum distance and the exact value of it in the case where $m=n$.

Codes defined over projective varieties

In 2016 in a joint work with V.G.L. Neumann we studied codes defined over a rational normal scroll, i.e. the surface defined by
$S=\left\{\left(x_{0}: \cdots: x_{\ell}\right) \in \mathbb{P}^{\ell}\left(\mathbb{F}_{q}\right) \left\lvert\, \operatorname{rank}\left(\begin{array}{cccccc}x_{0} & \cdots & x_{n-1} & x_{n+1} & \cdots & x_{\ell-1} \\ x_{1} & \cdots & x_{n} & x_{n+2} & \cdots & x_{\ell}\end{array}\right)=1\right.\right\}$.
where $\ell=n+m+1$ with $1 \leq m \leq n$. We proved that the set

Codes defined over projective varieties

In 2016 in a joint work with V.G.L. Neumann we studied codes defined over a rational normal scroll, i.e. the surface defined by
$S=\left\{\left(x_{0}: \cdots: x_{\ell}\right) \in \mathbb{P}^{\ell}\left(\mathbb{F}_{q}\right) \left\lvert\, \operatorname{rank}\left(\begin{array}{cccccc}x_{0} & \cdots & x_{n-1} & x_{n+1} & \cdots & x_{\ell-1} \\ x_{1} & \cdots & x_{n} & x_{n+2} & \cdots & x_{\ell}\end{array}\right)=1\right.\right\}$.
where $\ell=n+m+1$ with $1 \leq m \leq n$. We proved that the set $\mathcal{G}=\left\{X_{i} X_{j}-X_{i+1} X_{j-1} \mid 0 \leq i \leq \ell-2, i \neq n, i+1<j \leq \ell, j \neq n+1\right\}$
is a Gröbner basis, w.r.t. the graded lexicographic order such that

ideal is not the ideal I_{S} of the points of S. We found a graded \mathbb{F}_{q}-subalgebra $B \subset \mathbb{F}_{q}[Y, Z, V, W]$ such that $\mathbb{F}_{q}\left[X_{0}, \ldots, X_{\ell}\right] / I \cong B$ and then an ideal $J \subset B$ such that for all $d \geq 1$ we have $\mathbb{F}_{q}\left[X_{0}, \ldots, X_{\ell}\right]_{d} / I_{S}(d) \cong B_{d} / J(d)$. Then we determined a basis for $B_{d} / J(d)$ formed by classes of monomials in B_{d}. From here on we proceeded in a manner very similar to the process described above. We determined the dimension, a lower bound for the minimum distance and the exact value of it in the case where $m=n$.

Codes defined over projective varieties

In 2016 in a joint work with V.G.L. Neumann we studied codes defined over a rational normal scroll, i.e. the surface defined by
$S=\left\{\left(x_{0}: \cdots: x_{\ell}\right) \in \mathbb{P}^{\ell}\left(\mathbb{F}_{q}\right) \left\lvert\, \operatorname{rank}\left(\begin{array}{cccccc}x_{0} & \cdots & x_{n-1} & x_{n+1} & \cdots & x_{\ell-1} \\ x_{1} & \cdots & x_{n} & x_{n+2} & \cdots & x_{\ell}\end{array}\right)=1\right.\right\}$.
where $\ell=n+m+1$ with $1 \leq m \leq n$. We proved that the set $\mathcal{G}=\left\{X_{i} X_{j}-X_{i+1} X_{j-1} \mid 0 \leq i \leq \ell-2, i \neq n, i+1<j \leq \ell, j \neq n+1\right\}$ is a Gröbner basis, w.r.t. the graded lexicographic order such that $X_{\ell}<\cdots<X_{0}$, for the ideal I that it defines in $\mathbb{F}_{q}\left[X_{0}, \ldots, X_{\ell}\right]$

