
On the application of Gröbner basis theory to the study
of certain evaluation codes
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Celebrating Paulo Ribenboim’s ninetieth birthday

IME-USP October 24th to 27th, 2018.
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Facts from Gröbner bases theory

Let M be the set of monomials of k[X1, . . . ,Xn] =: k[X] and endow M
with a monomial order ≺. Given f ∈ k[X] \ {0} the leading monomial of
f (lm(f )) is the greatest monomial appearing in f . Let I ⊂ k[X] be an
ideal, we say that {g1, . . . , gs} ⊂ I is a Gröbner basis for I (w.r.t. ≺) if the
leading monomial of any nonzero polynomial in I is multiple of lm(gi ) for
some i = 1, . . . , s. One can prove that such a set is a basis for I in the
usual sense I = (g1, . . . , gs) and that any ideal has a Gröbner basis.
Let
∆(I ) = {M ∈M | M is not the leading monomial of any polynomial in I}
be the footprint of I (w.r.t. ≺). Observe that if I ⊂ J then ∆(J) ⊂ ∆(I ).

Buchberger (1965) proved that {M + I | M ∈ ∆(I )} is a basis for k[X]/I
(considered as a k-vector space).
If I is homogeneous then {M + I | M ∈ ∆(I ), deg(M) = d} is a basis for
k[X]d/I (d).
We also have that M ∈ ∆(I ) if and only if M is not a multiple of lm(gi )
for all i = 1, . . . , s.
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leading monomial of any nonzero polynomial in I is multiple of lm(gi ) for
some i = 1, . . . , s. One can prove that such a set is a basis for I in the
usual sense I = (g1, . . . , gs) and that any ideal has a Gröbner basis.
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leading monomial of any nonzero polynomial in I is multiple of lm(gi ) for
some i = 1, . . . , s. One can prove that such a set is a basis for I in the
usual sense I = (g1, . . . , gs) and that any ideal has a Gröbner basis.
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Ćıcero Carvalho (UFU) Application of Gröbner basis theory to coding theory 2 / 11
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Gröbner bases and coding theory
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A (linear error correcting) code of length N defined over Fq is an
Fq-vector subspace C ⊂ FN

q . Given an N-tuple α = (α1, . . . , αN) ∈ FN
q

the weight of α is w(α) = #{i |αi 6= 0} and the minimum distance of C
is dmin(C ) := min{w(α) |α ∈ C \ {0}}.
One may use a set X = {P1, . . . ,PN} ⊂ Am(Fq) to construct a code in
the following way. Let IX ⊂ Fq[X0, . . . ,Xm] = Fq[X] be the ideal of X and
let ϕ : Fq[X]/IX → FN

q be given by ϕ(f + IX ) = (f (P1), . . . , f (PN)). It is
not difficult to show that ϕ is an isomorphism of Fq-vector spaces. Thus,
for any subspace L ⊂ Fq[X]/IX we have a code CL := ϕ(L).
Let d be a nonnegative integer and let
Ld := {f + IX | f = 0 or deg(f ) ≤ d}. In this case we say that CLd is “of
Reed-Muller type” and has order d . From Buchberger’s result we know
that the classes of the monomials in ∆(IX )) form a basis for Fq[X]/IX (in
particular #(∆(IX )) = N) and one may prove that the set
∆(IX )d := {M + IX |M ∈ ∆(IX ), deg(M) ≤ d} is a basis for Ld , so that
dim(CLd ) = #(∆(IX )d).



Gröbner bases and coding theory
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As for the minimum distance dmin(CL), we would like to estimate the
number of zero entries in ϕ(f + IX ) = (f (P1), . . . , f (PN)). Let
IX ,f := IX + (f ), we want to estimate N −#(V (IX ,f )). From IX ⊂ IX ,f we
get ∆(IX ,f ) ⊂ ∆(IX ), in particular ∆(IX ,f ) is finite which implies
#(V (IX ,f )) ≤ #(∆(IX ,f )) and we get N −#(V (IX ,f )) ≥ N −#(∆(IX ,f )).