Codes defined over projective varieties

In 2016 in a joint work with V.G.L. Neumann we studied codes defined over a rational normal scroll, i.e. the surface defined by
$S=\left\{\left(x_{0}: \cdots: x_{\ell}\right) \in \mathbb{P}^{\ell}\left(\mathbb{F}_{q}\right) \left\lvert\, \operatorname{rank}\left(\begin{array}{cccccc}x_{0} & \cdots & x_{n-1} & x_{n+1} & \cdots & x_{\ell-1} \\ x_{1} & \cdots & x_{n} & x_{n+2} & \cdots & x_{\ell}\end{array}\right)=1\right.\right\}$.
where $\ell=n+m+1$ with $1 \leq m \leq n$. We proved that the set $\mathcal{G}=\left\{X_{i} X_{j}-X_{i+1} X_{j-1} \mid 0 \leq i \leq \ell-2, i \neq n, i+1<j \leq \ell, j \neq n+1\right\}$ is a Gröbner basis, w.r.t. the graded lexicographic order such that $X_{\ell}<\cdots<X_{0}$, for the ideal I that it defines in $\mathbb{F}_{q}\left[X_{0}, \ldots, X_{\ell}\right]$ but this ideal is not the ideal I_{S} of the points of S.
then an ideal $J \subset B$ such that for all $d \geq 1$ we have $\mathbb{F}_{q}\left[X_{0}, \ldots, X_{\ell}\right]_{d} / I_{S}(d) \cong B_{d} / J(d)$. Then we determined a basis for $B_{d} / J(d)$ formed by classes of monomials in B_{d}. From here on we proceeded in a manner very similar to the process described above. We determined the dimension, a lower bound for the minimum distance and the exact value of it in the case where $m=n$.

Codes defined over projective varieties

In 2016 in a joint work with V.G.L. Neumann we studied codes defined over a rational normal scroll, i.e. the surface defined by
$S=\left\{\left(x_{0}: \cdots: x_{\ell}\right) \in \mathbb{P}^{\ell}\left(\mathbb{F}_{q}\right) \left\lvert\, \operatorname{rank}\left(\begin{array}{cccccc}x_{0} & \cdots & x_{n-1} & x_{n+1} & \cdots & x_{\ell-1} \\ x_{1} & \cdots & x_{n} & x_{n+2} & \cdots & x_{\ell}\end{array}\right)=1\right.\right\}$.
where $\ell=n+m+1$ with $1 \leq m \leq n$. We proved that the set $\mathcal{G}=\left\{X_{i} X_{j}-X_{i+1} X_{j-1} \mid 0 \leq i \leq \ell-2, i \neq n, i+1<j \leq \ell, j \neq n+1\right\}$ is a Gröbner basis, w.r.t. the graded lexicographic order such that $X_{\ell}<\cdots<X_{0}$, for the ideal I that it defines in $\mathbb{F}_{q}\left[X_{0}, \ldots, X_{\ell}\right]$ but this ideal is not the ideal I_{S} of the points of S. We found a graded \mathbb{F}_{q}-subalgebra $B \subset \mathbb{F}_{q}[Y, Z, V, W]$ such that $\mathbb{F}_{q}\left[X_{0}, \ldots, X_{\ell}\right] / I \cong B$ \qquad
then an ideal $J \subset B$ such that for all $d \geq 1$ we have
$\mathbb{F}_{q}\left[X_{0}, \ldots, X_{\ell}\right]_{d} / I_{S}(d) \cong B_{d} / J(d)$. Then we determined a basis for $B_{d} / J(d)$ formed by classes of monomials in B_{d}. From here on we proceeded in a manner very similar to the process described above. We determined the dimension, a lower bound for the minimum distance and the exact value of it in the case where $m=n$.

Codes defined over projective varieties

In 2016 in a joint work with V.G.L. Neumann we studied codes defined over a rational normal scroll, i.e. the surface defined by
$S=\left\{\left(x_{0}: \cdots: x_{\ell}\right) \in \mathbb{P}^{\ell}\left(\mathbb{F}_{q}\right) \left\lvert\, \operatorname{rank}\left(\begin{array}{cccccc}x_{0} & \cdots & x_{n-1} & x_{n+1} & \cdots & x_{\ell-1} \\ x_{1} & \cdots & x_{n} & x_{n+2} & \cdots & x_{\ell}\end{array}\right)=1\right.\right\}$.
where $\ell=n+m+1$ with $1 \leq m \leq n$. We proved that the set
$\mathcal{G}=\left\{X_{i} X_{j}-X_{i+1} X_{j-1} \mid 0 \leq i \leq \ell-2, i \neq n, i+1<j \leq \ell, j \neq n+1\right\}$ is a Gröbner basis, w.r.t. the graded lexicographic order such that $X_{\ell}<\cdots<X_{0}$, for the ideal I that it defines in $\mathbb{F}_{q}\left[X_{0}, \ldots, X_{\ell}\right]$ but this ideal is not the ideal I_{S} of the points of S. We found a graded \mathbb{F}_{q}-subalgebra $B \subset \mathbb{F}_{q}[Y, Z, V, W]$ such that $\mathbb{F}_{q}\left[X_{0}, \ldots, X_{\ell}\right] / I \cong B$ and then an ideal $J \subset B$ such that for all $d \geq 1$ we have $\mathbb{F}_{q}\left[X_{0}, \ldots, X_{\ell}\right]_{d} / I_{S}(d) \cong B_{d} / J(d)$.