From Buchberger’s result we can assume that f is a linear combination of
monomials in ∆(IX ) so that lm(f ) ∈ ∆(IX ). One may prove that
N −#(∆(IX ,f )) ≥ #({M ′ ∈ ∆(IX ) | lm(f )| M ′}), so the idea now is to
determine for each monomial M ∈ ∆(IX ) the cardinality of the set
{M ′ ∈ ∆(IX ) |M| M ′}, and from this determine a lower bound for
dmin(CL). Moreover, it is true that if {g1, . . . , gs} is a Gröbner basis for IX
and {f , g1, . . . , gs} is a Gröbner basis for IX ,f then this bound is the true
value of the minimum distance.
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Gröbner basis methods and the parameters of CL
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Ćıcero Carvalho (UFU) Application of Gröbner basis theory to coding theory 4 / 11

As for the minimum distance dmin(CL), we would like to estimate the
number of zero entries in ϕ(f + IX ) = (f (P1), . . . , f (PN)). Let
IX ,f := IX + (f ), we want to estimate N −#(V (IX ,f )). From IX ⊂ IX ,f we
get ∆(IX ,f ) ⊂ ∆(IX ), in particular ∆(IX ,f ) is finite which implies
#(V (IX ,f )) ≤ #(∆(IX ,f )) and we get N −#(V (IX ,f )) ≥ N −#(∆(IX ,f )).

From Buchberger’s result we can assume that f is a linear combination of
monomials in ∆(IX ) so that lm(f ) ∈ ∆(IX ). One may prove that
N −#(∆(IX ,f )) ≥ #({M ′ ∈ ∆(IX ) | lm(f )| M ′}), so the idea now is to
determine for each monomial M ∈ ∆(IX ) the cardinality of the set
{M ′ ∈ ∆(IX ) |M| M ′}, and from this determine a lower bound for
dmin(CL). Moreover, it is true that if {g1, . . . , gs} is a Gröbner basis for IX
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Gröbner basis methods and the parameters of CL
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Gröbner basis methods and the parameters of CL
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Ćıcero Carvalho (UFU) Application of Gröbner basis theory to coding theory 5 / 11

We present an example has which appeared in a couple or our works.

Let A1, . . . ,Am be nonempty subsets of Fq such that
2 ≤ |A1| ≤ · · · ≤ |Am|, and set X := A1 × · · · × Am. In Fq[X1, . . . ,Xm] let
fi :=

∏
c∈Ai

(Xi − c) for all i ∈ {1, . . . ,m} and let I := (f1, . . . , fm), then
X = V (I ). One may show that I is the ideal of the set X , and clearly
|X | = |A1|. · · · .|An|. Let Ld := {p + I | p = 0 or deg(p) ≤ d}. Then
ϕ(Ld) =: C (Ld) is the affine cartesian code of order d . We have that
{f1, . . . , fm} is a Gröbner basis for I w.r.t. the graded lexicographic order.
Let di := |Ai | for i = 1, . . . ,m.
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Ćıcero Carvalho (UFU) Application of Gröbner basis theory to coding theory 5 / 11

We present an example has which appeared in a couple or our works.

Let A1, . . . ,Am be nonempty subsets of Fq such that
2 ≤ |A1| ≤ · · · ≤ |Am|, and set X := A1 × · · · × Am. In Fq[X1, . . . ,Xm] let
fi :=

∏
c∈Ai

(Xi − c) for all i ∈ {1, . . . ,m} and let I := (f1, . . . , fm), then
X = V (I ). One may show that I is the ideal of the set X , and clearly
|X | = |A1|. · · · .|An|. Let Ld := {p + I | p = 0 or deg(p) ≤ d}. Then
ϕ(Ld) =: C (Ld) is the affine cartesian code of order d . We have that
{f1, . . . , fm} is a Gröbner basis for I w.r.t. the graded lexicographic order.
Let di := |Ai | for i = 1, . . . ,m.
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{f1, . . . , fm} is a Gröbner basis for I w.r.t. the graded lexicographic order.
Let di := |Ai | for i = 1, . . . ,m.



Gröbner basis methods and the parameters of CL
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Ćıcero Carvalho (UFU) Application of Gröbner basis theory to coding theory 5 / 11

6

-r
d1 ∼ X d1

1

We present an example has which appeared in a couple or our works.