Codes defined over projective varieties

In 2016 in a joint work with V.G.L. Neumann we studied codes defined over a rational normal scroll, i.e. the surface defined by
$S=\left\{\left(x_{0}: \cdots: x_{\ell}\right) \in \mathbb{P}^{\ell}\left(\mathbb{F}_{q}\right) \left\lvert\, \operatorname{rank}\left(\begin{array}{cccccc}x_{0} & \cdots & x_{n-1} & x_{n+1} & \cdots & x_{\ell-1} \\ x_{1} & \cdots & x_{n} & x_{n+2} & \cdots & x_{\ell}\end{array}\right)=1\right.\right\}$.
where $\ell=n+m+1$ with $1 \leq m \leq n$. We proved that the set $\mathcal{G}=\left\{X_{i} X_{j}-X_{i+1} X_{j-1} \mid 0 \leq i \leq \ell-2, i \neq n, i+1<j \leq \ell, j \neq n+1\right\}$ is a Gröbner basis, w.r.t. the graded lexicographic order such that $X_{\ell}<\cdots<X_{0}$, for the ideal I that it defines in $\mathbb{F}_{q}\left[X_{0}, \ldots, X_{\ell}\right]$ but this ideal is not the ideal I_{S} of the points of S. We found a graded \mathbb{F}_{q}-subalgebra $B \subset \mathbb{F}_{q}[Y, Z, V, W]$ such that $\mathbb{F}_{q}\left[X_{0}, \ldots, X_{\ell}\right] / I \cong B$ and then an ideal $J \subset B$ such that for all $d \geq 1$ we have $\mathbb{F}_{q}\left[X_{0}, \ldots, X_{\ell}\right]_{d} / I_{S}(d) \cong B_{d} / J(d)$. Then we determined a basis for $B_{d} / J(d)$ formed by classes of monomials in B_{d}.

$$
\begin{aligned}
& \text { proceeded in a manner very similar to the process described above. We } \\
& \text { determined the dimension, a lower bound for the minimum distance and }
\end{aligned}
$$ the exact value of it in the case where $m=n$.

Codes defined over projective varieties

In 2016 in a joint work with V.G.L. Neumann we studied codes defined over a rational normal scroll, i.e. the surface defined by
$S=\left\{\left(x_{0}: \cdots: x_{\ell}\right) \in \mathbb{P}^{\ell}\left(\mathbb{F}_{q}\right) \left\lvert\, \operatorname{rank}\left(\begin{array}{cccccc}x_{0} & \cdots & x_{n-1} & x_{n+1} & \cdots & x_{\ell-1} \\ x_{1} & \cdots & x_{n} & x_{n+2} & \cdots & x_{\ell}\end{array}\right)=1\right.\right\}$.
where $\ell=n+m+1$ with $1 \leq m \leq n$. We proved that the set
$\mathcal{G}=\left\{X_{i} X_{j}-X_{i+1} X_{j-1} \mid 0 \leq i \leq \ell-2, i \neq n, i+1<j \leq \ell, j \neq n+1\right\}$ is a Gröbner basis, w.r.t. the graded lexicographic order such that $X_{\ell}<\cdots<X_{0}$, for the ideal I that it defines in $\mathbb{F}_{q}\left[X_{0}, \ldots, X_{\ell}\right]$ but this ideal is not the ideal I_{S} of the points of S. We found a graded \mathbb{F}_{q}-subalgebra $B \subset \mathbb{F}_{q}[Y, Z, V, W]$ such that $\mathbb{F}_{q}\left[X_{0}, \ldots, X_{\ell}\right] / I \cong B$ and then an ideal $J \subset B$ such that for all $d \geq 1$ we have $\mathbb{F}_{q}\left[X_{0}, \ldots, X_{\ell}\right]_{d} / I_{S}(d) \cong B_{d} / J(d)$. Then we determined a basis for $B_{d} / J(d)$ formed by classes of monomials in B_{d}. From here on we proceeded in a manner very similar to the process described above. determined the dimension, a lower bound for the minimum distance and the exact value of it in the case where $m=n$.