Let A1, . . . ,Am be nonempty subsets of Fq such that
2 ≤ |A1| ≤ · · · ≤ |Am|, and set X := A1 × · · · × Am. In Fq[X1, . . . ,Xm] let
fi :=

∏
c∈Ai

(Xi − c) for all i ∈ {1, . . . ,m} and let I := (f1, . . . , fm), then
X = V (I ). One may show that I is the ideal of the set X , and clearly
|X | = |A1|. · · · .|An|. Let Ld := {p + I | p = 0 or deg(p) ≤ d}. Then
ϕ(Ld) =: C (Ld) is the affine cartesian code of order d . We have that
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Gröbner basis methods and the parameters of CL
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Ćıcero Carvalho (UFU) Application of Gröbner basis theory to coding theory 5 / 11

6

-r
d1 ∼ X d1

1

p p p p p p p p pp p p p p p p p pp p p p p p p p pp p p p p p p p pp p p p p p p p pp p p p p p p p pp p p p p p p p pp p p p p p p p pp p p p p p p p pp p p p p p p p pp p p p p p p p p
r

(a, b) ∼ X a
1 X

b
2

rd2X d2
2 ∼

p p p p p p p pp p p p p p p pp p p p p p p p p p p p p p p p
∆(I )

We present an example has which appeared in a couple or our works.

Let A1, . . . ,Am be nonempty subsets of Fq such that
2 ≤ |A1| ≤ · · · ≤ |Am|, and set X := A1 × · · · × Am. In Fq[X1, . . . ,Xm] let
fi :=

∏
c∈Ai

(Xi − c) for all i ∈ {1, . . . ,m} and let I := (f1, . . . , fm), then
X = V (I ). One may show that I is the ideal of the set X , and clearly
|X | = |A1|. · · · .|An|. Let Ld := {p + I | p = 0 or deg(p) ≤ d}. Then
ϕ(Ld) =: C (Ld) is the affine cartesian code of order d . We have that
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Ćıcero Carvalho (UFU) Application of Gröbner basis theory to coding theory 5 / 11

6

-r
d1 ∼ X d1

1

p p p p p p p p pp p p p p p p p pp p p p p p p p pp p p p p p p p pp p p p p p p p pp p p p p p p p pp p p p p p p p pp p p p p p p p pp p p p p p p p pp p p p p p p p pp p p p p p p p p
r

(a, b) ∼ X a
1 X

b
2

rd2X d2
2 ∼

p p p p p p p pp p p p p p p pp p p p p p p p p p p p p p p pLet f ∈ Fq[X] with deg(f ) ≤ d and let M := lm(f ).

r
M

We present an example has which appeared in a couple or our works.

Let A1, . . . ,Am be nonempty subsets of Fq such that
2 ≤ |A1| ≤ · · · ≤ |Am|, and set X := A1 × · · · × Am. In Fq[X1, . . . ,Xm] let
fi :=

∏
c∈Ai

(Xi − c) for all i ∈ {1, . . . ,m} and let I := (f1, . . . , fm), then
X = V (I ). One may show that I is the ideal of the set X , and clearly
|X | = |A1|. · · · .|An|. Let Ld := {p + I | p = 0 or deg(p) ≤ d}. Then
ϕ(Ld) =: C (Ld) is the affine cartesian code of order d . We have that
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Ćıcero Carvalho (UFU) Application of Gröbner basis theory to coding theory 5 / 11

6

-r
d1 ∼ X d1

1

p p p p p p p p pp p p p p p p p pp p p p p p p p pp p p p p p p p pp p p p p p p p pp p p p p p p p pp p p p p p p p pp p p p p p p p pp p p p p p p p pp p p p p p p p pp p p p p p p p p
r

(a, b) ∼ X a
1 X

b
2

rd2X d2
2 ∼

p p p p p p p pp p p p p p p pp p p p p p p p p p p p p p p pLet f ∈ Fq[X] with deg(f ) ≤ d and let M := lm(f ).

r
M

We have ∆(IX + (f )) ⊂ ∆(IX )

p p p ppppp

We present an example has which appeared in a couple or our works.

Let A1, . . . ,Am be nonempty subsets of Fq such that
2 ≤ |A1| ≤ · · · ≤ |Am|, and set X := A1 × · · · × Am. In Fq[X1, . . . ,Xm] let
fi :=

∏
c∈Ai

(Xi − c) for all i ∈ {1, . . . ,m} and let I := (f1, . . . , fm), then
X = V (I ). One may show that I is the ideal of the set X , and clearly
|X | = |A1|. · · · .|An|. Let Ld := {p + I | p = 0 or deg(p) ≤ d}. Then
ϕ(Ld) =: C (Ld) is the affine cartesian code of order d . We have that
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{f1, . . . , fm} is a Gröbner basis for I w.r.t. the graded lexicographic order.
Let di := |Ai | for i = 1, . . . ,m.
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{f1, . . . , fm} is a Gröbner basis for I w.r.t. the graded lexicographic order.
Let di := |Ai | for i = 1, . . . ,m.
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One may also use a set X = {P1, . . . ,PN} ⊂ P`(Fq) to construct a code
in the following way.
As before let IX ⊂ Fq[X0, . . . ,Xn] = Fq[X] be the ideal of X (as a set of
points). In this case we have that Fq[X]/IX is an infinite dimensional
Fq-vector space.
Looking at Fq[X]/IX as a graded algebra Fq[X]/IX =

⊕∞
d=0 Fq[X]d/IX (d)

we pick a d , write the points of X in “standard form” and consider the
evaluation morphism ψ : Fq[X]d/IX (d)→ FN

q where
ψ(f + IX ) = (f (P1), . . . , f (PN)). Now can choose an Fq-vector subspace
L ⊂ Fq[X]d/IX (d) and define CL to be the projective code associated to
L. Observe that ψ is injective so that dimFq CL = dimFq L. It is not true
that ψ is an isomorphism for all d ≥ 0 but one may prove that if
d ≥ N − 1 then ψ is an isomorphism.
On the literature usually one takes L = Fq[X]d/IX (d). For example:
G. Lachaud, Projective Reed-Muller codes (1986)
A. Sørensen, Projective Reed-Muller codes (1991)
C. Renteŕıa, H. Tapia-Recillas, Reed-Muller codes: An ideal theory approach (1997)
M. González-Sarabia et al., Reed-Muller-Type Codes Over the Segre Variety, (2002)
A. Tochimani et al., Direct products in projective Segre codes (2016)
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M. González-Sarabia et al., Reed-Muller-Type Codes Over the Segre Variety, (2002)
A. Tochimani et al., Direct products in projective Segre codes (2016)



Codes defined over projective varieties
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C. Renteŕıa, H. Tapia-Recillas, Reed-Muller codes: An ideal theory approach (1997)
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Ćıcero Carvalho (UFU) Application of Gröbner basis theory to coding theory 6 / 11

One may also use a set X = {P1, . . . ,PN} ⊂ P`(Fq) to construct a code
in the following way.
As before let IX ⊂ Fq[X0, . . . ,Xn] = Fq[X] be the ideal of X (as a set of
points). In this case we have that Fq[X]/IX is an infinite dimensional
Fq-vector space.
Looking at Fq[X]/IX as a graded algebra Fq[X]/IX =

⊕∞
d=0 Fq[X]d/IX (d)

we pick a d , write the points of X in “standard form” and consider the
evaluation morphism ψ : Fq[X]d/IX (d)→ FN

q where
ψ(f + IX ) = (f (P1), . . . , f (PN)). Now can choose an Fq-vector subspace
L ⊂ Fq[X]d/IX (d) and define CL to be the projective code associated to
L. Observe that ψ is injective so that dimFq CL = dimFq L. It is not true
that ψ is an isomorphism for all d ≥ 0 but one may prove that if
d ≥ N − 1 then ψ is an isomorphism.
On the literature usually one takes L = Fq[X]d/IX (d). For example:
G. Lachaud, Projective Reed-Muller codes (1986)
A. Sørensen, Projective Reed-Muller codes (1991)
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M. González-Sarabia et al., Reed-Muller-Type Codes Over the Segre Variety, (2002)
A. Tochimani et al., Direct products in projective Segre codes (2016)



Codes defined on projective varieties
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To determine the dimension of ψ(Fq[X]d/IX (d)) =: Cd we can, as in the
affine case, find a Gröbner basis for IX , determine the footprint of IX and
count the elements in the set ∆(IX )d of monomials of degree d in ∆(IX ),
whose classes form a basis for Fq[X]d/IX (d). As for the minimum
distance, we can adapt the method used on affine variety codes.