Codes defined over projective varieties

In 2016 in a joint work with V.G.L. Neumann we studied codes defined over a rational normal scroll, i.e. the surface defined by
$S=\left\{\left(x_{0}: \cdots: x_{\ell}\right) \in \mathbb{P}^{\ell}\left(\mathbb{F}_{q}\right) \left\lvert\, \operatorname{rank}\left(\begin{array}{cccccc}x_{0} & \cdots & x_{n-1} & x_{n+1} & \cdots & x_{\ell-1} \\ x_{1} & \cdots & x_{n} & x_{n+2} & \cdots & x_{\ell}\end{array}\right)=1\right.\right\}$.
where $\ell=n+m+1$ with $1 \leq m \leq n$. We proved that the set
$\mathcal{G}=\left\{X_{i} X_{j}-X_{i+1} X_{j-1} \mid 0 \leq i \leq \ell-2, i \neq n, i+1<j \leq \ell, j \neq n+1\right\}$
is a Gröbner basis, w.r.t. the graded lexicographic order such that $X_{\ell}<\cdots<X_{0}$, for the ideal I that it defines in $\mathbb{F}_{q}\left[X_{0}, \ldots, X_{\ell}\right]$ but this ideal is not the ideal I_{S} of the points of S. We found a graded \mathbb{F}_{q}-subalgebra $B \subset \mathbb{F}_{q}[Y, Z, V, W]$ such that $\mathbb{F}_{q}\left[X_{0}, \ldots, X_{\ell}\right] / I \cong B$ and then an ideal $J \subset B$ such that for all $d \geq 1$ we have $\mathbb{F}_{q}\left[X_{0}, \ldots, X_{\ell}\right]_{d} / I_{S}(d) \cong B_{d} / J(d)$. Then we determined a basis for $B_{d} / J(d)$ formed by classes of monomials in B_{d}. From here on we proceeded in a manner very similar to the process described above. We determined the dimension, a lower bound for the minimum distance and the exact value of it in the case where $m=n$.

Codes defined over projective varieties

In 2018 in a joint work with V.G.L. Neumann, X. Mondragon and H.

 Tapia-Recillas we generalized the above results for codes defined over scrolls of higher dimension.Let $e_{0} \geq e_{1} \geq e_{2} \geq \ldots \geq e_{n} \geq 1$ be integers, and let
$\ell=\left(e_{0}+1\right)+\left(e_{1}+1\right)+\ldots+\left(e_{n}+1\right)-1=\sum_{i=0}^{n} e_{i}+n$. Let S be the set of zeros in $\mathbb{P}\left(\mathbb{F}_{q}\right)^{\ell}$ of the homogeneous ideal generated by the minors of $\mathcal{M}=\left(\begin{array}{cccccccccc}x_{0,0} & \ldots & x_{0, e_{0}-1} & x_{1,0} & \ldots & x_{1, e_{1}-1} & \ldots & x_{n, 0} & \ldots & x_{n, e_{n}-1} \\ x_{0,1} & \ldots & x_{0, e_{0}} & x_{1,1} & \ldots & x_{1, e_{1}} & \ldots & x_{n, 1} & \ldots & X_{n, e_{n}}\end{array}\right)$

As in the previous case we calculated the dimension, a lower bound for the minimum distance and the exact value of the minimum distance in the case where $e_{0}=\cdots=e_{n}$.

Codes defined over projective varieties

In 2018 in a joint work with V.G.L. Neumann, X. Mondragon and H. Tapia-Recillas we generalized the above results for codes defined over scrolls of higher dimension.

As in the previous case we calculated the dimension, a lower bound for the minimum distance and the exact value of the minimum distance in the case where $e_{0}=\cdots=e_{n}$

Codes defined over projective varieties

In 2018 in a joint work with V.G.L. Neumann, X. Mondragon and H. Tapia-Recillas we generalized the above results for codes defined over scrolls of higher dimension.