Let f ∈ Fq[X0, . . . ,Xn] be a homogeneous polynomial of degree d . As
before we may assume that f is a linear combination of monomials in
∆(IX )d , and the weight of ψ(f + IX ) is ω := N −#(V (IX + (f )). Let
V (IX + (f )) = {Q1, . . . ,Qt} =: Y . For e “big enough” we have
N = #(∆(IX )e) and t = #(∆(IY )e), so ω = #(∆(IX )e)−#(∆(IY )e).
From IX ⊂ IX + (f ) ⊂ IY we get ∆(IY ) ⊂ ∆(IX + (f )) ⊂ ∆(IX ) so that
ω = #(∆(IX )e \∆(IY )e) ≥ #(∆(IX )e \∆(IX + (f ))e)
≥ #({M ′ ∈ ∆(IX ) | degM = e, lm(f ) |M ′}.

This can be used to obtain a lower bound for dmin(Cd).
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Ćıcero Carvalho (UFU) Application of Gröbner basis theory to coding theory 7 / 11

To determine the dimension of ψ(Fq[X]d/IX (d)) =: Cd we can, as in the
affine case, find a Gröbner basis for IX , determine the footprint of IX and
count the elements in the set ∆(IX )d of monomials of degree d in ∆(IX ),
whose classes form a basis for Fq[X]d/IX (d). As for the minimum
distance, we can adapt the method used on affine variety codes.

Let f ∈ Fq[X0, . . . ,Xn] be a homogeneous polynomial of degree d . As
before we may assume that f is a linear combination of monomials in
∆(IX )d , and the weight of ψ(f + IX ) is ω := N −#(V (IX + (f )). Let
V (IX + (f )) = {Q1, . . . ,Qt} =: Y . For e “big enough” we have
N = #(∆(IX )e) and t = #(∆(IY )e), so ω = #(∆(IX )e)−#(∆(IY )e).
From IX ⊂ IX + (f ) ⊂ IY we get ∆(IY ) ⊂ ∆(IX + (f )) ⊂ ∆(IX ) so that
ω = #(∆(IX )e \∆(IY )e) ≥ #(∆(IX )e \∆(IX + (f ))e)
≥ #({M ′ ∈ ∆(IX ) | degM = e, lm(f ) |M ′}.

This can be used to obtain a lower bound for dmin(Cd).



Codes defined on projective varieties
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Ćıcero Carvalho (UFU) Application of Gröbner basis theory to coding theory 7 / 11

To determine the dimension of ψ(Fq[X]d/IX (d)) =: Cd we can, as in the
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In recent joint works we have studied the parameters of some projective
variety codes using these Gröbner methods.

In 2017, together with V.G.L. Neumann and H. López we have studied
“projective nested cartesian codes”.

Let K0 ⊂ · · · ⊂ Kn ⊂ Fq and take X to be X = [K0 × · · · × Kn], i.e. a
projective nested product of fields.

We proved that the set

G =
{
Xi
∏

aj∈Aj
(Xj − ajXi ) : i < j , i , j = 0, . . . , n

}
is a Gröbner basis

for IX .

We determined the dimension and minimum distance of these codes, but
we didn’t use the above reasoning to find the minimum distance.
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In 2017, together with V.G.L. Neumann and H. López we have studied
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“projective nested cartesian codes”.

Let K0 ⊂ · · · ⊂ Kn ⊂ Fq and take X to be X = [K0 × · · · × Kn], i.e. a
projective nested product of fields.

We proved that the set

G =
{
Xi
∏

aj∈Aj
(Xj − ajXi ) : i < j , i , j = 0, . . . , n

}
is a Gröbner basis

for IX .

We determined the dimension and minimum distance of these codes, but
we didn’t use the above reasoning to find the minimum distance.



Codes defined over projective varieties
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Ćıcero Carvalho (UFU) Application of Gröbner basis theory to coding theory 8 / 11

In recent joint works we have studied the parameters of some projective
variety codes using these Gröbner methods.
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In 2016 in a joint work with V.G.L. Neumann we studied codes defined
over a rational normal scroll, i.e. the surface defined by

S =

{
(x0 : · · · : x`) ∈ P`(Fq) | rank

(
x0 · · · xn−1 xn+1 · · · x`−1

x1 · · · xn xn+2 · · · x`

)
= 1

}
.

where ` = n + m + 1 with 1 ≤ m ≤ n. We proved that the set
G = {XiXj − Xi+1Xj−1 | 0 ≤ i ≤ `− 2 , i 6= n, i + 1 < j ≤ ` , j 6= n + 1}
is a Gröbner basis, w.r.t. the graded lexicographic order such that
X` < · · · < X0, for the ideal I that it defines in Fq[X0, . . . ,X`] but this
ideal is not the ideal IS of the points of S . We found a graded
Fq-subalgebra B ⊂ Fq[Y ,Z ,V ,W ] such that Fq[X0, . . . ,X`]/I ∼= B and
then an ideal J ⊂ B such that for all d ≥ 1 we have
Fq[X0, . . . ,X`]d/IS(d) ∼= Bd/J(d). Then we determined a basis for
Bd/J(d) formed by classes of monomials in Bd . From here on we
proceeded in a manner very similar to the process described above. We
determined the dimension, a lower bound for the minimum distance and
the exact value of it in the case where m = n.
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is a Gröbner basis, w.r.t. the graded lexicographic order such that
X` < · · · < X0, for the ideal I that it defines in Fq[X0, . . . ,X`] but this
ideal is not the ideal IS of the points of S . We found a graded
Fq-subalgebra B ⊂ Fq[Y ,Z ,V ,W ] such that Fq[X0, . . . ,X`]/I ∼= B and
then an ideal J ⊂ B such that for all d ≥ 1 we have
Fq[X0, . . . ,X`]d/IS(d) ∼= Bd/J(d). Then we determined a basis for
Bd/J(d) formed by classes of monomials in Bd . From here on we
proceeded in a manner very similar to the process described above. We
determined the dimension, a lower bound for the minimum distance and
the exact value of it in the case where m = n.



Codes defined over projective varieties

Ćıcero Carvalho (UFU) Application of Gröbner basis theory to coding theory 9 / 11

In 2016 in a joint work with V.G.L. Neumann we studied codes defined
over a rational normal scroll, i.e. the surface defined by

S =

{
(x0 : · · · : x`) ∈ P`(Fq) | rank

(
x0 · · · xn−1 xn+1 · · · x`−1

x1 · · · xn xn+2 · · · x`

)
= 1

}
.

where ` = n + m + 1 with 1 ≤ m ≤ n. We proved that the set
G = {XiXj − Xi+1Xj−1 | 0 ≤ i ≤ `− 2 , i 6= n, i + 1 < j ≤ ` , j 6= n + 1}
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In 2018 in a joint work with V.G.L. Neumann, X. Mondragon and H.
Tapia-Recillas we generalized the above results for codes defined over
scrolls of higher dimension.

Let e0 ≥ e1 ≥ e2 ≥ . . . ≥ en ≥ 1 be integers, and let
` = (e0 + 1) + (e1 + 1) + . . .+ (en + 1)− 1 =

∑n
i=0 ei + n. Let S be the set

of zeros in P(Fq)` of the homogeneous ideal generated by the minors of

M =

(
X0,0 . . . X0,e0−1 X1,0 . . . X1,e1−1 . . . Xn,0 . . . Xn,en−1

X0,1 . . . X0,e0 X1,1 . . . X1,e1 . . . Xn,1 . . . Xn,en

)
.

As in the previous case we calculated the dimension, a lower bound for
the minimum distance and the exact value of the minimum distance in the
case where e0 = · · · = en.
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