Let $e_{0} \geq e_{1} \geq e_{2} \geq \ldots \geq e_{n} \geq 1$ be integers, and let $\ell=\left(e_{0}+1\right)+\left(e_{1}+1\right)+\ldots+\left(e_{n}+1\right)-1=\sum_{i=0}^{n} e_{i}+n$. \qquad
of zeros in $\mathbb{P}\left(\mathbb{F}_{q}\right)^{\ell}$ of the homogeneous ideal generated by the minors of

As in the previous case we calculated the dimension, a lower bound for the minimum distance and the exact value of the minimum distance in the case where $e_{0}=\cdots=e_{n}$.

Codes defined over projective varieties

In 2018 in a joint work with V.G.L. Neumann, X. Mondragon and H. Tapia-Recillas we generalized the above results for codes defined over scrolls of higher dimension.

Let $e_{0} \geq e_{1} \geq e_{2} \geq \ldots \geq e_{n} \geq 1$ be integers, and let $\ell=\left(e_{0}+1\right)+\left(e_{1}+1\right)+\ldots+\left(e_{n}+1\right)-1=\sum_{i=0}^{n} e_{i}+n$. Let S be the set of zeros in $\mathbb{P}\left(\mathbb{F}_{q}\right)^{\ell}$ of the homogeneous ideal generated by the minors of

As in the previous case we calculated the dimension, a lower bound for the minimum distance and the exact value of the minimum distance in the case where $e_{0}=\cdots=e_{n}$.

Codes defined over projective varieties

In 2018 in a joint work with V.G.L. Neumann, X. Mondragon and H. Tapia-Recillas we generalized the above results for codes defined over scrolls of higher dimension.

Let $e_{0} \geq e_{1} \geq e_{2} \geq \ldots \geq e_{n} \geq 1$ be integers, and let $\ell=\left(e_{0}+1\right)+\left(e_{1}+1\right)+\ldots+\left(e_{n}+1\right)-1=\sum_{i=0}^{n} e_{i}+n$. Let S be the set of zeros in $\mathbb{P}\left(\mathbb{F}_{q}\right)^{\ell}$ of the homogeneous ideal generated by the minors of

$$
\mathcal{M}=\left(\begin{array}{cccccccccc}
X_{0,0} & \ldots & X_{0, e_{0}-1} & X_{1,0} & \ldots & X_{1, e_{1}-1} & \ldots & X_{n, 0} & \ldots & X_{n, e_{n}-1} \\
X_{0,1} & \ldots & X_{0, e_{0}} & X_{1,1} & \ldots & X_{1, e_{1}} & \ldots & X_{n, 1} & \ldots & X_{n, e_{n}}
\end{array}\right) .
$$

As in the previous case we calculated the dimension, a lower bound for the minimum distance and the exact value of the minimum distance in the case where $e_{0}=\cdots=e_{n}$.

Codes defined over projective varieties

In 2018 in a joint work with V.G.L. Neumann, X. Mondragon and H. Tapia-Recillas we generalized the above results for codes defined over scrolls of higher dimension.

Let $e_{0} \geq e_{1} \geq e_{2} \geq \ldots \geq e_{n} \geq 1$ be integers, and let
$\ell=\left(e_{0}+1\right)+\left(e_{1}+1\right)+\ldots+\left(e_{n}+1\right)-1=\sum_{i=0}^{n} e_{i}+n$. Let S be the set of zeros in $\mathbb{P}\left(\mathbb{F}_{q}\right)^{\ell}$ of the homogeneous ideal generated by the minors of

$$
\mathcal{M}=\left(\begin{array}{cccccccccc}
X_{0,0} & \ldots & X_{0, e_{0}-1} & X_{1,0} & \ldots & X_{1, e_{1}-1} & \ldots & X_{n, 0} & \ldots & X_{n, e_{n}-1} \\
X_{0,1} & \ldots & X_{0, e_{0}} & X_{1,1} & \ldots & X_{1, e_{1}} & \ldots & X_{n, 1} & \ldots & X_{n, e_{n}}
\end{array}\right)
$$

As in the previous case we calculated the dimension, a lower bound for the minimum distance and the exact value of the minimum distance in the case where $e_{0}=\cdots=e_{n}$.

THANK YOU!

[^0]: A. Sørensen, Projective Reed-Muller codes (1991)
 C. Rentería H. Tania-Recillas Reed-Muller codes: An ideal theory approach (1997) M. González-Sarabia et al., Reed-Muller-Type Codes Over the Segre Variety, (2002)

[^1]: This can be used to obtain a lower bound for $d_{\min }\left(C_{d}\right)$

